Knowledge Representation for the Semantic Web

Lecture 8: Answer Set Programming III

Daria Stepanova

partially based on slides by Thomas Eiter

D5: Databases and Information Systems
Max Planck Institute for Informatics

WS 2017/18
Unit Outline

The DLV System and its Features

Weak Constraints

Aggregates

DLV Usage: Examples

Overview: DLV-Extensions
The DLV System
The DLV System: Introduction

http://www.dlvsystem.com/

- DLV is a premier disjunctive answer set solver
- Based on strong theoretical foundations
- Incorporates a lot of database technology
- Features non-monotonic negation and disjunction
- Rich program syntax (⇒ high expressiveness)
- Front-ends for specific problems (diagnosis, planning, etc.).
- Many extensions
 - DLVHEX, DLVDB, DLT, DLV-Complex, DL-programs, OntoDLV, ...
- Industrial applications
 - Exeura Srl www.exeura.it/
Features of DLV

- **Language**: logic programs admitting
 - disjunctions in rule heads,
 - default negation,
 - strong (classical) negation.

\(^1\) with the release of DLV 2010-10-14, function terms have been introduced.
Features of DLV

• **Language:** logic programs admitting
 - disjunctions in rule heads,
 - default negation,
 - strong (classical) negation.

• **Additionally:**
 - integer, arithmetic, and comparison built-ins,
 - integrity constraints,
 - weak constraints,
 - aggregate functions,
 - function symbols;\(^1\)
 - support for **brave & cautious** reasoning.
 - + further

\(^1\)with the release of DLV 2010-10-14, function terms have been introduced.
Frontends

• Besides the answer set semantics core, DLV offers front-ends for particular KR tasks:
 • diagnosis
 • inheritance
 • knowledge-based planning (\mathcal{K} language)

• Also:
 • front-end to SQL3
 • weak constraints with weights and layers
 • aggregate functions
Using DLV

- DLV is command-line oriented
- Input is read from files whose names are passed on the command-line
- If the command-line option “--” has been specified, input is also read from standard input (stdin)
- Output is printed to standard output (stdout), one line per model, i.e., answer set
- Detailed documentation at http://www.dlvsystem.com
DLV Syntax

- **Rules:**

\[a_1 \lor \cdots \lor a_n :\neg b_1, \ldots, b_k, \neg b_{k+1}, \ldots, \neg b_m. \]

where \(n \geq 1, \ m \geq 0 \) and all \(a_i, b_j \) are atoms or strongly negated atoms (e.g., \(-a\)); no function symbols.
DLV Syntax

- **Rules:**

 \[
 a_1 v \cdots v a_n :\neg b_1, \ldots, b_k, \not b_{k+1}, \ldots, \not b_m.
 \]

 where \(n \geq 1, \ m \geq 0 \) and all \(a_i, b_j \) are atoms or strongly negated atoms (e.g., \(-a\)); no function symbols.

- **Integrity constraints:**

 \[
 :\neg b_1, \ldots, b_k, b_{k+1}, \ldots, \not b_m.
 \]

 Can be regarded as rules with an empty (false) head.
DLV Syntax

- **Rules:**

 \[a_1 \lor \cdots \lor a_n :\neg b_1, \ldots, b_k, \neg b_{k+1}, \ldots, \neg b_m. \]

 where \(n \geq 1, \ m \geq 0 \) and all \(a_i, b_j \) are atoms or strongly negated atoms (e.g., \(\neg a \)); no function symbols.

- **Integrity constraints:**

 \[:\neg b_1, \ldots, b_k, \neg b_{k+1}, \ldots, \neg b_m. \]

 Can be regarded as rules with an empty (false) head.

- **Queries:**

 \[b_1, \ldots, b_k, \neg b_{k+1}, \ldots, \neg b_m? \]

 Support for query answering besides model computation (satisfied in at least one / in all answer sets, called brave / cautious reasoning)
Rule Safety

Each variable occurring in a rule (resp., constraint) in
 • the head,
 • a default literal \(\texttt{not} \ b \), or
 • a built-in comparison predicate,
must occur in at least one non-comparison \texttt{not}-free literal in the body.
Rule Safety

Each variable occurring in a rule (resp., constraint) in
- the head,
- a default literal (\texttt{not} \texttt{b}), or
- a built-in comparison predicate,
must occur in at least one non-comparison \texttt{not}-free literal in the body.

Example:

\begin{verbatim}
a(X) :- not b(X), c(X).
a(X) :- X > Y, node(X), node(Y).
a(X) \lor \neg a(X).
a(X) :- not b(X).
:- X <= Y, node(X).
\end{verbatim}
Rule Safety

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (not b), or
- a built-in comparison predicate,

must occur in at least one non-comparison not-free literal in the body.

Example:

Safe!

\[
\text{a(X)} :\neg \text{not b(X)}, \text{c(X)}. \\
\text{a(X)} :\neg \text{X > Y, node(X), node(Y)}. \\
\text{a(X)} v -\text{a(X)}. \\
\text{a(X)} :\neg \text{not b(X)}. \\
:\neg \text{X <= Y, node(X)}. \\
\]
Rule Safety

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (not b), or
- a built-in comparison predicate,

must occur in at least one non-comparison not-free literal in the body.

Example:

Safe!

\[
\begin{align*}
a(X) & : - \ not \ b(X), \ c(X). \\
a(X) & : - \ X > Y, \ node(X), \ node(Y).
\end{align*}
\]

Unsafe!

\[
\begin{align*}
a(X) & \lor -a(X). \\
a(X) & : - \ not \ b(X). \\
:- \ X \leq Y, \ node(X).
\end{align*}
\]
Built-in Predicates

- **Comparison predicates** (for integers and strings):

\[<, >, \leq, \geq, =, \neq \]
Built-in Predicates

- **Comparison predicates** (for integers and strings):

 `<`, `>`, `<=`, `>=`, `=`, `!=`

- **Arithmetic predicates**:

 `#int`, `#succ`, `+`, `*`

 - `#int(X)`: X is a known integer ($1 \leq X \leq N$).
 - `#succ(X, Y)`: Y is successor of X, i.e., $Y = X + 1$.
 - `+(X, Y, Z)`: $Z = X + Y$. (both variants are possible)
 - `*(X, Y, Z)`: $Z = X \times Y$.

