Knowledge Representation for the Semantic Web

Lecture 8: Answer Set Programming III

Daria Stepanova
partially based on slides by Thomas Eiter

D5: Databases and Information Systems
Max Planck Institute for Informatics

WS 2017/18
Unit Outline

The DLV System and its Features

Weak Constraints

Aggregates

DLV Usage: Examples

Overview: DLV-Extensions
The DLV System
The DLV System: Introduction

http://www.dlvsystem.com/

- DLV is a premier disjunctive answer set solver
- Based on strong theoretical foundations
- Incorporates a lot of database technology
- Features non-monotonic negation and disjunction
- Rich program syntax (⇒ high expressiveness)
- Front-ends for specific problems (diagnosis, planning, etc.).
- Many extensions
 - DLVHEX, DLVDB, DLT, DLV-Complex, DL-programs, OntoDLV, ...
- Industrial applications
 - Exeura Srl www.exeura.it/
Features of DLV

- Language: logic programs admitting
 - disjunctions in rule heads,
 - default negation,
 - strong (classical) negation.

\(^1\)with the release of DLV 2010-10-14, function terms have been introduced.
Features of DLV

- **Language:** logic programs admitting
 - disjunctions in rule heads,
 - default negation,
 - strong (classical) negation.

- **Additionally:**
 - integer, arithmetic, and comparison built-ins,
 - integrity constraints,
 - weak constraints,
 - aggregate functions,
 - function symbols;\(^1\)
 - support for **brave & cautious** reasoning.
 - + further

\(^1\)with the release of DLV 2010-10-14, function terms have been introduced.
Frontends

• Besides the answer set semantics core, DLV offers front-ends for particular KR tasks:
 • diagnosis
 • inheritance
 • knowledge-based planning (\mathcal{K} language)

• Also:
 • front-end to SQL3
 • weak constraints with weights and layers
 • aggregate functions
Using DLV

- DLV is command-line oriented
- Input is read from files whose names are passed on the command-line
- If the command-line option “--” has been specified, input is also read from standard input (stdin)
- Output is printed to standard output (stdout), one line per model, i.e., answer set
- Detailed documentation at http://www.dlvsystem.com
DLV Syntax

- **Rules:**

\[a_1 \lor \cdots \lor a_n :\neg b_1, \ldots, \neg b_k, \neg b_{k+1}, \ldots, \neg b_m. \]

where \(n \geq 1, \ m \geq 0 \) and all \(a_i, b_j \) are atoms or strongly negated atoms (e.g., \(-a\)); no function symbols.
DLV Syntax

- **Rules:**

 \[a_1 \lor \cdots \lor a_n :\neg b_1, \ldots, b_k, \neg b_{k+1}, \ldots, \neg b_m. \]

 where \(n \geq 1, \ m \geq 0 \) and all \(a_i, b_j \) are atoms or strongly negated atoms (e.g., \(-a\)); no function symbols.

- **Integrity constraints:**

 \[:\neg b_1, \ldots, b_k, \neg b_{k+1}, \ldots, \neg b_m. \]

 Can be regarded as rules with an empty (false) head.
DLV Syntax

- **Rules:**

 \[a_1 \lor \cdots \lor a_n :- b_1, \ldots, b_k, \lnot b_{k+1}, \ldots, \lnot b_m. \]

 where \(n \geq 1, \ m \geq 0 \) and all \(a_i, b_j \) are atoms or strongly negated atoms (e.g., \(-a\)); no function symbols.

- **Integrity constraints:**

 \[:- b_1, \ldots, b_k, \lnot b_{k+1}, \ldots, \lnot b_m. \]

 Can be regarded as rules with an empty (false) head.

- **Queries:**

 \[b_1, \ldots, b_k, \lnot b_{k+1}, \ldots, \lnot b_m? \]

 Support for query answering besides model computation (satisfied in at least one / in all answer sets, called brave / cautious reasoning)
Rule Safety

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (\texttt{not} \texttt{b}), or
- a built-in comparison predicate,

must occur in at least one non-comparison \texttt{not}-free literal in the body.
Rule Safety

Each variable occurring in a rule (resp., constraint) in
- the head,
- a default literal (not \texttt{