Just auxiliary predicates. An upper bound for integers has to be specified when DLV is invoked.
Built-in Predicates

- **Comparison predicates** (for integers and strings):

 \(<, >, \leq, \geq, =, \neq\)

- **Arithmetic predicates**:

 \#int, \#succ, +, *

- \#int(X): \(X\) is a known integer \((1 \leq X \leq N)\).
- \#succ(X, Y): \(Y\) is successor of \(X\), i.e., \(Y = X + 1\).
- +\((X, Y, Z)\): \(Z = X + Y\). (both variants are possible)
- *(X, Y, Z): \(Z = X \times Y\).

- Just auxiliary predicates. An upper bound for integers has to be specified when DLV is invoked.
Example: Fibonacci Numbers

\[F_1, F_2, F_3, \ldots, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \ldots \]

- Except for first two numbers, each value is defined as the sum of the previous two.
Example: Fibonacci Numbers

- \[
 F_1 = 1, \quad F_2 = 1, \quad F_3 = 2, \quad \ldots \]

- Except for first two numbers, each value is defined as the sum of the previous two.

Encoding:

\[
\begin{align*}
\text{fib0}(1,1). \quad & \text{fib0}(2,1). \\
\text{fib}(N,X) & : - \text{fib0}(N,X).
\end{align*}
\]

\[
\begin{align*}
\% \ F_{N+2} &= F_N + F_{N+1} \\
\text{fib}(N,X) & : - \text{fib}(N1,Y1), \text{fib}(N2,Y2), \\
& \quad \text{N=N2+2, N=N1+1, X=Y1+Y2}.
\end{align*}
\]

An upper bound for integers has to be specified when `dlv` is invoked.
Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by \(\text{empl}(_, _) \)

Problem: Compute linear ordering and successor relation for employees
Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by \texttt{empl(__,_)}

Problem: Compute linear ordering and successor relation for employees

Solve problem using projection and double negation!
Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by empl(_,_)

Problem: Compute linear ordering and successor relation for employees

Solve problem using projection and double negation!

% Order employees by id
prec(X,Y) :- empl(X,_), empl(Y,_), X < Y.

% Define successor
-succ(X,Y) :- prec(X,Z), prec(Z,Y).
succ(X,Y) :- prec(X,Y), not -succ(X,Y).
Smallest, Largest in a Linear Ordering

Example: Employees

Problem: Determine employee with smallest (resp., largest) id
Smallest, Largest in a Linear Ordering

Example: Employees

Problem: Determine employee with smallest (resp., largest) id

- Computing smallest and largest elements in a linear ordering works accordingly:

 \[-\text{first}(X) :- \text{succ}(Y, X).\]

 \[\text{first}(X) :- \text{empl}(X, _), \text{not} - \text{first}(X).\]

 \[-\text{last}(X) :- \text{succ}(X, Y).\]

 \[\text{last}(X) :- \text{empl}(X, _), \text{not} - \text{last}(X).\]

Exercise: determine maximal (resp. minimal) salary of employees
Counting and Sum

How about counting or computing sums?

Example: Employees (cont’d)

Problem: Compute the sum of salaries of the employees
Counting and Sum

How about counting or computing sums?

Example: Employees (cont’d)

Problem: Compute the sum of salaries of the employees

• Recursion is needed:

\[
\text{partialSum}(X, S) := \text{first}(X), \text{empl}(X, S).
\]

\[
\text{partialSum}(Y, S) := \text{succ}(X, Y), \text{partialSum}(X, S1), \text{empl}(Y, S2), S = S1 + S2.
\]

\[
\text{sum}(S) := \text{last}(X), \text{partialSum}(X, S).
\]
Weak Constraints

- Allow to formalize optimization problems in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints “kill” unwanted models;
 - weak constraints express desiderata to satisfy if possible.
Weak Constraints

- Allow to formalize optimization problems in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints “kill” unwanted models;
 - weak constraints express desiderata to satisfy if possible.
- Syntax (DLV):
 \[\sim b_1, \ldots, b_k, \text{not } b_{k+1}, \ldots, \text{not } b_m. \ [\text{Weight:Level}] \]
 where
 - all \(b_i \) are atoms (resp. “classical” literals)
 - \(\text{Weight, Level} \) are numbers (or variables occurring in some \(b_i, i \leq k \), that instantiate to numbers)
Weak Constraints

- Allow to formalize optimization problems in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints “kill” unwanted models;
 - weak constraints express desiderata to satisfy if possible.
- Syntax (DLV):
 \[\sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m \]. [Weight: Level]
 where
 - all \(b_i \) are atoms (resp. “classical” literals)
 - \(Weight, Level \) are numbers (or variables occurring in some \(b_i, i \leq k \), that instantiate to numbers)

- Informally: for \((P, WC)\), where \(P \) is a program and \(WC \) is a set of weak constraints, each \(M \in AS(P) \) with least violation of \(WC \) is an answer set (best model), where \(AS(P) = \) set of answer sets of \(P \).
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[wc : \sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. \]

[Weight: Level]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[wc : \sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. \quad [\text{Weight : Level}] \]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
- The cost of \(I\) at level \(\ell\) is
 \[c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in V_i(I, \ell)} w, \]
 where
 \[V_i(I, \ell) = \{(\theta, w) \mid wc_i \theta = :\sim B. \ [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta\} \]
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[wc : \sim \ b_1, \ldots, b_k, \ not \ b_{k+1}, \ldots, \ not \ b_m. \ [\text{Weight: Level}] \]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
- The cost of \(I\) at level \(\ell\) is
 \[c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta,w) \in V_i(I,\ell)} w, \]
 where
 \[V_i(I, \ell) = \{(\theta,w) \mid wc_i \theta = \sim B. [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta\} \]
- \(I\) is safe, if each \(c(I, \ell)\) is well-defined (all \(w\)’s are numbers)
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[
wc : \sim b_1, \ldots, b_k, \ not b_{k+1}, \ldots, \ not b_m. \quad [\text{Weight : Level}]
\]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
- The cost of \(I\) at level \(\ell\) is

\[
c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in V_i(I, \ell)} w,
\]

where

\[
V_i(I, \ell) = \{(\theta, w) \mid wc_i \theta = \sim B. \ [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta\}
\]

- \(I\) is safe, if each \(c(I, \ell)\) is well-defined (all \(w\)'s are numbers)
- a safe \(M \in \text{AS}(P)\) dominates a safe \(M' \in \text{AS}(P)\), if \(c(M, \ell) < c(M', \ell)\) for some \(\ell\) and \(c(M, \ell') = c(M', \ell')\) for all \(\ell' > \ell\)
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[wc : \sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. \quad [\text{Weight : Level}] \]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
- The cost of \(I\) at level \(\ell\) is
 \[
 c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in \mathcal{V}_i(I, \ell)} w,
 \]
where
\[
\mathcal{V}_i(I, \ell) = \{(\theta, w) \mid wc_i \theta = \sim B.\ [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta\}
\]
- \(I\) is safe, if each \(c(I, \ell)\) is well-defined (all \(w\)'s are numbers)
- a safe \(M \in AS(P)\) dominates a safe \(M' \in AS(P)\), if \(c(M, \ell) < c(M', \ell)\) for some \(\ell\) and \(c(M, \ell') = c(M', \ell')\) for all \(\ell' > \ell\)
- a safe \(M \in AS(P)\) is best (optimal), if no \(M' \in AS(P)\) dominates \(M\)
Weak Constraints: Examples

Example: Default values for weights and levels

```
a v b.   c :- b.
∽ a.
∽ b.
∽ c.
```

Best model: a
Cost ([Weight:Level]): <[1:1]>
Answer set {b, c} is discarded because it violates two weak constraints!
Weak Constraints: Examples

Example: Default values for weights and levels

\[
\begin{align*}
a & \lor b. & c & : - b. \\
: & \sim a. \\
: & \sim b. \\
: & \sim c.
\end{align*}
\]

Best model: a
Cost \([\text{Weight:Level}]): <[1:1]>

Answer set \{b, c\} is discarded because it violates two weak constraints!
Example: Weights vs levels

Weights:

\[a \lor b. \]
\[\sim a. \ [1:] \]
\[\sim a. \ [1:] \]
\[\sim b. \ [2:] \]
Example: Weights vs levels

Weights:

\[\text{a v b.} \]
\[\sim \text{a. [1:]} \]
\[\sim \text{a. [1:]} \]
\[\sim \text{b. [2:]} \]

Best model: b
Cost ([Weight:Level]): <[2:1]>

Best model: a
Cost ([Weight:Level]): <[2:1]>

Note: \(WC = \{wc_1, wc_2, wc_3\} \),
\[wc_1 = \sim \text{a. [1:]} \]
\[wc_2 = \sim \text{a. [1:]} \]
\[wc_3 = \sim \text{b. [2:]} \]
Example: Weights vs levels

<table>
<thead>
<tr>
<th>Weights:</th>
<th>Levels:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a v b.</td>
<td>a v b1 v b2.</td>
</tr>
<tr>
<td>:∼ a. [1:]</td>
<td>:∼ a. [:1]</td>
</tr>
<tr>
<td>:∼ a. [1:]</td>
<td>:∼ b1. [:2]</td>
</tr>
<tr>
<td>:∼ b. [2:]</td>
<td>:∼ b2. [:2]</td>
</tr>
</tbody>
</table>

Best model: b
Cost ([Weight:Level]): <[2:1]>

Best model: a
Cost ([Weight:Level]): <[2:1]>

Note: \(WC = \{wc_1, wc_2, wc_3\} \),

\[wc_1 = :∼ a. [1 :], \]
\[wc_2 = :∼ a. [1 :], \]
\[wc_3 = :∼ b. [2 :] \]
Weak Constraints: Examples/2

Example: Weights vs levels

<table>
<thead>
<tr>
<th>Weights:</th>
<th>Levels:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \lor b$.</td>
<td>$a \lor b_1 \lor b_2$.</td>
</tr>
<tr>
<td>$\sim a. \ [1:]$</td>
<td>$\sim a. \ [::1]$</td>
</tr>
<tr>
<td>$\sim a. \ [1:]$</td>
<td>$\sim b_1. \ [::2]$</td>
</tr>
<tr>
<td>$\sim b. \ [2:]$</td>
<td>$\sim b_2. \ [::2]$</td>
</tr>
</tbody>
</table>

Best model: b

Cost ([Weight:Level]): $<[2:1]>$

Best model: a

Cost ([Weight:Level]): $<[1:1],[0:2]>$

Note: $WC = \{wc_1, wc_2, wc_3\}$,

$wc_1 =: \sim a. [1:]$,

$wc_2 =: \sim a. [1:]$,

$wc_3 =: \sim b. [2:]$
Weak Constraints with Levels

Levels express the relative importance of the requirements.

Example: Divide employees in two project groups p_1 and p_2

1. Skills of group members should be different
2. Persons in the same group should not be married to each other
3. Members of a group should possibly know each other

Requirement (3) is less important than (1) and (2)
Levels express the relative importance of the requirements.

Example: Divide employees in two project groups p_1 and p_2

1. Skills of group members should be different
2. Persons in the same group should not be married to each other
3. Members of a group should possibly know each other

Requirement (3) is less important than (1) and (2)

assign(X,p1) ∨ assign(X,p2) :- employee(X).

~ assign(X,P), assign(Y,P), X!=Y, same_skill(X,Y). [:2]
~ assign(X,P), assign(Y,P), X!=Y, married(X,Y). [:2]
~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y). [:1]
Weak Constraints with Weights

- A single weak constraint in some layer n is more important than all weak constraints in lower layers ($n - 1$, $n - 2$, …) together!

- Weak constraints are weighted to make finer distinctions among elements of the same priority: $\sim B1. [3.5:1] \sim B2. [4.6:1]$

- The weights of violated weak constraints are summed up for each layer.
Weak Constraints with Weights

• A single weak constraint in some layer n is more important than all weak constraints in lower layers ($n-1$, $n-2$, …) together!

• Weak constraints are weighted to make finer distinctions among elements of the same priority: $\sim B1. [3.5:1] \sim B2. [4.6:1]$

• The weights of violated weak constraints are summed up for each layer.

Example: High School Time Tabling Problem

Structural Requirements $>$ Pedagogical Requirements $>$ Personal Wishes.
Example: Traveling Salesperson (TSP)

Input: a directed graph represented by `node(_)` straight connections `edge(_,_,_)` and a starting node `start(_)`.

Problem: find a cheapest roundtrip beginning at the starting node.
Example: Traveling Salesperson (TSP)

Input: a directed graph represented by node(_,_), straight connections edge(_,_,_), and a starting node start(_).

Problem: find a cheapest roundtrip beginning at the starting node

\[
\text{inPath}(X,Y) \lor \text{outPath}(X,Y) :\neg \text{edge}(X,Y). \quad \} \text{Guess}
\]

\[
\begin{align*}
\text{:-inPath}(X,Y), \text{inPath}(X,Y1), & \quad Y \neq Y1. \\
\text{:-inPath}(X,Y), \text{inPath}(X1,Y), & \quad X \neq X1. \\
\text{:-node}(X), \text{not, reached}(X). \\
\text{:-not start_reached}. \quad & \}
\end{align*}
\]

\[
\begin{align*}
\text{reached}(X): \quad & \text{:-start}(X). \\
\text{reached}(X): \quad & \text{:-reached}(Y), \text{inPath}(Y,X). \\
\text{start_reached} :\quad & \text{:-start}(Y), \text{inPath}(X,Y). \\
\end{align*}
\]

\[2\] This line is added, since the trip must be round.
Example: Traveling Salesperson (TSP)

Input: a directed graph represented by \texttt{node(_)}), straight connections \texttt{edge(_,_,_,_) and a starting node \texttt{start(_)}.}

Problem: find a cheapest roundtrip beginning at the starting node

\[
\text{inPath}(X,Y,C) \lor \text{outPath}(X,Y,C) :- \text{edge}(X,Y,C). \quad \text{Guess}
\]

\[
\text{-inPath}(X,Y,C), \text{inPath}(X,Y1,C1), Y \neq Y1.
\]

\[
\text{-inPath}(X,Y,C), \text{inPath}(X1,Y,C1), X \neq X1.
\]

\[
\text{-node}(X), \text{not, reached}(X).
\]

\[
\text{-not start_reached.}^2
\]

\[
\text{reached}(X) :- \text{start}(X).
\]

\[
\text{reached}(X) :- \text{reached}(Y), \text{inPath}(Y,X,C).
\]

\[
\text{start_reached} :- \text{start}(Y), \text{inPath}(X,Y,C).
\]

\[
\neg \text{inPath}(X,Y,C).[C:1] \quad \text{Optimize}
\]

\[
^2 \text{This line is added, since the trip must be round.}
\]
Example: Minimum Spanning Tree

Input: A directed graph represented by node(_), weighted edges edge(_, _, _) and a starting node start(_).

Problem: Find a minimum spanning tree with root at the starting node.

\[
\text{inTree}(X,Y) \lor \text{outTree}(X,Y) :\neg \text{edge}(X,Y). \quad \text{Guess}
\]

\[
\begin{align*}
: & \neg \text{inTree}(X,Y), \text{start}(Y). \\
: & \neg \text{inTree}(X,Y), \text{inTree}(X1,Y), X \neq X1. \\
: & \neg \text{node}(X), \text{not reached}(X). \\
\end{align*}
\]

\[
\text{reached}(X) :\neg \text{start}(X). \\
\text{reached}(X) :\neg \text{reached}(Y), \text{inTree}(Y,X). \quad \text{Check}
\]

Auxiliary Def.
Example: Minimum Spanning Tree

Input: A directed graph represented by `node(_)` weighted edges `edge(_,_,_)` and a starting node `start(_)`.

Problem: Find a minimum spanning tree with root at the starting node.

\[
\text{inTree}(X,Y) \lor \text{outTree}(X,Y) :\neg \text{edge}(X,Y). \] \quad \text{Guess}
\]

\[
\begin{align*}
\neg \text{inTree}(X,Y), \text{start}(Y). \\
\neg \text{inTree}(X,Y), \text{inTree}(X1,Y), X \neq X1. \\
\neg \text{node}(X), \neg \text{reached}(X).
\end{align*}
\] \quad \text{Check}

\[
\begin{align*}
\text{reached}(X) :\neg \text{start}(X). \\
\text{reached}(X) :\neg \text{reached}(Y), \text{inTree}(Y,X).
\end{align*}
\] \quad \text{Auxiliary Def.}

\[
\]
Example: Minimum Spanning Tree

Input: A directed graph represented by node(_), weighted edges edge(_,_,_) and a starting node start(_).

Problem: Find a minimum spanning tree with root at the starting node

\[
\text{inTree}(X,Y,C) \lor \text{outTree}(X,Y,C) :\neg \text{edge}(X,Y,C).
\]

\[
\begin{align*}
:\neg \text{inTree}(X,Y,C), & \text{ start}(Y). \\
:\neg \text{inTree}(X,Y,C), & \text{inTree}(X1,Y,C), \ X \neq X1. \\
\text{node}(X), & \text{not reached}(X).
\end{align*}
\]

\[
\text{reached}(X):=\text{start}(X).
\text{reached}(X):=\neg \text{reached}(Y), \text{inTree}(Y,X,C).
\]

\[
\sim \text{inPath}(X,Y,C).[C:1]
\]

Guess

Check

Auxiliary Def.

Optimize
Example: Minimum Spanning Tree (ctd.)

\[P_D = \{ \text{node}(a), \text{node}(b), \]
\[\text{node}(c), \text{node}(d), \]
\[\text{edge}(a, b, 1), \text{edge}(a, c, 1) \]
\[\text{edge}(c, b, 2), \text{edge}(b, c, 1) \]
\[\text{edge}(b, d, 1), \text{edge}(c, d, 1) \]
\[\text{start}(a) \} \]
Example: Minimum Spanning Tree (ctd.)

\[P_D = \{ \text{node}(a), \text{node}(b), \text{node}(c), \text{node}(d), \text{edge}(a, b, 1), \text{edge}(a, c, 1), \text{edge}(c, b, 2), \text{edge}(b, c, 1), \text{edge}(b, d, 1), \text{edge}(c, d, 1), \text{start}(a) \} \]
Aggregates

- Allow arithmetic operations over a set of elements, as e.g. in SQL:
  ```sql
  select count(*) from empl;
  ```
Aggregates

- Allow **arithmetic operations over a set** of elements, as e.g. in SQL:

  ```sql
  select count(*) from empl;
  ```

- **ASP** provides aggregation functions **#count, #sum, #min, #max**

  ```prolog
  #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```

```
Aggregates

- Allow **arithmetic operations over a set** of elements, as e.g. in SQL:
  
  ```
 select count(*) from empl;
  ```

- ASP provides aggregation functions **#count, #sum, #min, #max**
  
  ```
 #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```

- these aggregate functions occur in aggregate atoms in rule bodies

  ```
 small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
  ```
Aggregates

- Allow arithmetic operations over a set of elements, as e.g. in SQL:
  ```
 select count(*) from empl;
  ```

- ASP provides aggregation functions `#count`, `#sum`, `#min`, `#max`
  ```
 #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```

- these aggregate functions occur in aggregate atoms in rule bodies
  ```
 small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
  ```

- aggregates as first-class citizen: need no auxiliary computations
  - linear ordering, successor relation, smallest and largest element, and
  - recursion needed to count the employees
**Aggregates**

- Allow **arithmetic operations over a set** of elements, as e.g. in SQL:
  
  ```sql
 select count(*) from empl;
  ```

- ASP provides aggregation functions `#count, #sum, #min, #max`
  
  ```prolog
 #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```

- these aggregate functions occur in aggregate atoms in rule bodies
  
  ```prolog
 small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
  ```

- aggregates as first-class citizen: need no auxiliary computations
  
  - linear ordering, successor relation, smallest and largest element, and
  - recursion needed to count the employees

- challenging: semantics of aggregates (problem: recursion)

- we consider non-recursive aggregates, DLV (general: ASP-Core2)
Symbolic Set

Symbolic Set Expression

\{ Vars : Conj \}

where

- \textit{Vars} is a set of variables, and
- \textit{Conj} is a conjunction of standard literals, i.e., literals and default negated literals.
Symbolic Set

Symbolic Set Expression

\{ Vars : Conj \}

where

- \( Vars \) is a set of variables, and
- \( Conj \) is a conjunction of standard literals, i.e., literals and default negated literals.

Example: \( \{S, X : empl(X, S)\} \)

Informal Meaning: The set of ids and salaries of all employees, i.e.,

- for a set of standard literals (an interpretation)
  \( I = \{empl(1, 2200), empl(2, 1800)\} \),
- the symbolic set above represents a set of tuples
  \( S = \{\langle 2200, 1 \rangle, \langle 1800, 2 \rangle\} \).
**Aggregate Functions**

**Aggregate Function Expression**

\[ f\{S\} \]

where

- \( S \) is a symbolic set, and
- \( f \) is a function among \{\#count, \#sum, \#times, \#min, \#max\}
Aggregate Functions

Aggregate Function Expression

\[ f\{S\} \]

where

- \( S \) is a symbolic set, and
- \( f \) is a function among \{\#count, \#sum, \#times, \#min, \#max\}

Example: \#sum\{S, X : empl(X, S)\}

Informal Meaning: The sum of salaries of all employees.
Aggregate Functions

Aggregate Function Expression

\[ f\{S\} \]

where

- \( S \) is a symbolic set, and
- \( f \) is a function among \{\#count, \#sum, \#times, \#min, \#max\}

Example: \#sum\{S, X : empl(X, S)\}

Informal Meaning: The sum of salaries of all employees.

- \#count returns the cardinality of the symbolic set;
- the other functions apply to the multiset of the elements in the symbolic set projected to the first component.
Identical Projections

Note:

\[ \sum_{S: \text{empl}(X, S)} \neq \sum_{S, X: \text{empl}(X, S)} \]

as identical projections \( S \) of different elements count multiple times.
Aggregate Functions, cont’d

Identical Projections

Note:

\[ \#\text{sum}\{S : \text{empl}(X,S)\} \neq \#\text{sum}\{S, X : \text{empl}(X,S)\} \]

as identical projections \( S \) of different elements count multiple times

for \( S = \emptyset \):

- \#\text{sum} \text{ returns } 0
- \#\text{times} \text{ returns } 1
- \#\text{min} \text{ and } \#\text{max} \text{ undefined}
# Aggregate Atoms

## Aggregate Atom Syntax

\[ Lg <_1 f\{S\} <_2 Rg \]

where

- \( Lg \) and \( Ug \) are terms, called **left guard** and **right guard**, respectively,
- and \(<_1,<_2\) in \(\{=, <, \leq, >, \geq\}\);
- one of the guards can be omitted (assuming “\(0 \leq\)” and “\(\leq +\infty\)"

---

<table>
<thead>
<tr>
<th>Aggregate Atom Syntax</th>
<th>Example: #sum {S, X: empl(X, S)} ≤ 380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informal Meaning</td>
<td>True if sum of salaries ≤ 3800, false otherwise.</td>
</tr>
</tbody>
</table>

---

Example:

<table>
<thead>
<tr>
<th>Example</th>
<th>Informal Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>#sum {S, X: empl(X, S)} ≤ 3800</td>
<td>True if sum of salaries ≤ 3800, false otherwise.</td>
</tr>
</tbody>
</table>

---

If the argument of an aggregate function does not belong to its domain, then false and warning.
Aggregate Atoms

Aggregate Atom Syntax

\[ Lg <_1 f\{S\} <_2 Rg \]

where

- \( Lg \) and \( Ug \) are terms, called left guard and right guard, respectively,
- and \( <_1, <_2 \) in \( \{=, <, \leq, >, \geq\} \);
- one of the guards can be omitted (assuming “0 ≤” and “≤ +∞”)

Example: \( \#\text{sum}\{S, X: \text{empl}(X, S)\} \leq 3800 \)

Informal Meaning: True if sum of salaries ≤ 3800, false otherwise.

- If the argument of an aggregate function does not belong to its domain, then false and warning.
Aggregate Atom: Common Mistakes

Let `pay(transaction, person, value)` represent a payment, consider:

{`pay(t1, p1, 5)`, `pay(t2, p1, 8)`, `pay(t3, p1, 5)`, `pay(t4, p2, 10)`, `pay(t5, p2, 20)`}.

Task: Compute the sum of payments for each person.
Aggregate Atom: Common Mistakes

Let \textit{pay(transaction, person, value)} represent a payment, consider:
\{\textit{pay}(t1, p1, 5), \textit{pay}(t2, p1, 8), \textit{pay}(t3, p1, 5), \textit{pay}(t4, p2, 10), \textit{pay}(t5, p2, 20)\}. Task: Compute the sum of payments for each person.

- **Correct:** \( \text{sum}(P,S) \leftarrow \text{person}(P), S = \#\text{sum}\{V,T:\text{pay}(T,P,V)\} \);
  symbolic set is \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle\} for \( p1 \Rightarrow \text{sum}(p1, 18) \);
  symbolic set is \{\langle 10, t2 \rangle, \langle 20, t2 \rangle\} for \( p2 \Rightarrow \text{sum}(p2, 30) \).
Aggregate Atom: Common Mistakes

Let $\text{pay}(\text{transaction}, \text{person}, \text{value})$ represent a payment, consider: 
\{pay($t_1$, $p_1$, 5), pay($t_2$, $p_1$, 8), pay($t_3$, $p_1$, 5), pay($t_4$, $p_2$, 10), pay($t_5$, $p_2$, 20)\}.

Task: Compute the sum of payments for each person.

- **Correct:** $\text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{V, T : \text{pay}(T, P, V)\}$;
  symbolic set is $\{\langle 5, t_1 \rangle, \langle 8, t_2 \rangle, \langle 5, t_3 \rangle\}$ for $p_1 \Rightarrow \text{sum}(p_1, 18)$;
  symbolic set is $\{\langle 10, t_2 \rangle, \langle 20, t_2 \rangle\}$ for $p_2 \Rightarrow \text{sum}(p_2, 30)$.

- **Mistake 1:** $\text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{T, V : \text{pay}(T, P, V)\}$;
  symbolic set is $\{\langle t_1, 5 \rangle, \langle t_1, 8 \rangle, \langle t_1, 5 \rangle\}$ for $p_1 \Rightarrow$ wrong first element! (here $t_1$ is not even numeric)
Aggregate Atom: Common Mistakes

Let \( \text{pay} \)('transaction', 'person', 'value') represent a payment, consider:
\[
\{ \text{pay}(t1, p1, 5), \text{pay}(t2, p1, 8), \text{pay}(t3, p1, 5), \text{pay}(t4, p2, 10), \text{pay}(t5, p2, 20) \}.
\]

Task: Compute the sum of payments for each person.

- **Correct:** \( \text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{V, T : \text{pay}(T, P, V)\} \);
  symbolic set is \( \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle \} \) for \( p1 \Rightarrow \text{sum}(p1, 18) \);
  symbolic set is \( \{\langle 10, t2 \rangle, \langle 20, t2 \rangle \} \) for \( p2 \Rightarrow \text{sum}(p2, 30) \).

- **Mistake 1:** \( \text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{T, V : \text{pay}(T, P, V)\} \);
  symbolic set is \( \{\langle t1, 5 \rangle, \langle t1, 8 \rangle, \langle t1, 5 \rangle \} \) for \( p1 \Rightarrow \text{wrong first element! (here t1 is not even numeric)} \)

- **Mistake 2:** \( \text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{V : \text{pay}(T, P, V)\} \);
  symbolic set is \( \{\langle 5 \rangle, \langle 8 \rangle \} \) for \( p1 \), value 5 is added only once.
Aggregate Atom: Common Mistakes

Let \(\text{pay}(\text{transaction}, \text{person}, \text{value})\) represent a payment, consider:
\{\text{pay}(t1, p1, 5), \text{pay}(t2, p1, 8), \text{pay}(t3, p1, 5), \text{pay}(t4, p2, 10), \text{pay}(t5, p2, 20)\}.

Task: Compute the sum of payments for each person.

- **Correct:** \(\text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{V, T : \text{pay}(T, P, V)\}\); symbolic set is \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle\} for \(p1 \Rightarrow \text{sum}(p1, 18)\); symbolic set is \{\langle 10, t2 \rangle, \langle 20, t2 \rangle\} for \(p2 \Rightarrow \text{sum}(p2, 30)\).

- **Mistake 1:** \(\text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{T, V : \text{pay}(T, P, V)\}\); symbolic set is \{\langle t1, 5 \rangle, \langle t1, 8 \rangle, \langle t1, 5 \rangle\} for \(p1 \Rightarrow \text{wrong first element!} \) (here \(t1\) is not even numeric)

- **Mistake 2:** \(\text{sum}(P, S) \leftarrow \text{person}(P), S = \#\text{sum}\{V : \text{pay}(T, P, V)\}\); symbolic set is \{\langle 5 \rangle, \langle 8 \rangle\} for \(p1\), value 5 is added only once.

- **Mistake 3:** \(\text{sum}(S) \leftarrow S = \#\text{sum}\{V, P : \text{pay}(T, P, V)\}\); symbolic set is \{\langle 5, p1 \rangle, \langle 8, p1 \rangle, \langle 10, p2 \rangle, \langle 20, p2 \rangle\}, persons merged.
Variables that appear solely in aggregate functions are called \textit{local variables}.

- Additional safety requirements:
  - Each local variable in \{\textit{Vars} : \textit{Conj}\} also appears in a positive literal in \textit{Conj}.
  - Each global variable also appears
    - in a non-comparison, non-aggregate, not-free literal in the body; or
    - as a guard of an assignment aggregate atom $X = f\{S\}$, $f\{S\} = X$, or $X = f\{S\} = X$, respectively
  - Each guard of an aggregate atom is either a constant or a global variable.
Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set $M$ of literals and a ground program $P$, the reduct (or Gelfond-Lifschitz reduct) $P^M$ is now as follows:

- remove rules from $P$
  - with $\textit{not}\ a$ in the body, such that $a$ is true wrt. $M$, or
  - with $a$ in the body, such that $a$ is an aggregate atom that is false wrt. $M$; and
- remove literals $\textit{not}\ a$ and aggregate atoms from all other rules.
Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set \( M \) of literals and a ground program \( P \), the reduct (or Gelfond-Lifschitz reduct) \( P^M \) is now as follows:

- remove rules from \( P \)
  - with \( \text{not} \ a \) in the body, such that \( a \) is true wrt. \( M \), or
  - with \( a \) in the body, such that \( a \) is an aggregate atom that is false wrt. \( M \); and

- remove literals \( \text{not} \ a \) and aggregate atoms from all other rules.

- limitations (dlv build 21-12-2012):
  - \#\text{min}, \#\text{max} just on integer constants like \#\text{sum} and \#\text{times}
  - no recursion through aggregates (aggregate stratification)
Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set $M$ of literals and a ground program $P$, the reduct (or Gelfond-Lifschitz reduct) $P^M$ is now as follows:

- remove rules from $P$
  - with $\neg a$ in the body, such that $a$ is true wrt. $M$, or
  - with $a$ in the body, such that $a$ is an aggregate atom that is false wrt. $M$; and
- remove literals $\neg a$ and aggregate atoms from all other rules.

- limitations (dlv build 21-12-2012):
  - $\#\min$, $\#\max$ just on integer constants like $\#\sum$ and $\#\times$
  - no recursion through aggregates (aggregate stratification)

- recursion through aggregates: use instead GL-reduct $P^M$ the FLP-reduct $fP^M = \{ r \in P \mid r = H \leftarrow B, \ M \models B \}$; that is, keep the rules $r$ whose bodies are satisfied.
DLV Usage: Examples
Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).

% Check that we are really dealing with a tree!
:start(R), not #count {X : inTree(X,R,C)} = 0.

:edge(Y), not start(Y), not #count {X : inTree(X,Y,C)} = 1.
% Note: ensures also that each node in the graph is reached.
% Nothing in life is free..
% pay for every edge that is in the solution:
¬ inTree(X,Y,C). [C:1]
Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).

% Check that we are really dealing with a tree!
:- start(R), not #count\{X : inTree(X,R,C)\} = 0.
:- edge(_,Y,_) , not start(Y),
   not #count\{X : inTree(X,Y,C)\} = 1.
% Note: ensures also that each node
% in the graph is reached.
Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

% Guess the edges that are part of the tree.
\(\text{inTree}(X,Y,C) \lor \text{outTree}(X,Y,C) :\text{edge}(X,Y,C).\)

% Check that we are really dealing with a tree!
\(:- \text{start}(R), \text{not} \#\text{count}\{X : \text{inTree}(X,R,C)\} = 0.\)
\(:- \text{edge}(\_, Y, \_), \text{not} \text{start}(Y),\)
\(\text{not} \#\text{count}\{X : \text{inTree}(X,Y,C)\} = 1.\)
% Note: ensures also that each node
% in the graph is reached.

% Nothing in life is free..
% pay for every edge that is in the solution
\(\sim \text{inTree}(X,Y,C). \ [C:1]\)
Example: Seating Problem

**Problem:** Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.
Example: Seating Problem

**Problem:** Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

\[
\text{at}(P,T) \lor \text{not at}(P,T) :- \text{person}(P), \text{table}(T).
\]
Example: Seating Problem

**Problem:** Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

\[
\text{at}(P,T) \vee \neg \text{at}(P,T) :- \text{person}(P), \text{table}(T).
\]
\[
:- \text{table}(T), \text{nchairs}(C), \neg \#count\{P : \text{at}(P,T)\} \leq C.
\]
Example: Seating Problem

Problem: Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

\[
\begin{align*}
\text{at}(P,T) \lor \neg \text{at}(P,T) & \text{ :- } \text{person}(P), \text{table}(T).
\text{ :- } \text{table}(T), \text{nchairs}(C), \neg \#\text{count}\{P \text{ : } \text{at}(P,T)\} & \leq C.
\text{ :- } \text{person}(P), \neg \#\text{count}\{T \text{ : at}(P,T)\} & = 1.
\text{ :- } \text{like}(P1,P2), \text{at}(P1,T), \neg \text{at}(P2,T).
\text{ :- } \text{dislike}(P1,P2), \text{at}(P1,T), \text{at}(P2,T).
\end{align*}
\]
Example: Seating Problem, cont’d

\[ P_D = \{person(p_1), person(p_2), person(p_3), person(p_4), table(t_1), table(t_2), nchairs(4), like(p_1, p_2), dislike(p_1, p_3)\} \]
Example: Seating Problem, cont’d

\[ P_D = \{ \text{person}(p1), \text{person}(p2), \]
\[ \text{person}(p3), \text{person}(p4), \]
\[ \text{table}(t1), \text{table}(t2), \]
\[ \text{nchairs}(4), \]
\[ \text{like}(p1, p2), \]
\[ \text{dislike}(p1, p3) \} \]
Example: Optimal Golomb Ruler (OGR)

**Problem:** Place a given number of marks on a ruler, such that no two pairs of marks measure the same distance, and the length of the ruler is minimal.

- Applications: antenna design, mobile communication technology
Example: Optimal Golomb Ruler (OGR)

Problem: Place a given number of marks on a ruler, such that no two pairs of marks measure the same distance, and the length of the ruler is minimal.

- Applications: antenna design, mobile communication technology

% Example input for an OGR of size 4
position(0..10).
mark(1..4).
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count { M : mark(M) } = N.

% For each used position P1, compute distance with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.

% Find the maximum used position P.
non_maxused(P1) :- used(P1), used(P2), P1 < P2.
maxused(P) :- used(P), not non_maxused(P).

% Minimize the cost of the solution.
:\- maxused(P). [P:1]
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
um(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.

% Find the maximum used position P.
non_maxused(P1) :- used(P1), used(P2), P1 < P2.
maxused(P) :- used(P), not non_maxused(P).
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
um(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.

% Find the maximum used position P.
non_maxused(P1) :- used(P1), used(P2), P1 < P2.
maxused(P) :- used(P), not non_maxused(P).

% Minimize the cost of the solution.
~ maxused(P). [P:1]
Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the #max aggregate atom to find the maximum used position:

% Minimize the cost of the solution,
% i.e., the value of the largest used position.
:~ #int(P1), P1 = #max{P:used(P)}. [P1:]
Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the #max aggregate atom to find the maximum used position:

```prolog
% Minimize the cost of the solution,
% i.e., the value of the largest used position.
:~ #int(P1), P1 = #max{P:used(P)}. [P1:]
```

Program output for both variants (run with option -filter=used):

Best model: used(0), used(2), used(5), used(6)
Cost ([Weight:Level]): <[6:1]>

Best model: used(0), used(1), used(4), used(6)
Cost ([Weight:Level]): <[6:1]>
Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the \texttt{#max} aggregate atom to find the maximum used position:

\begin{verbatim}
% Minimize the cost of the solution,
% i.e., the value of the largest used position.
\texttt{~ #int(P1), P1 = #max\{P:used(P)\}. [P1:]
\end{verbatim}

Program output for both variants (run with option -filter=used):

Best model: used(0), used(2), used(5), used(6)
Cost ([Weight:Level]): <[6:1]>

Best model: used(0), used(1), used(4), used(6)
Cost ([Weight:Level]): <[6:1]>

Results are by chance \textbf{perfect optimal} Golomb Rulers (i.e., no gaps in the sequence of all occurring distances).

\textbf{Exercise:} Which additional constraint would be needed to ensure only perfect optimal Golomb Rulers to be calculated?
Overview: DLV Extensions

DLV-Complex extension of DLV with function symbols, lists and sets fully integrated into DLV since release 2010-10-14

dlvex an extension of DLV providing access to "external predicates" which are supplied via libraries

dlvhex a system for ASP with external computation sources
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

• enables queries to Description Logic KBs in rules

DLT extends DLV with reusable template predicate definitions

DLV^DB an extension of DLV with a tight coupling to relational DBs
• native DLV offers an ODBC interface

NLP-DL a coupling of ASP programs with Description Logics
https://www.mat.unical.it/ianni/swlp/index.html
Summary

1. The DLV system
   - DLV syntax
   - Rule safety
   - Built-in predicates

2. Weak constraints
   - Weights
   - Levels

3. Aggregates
   - Symbolic sets
   - Aggregate functions

4. DLV usage: Examples

5. DLV extensions
Software Engineering Issues

- Software engineering tools for ASP are subject of ongoing research
  IDEs: ASPIDE³, SeaLion⁴

- Particular problem: debugging

- What to do if my program does not have (intended) answer sets?

- Some naive suggestions:
  - Decompose: divide & conquer
  - Use small/specific instances for testing
  - Test constraints one by one
  - Check auxiliary predicates separately

- Support for debugging: e.g. Spock⁵

³www.mat.unical.it/~ricca/aspide/
⁴www.kr.tuwien.ac.at/research/projects/mmdasp/#Software
⁵www.kr.tuwien.ac.at/research/systems/debug/index.html
ASP Integrated Development Environments (IDEs)

IDE: ease programming for both novice and skilled developers

- **SEA LION** [Busoniu et al., 2013]
  - first environment offering debugging for non-ground programs
  - unique tools for model-based engineering (ER diagrams), testing via annotations, and bi-directional visualization of interpretations.

- **ASPIIDE** [Febbraro et al., 2011]
  - comprehensive framework integrating several tools for advanced program composition and execution.
  - test-driven software development in the style of JUnit, e.g.
    - dependency graph visualizer, designed to inspect predicate dependencies and browsing the program,
    - debugger (Dodaro et al. 2015),
    - DLV profiler,
    - ARVis comparator of answer sets,
    - answer set visualizer IDPDraw.
    - data source plugin for JDBC connectivity
ASPIDE is extensible

- user can provide new plugins:
  - new input formats
  - new program rewritings
  - customizing the visualization/output format of solver results

- more information: See RR 2013 tutorial

Paula-Andra Busoniu, Johannes Oetsch, Jörg Pührer, Peter Skocovsky, and Hans Tompits.

Sealion: An eclipse-based IDE for answer-set programming with advanced debugging support.


Onofrio Febbraro, Kristian Reale, and Francesco Ricca.

ASPIDE: integrated development environment for answer set programming.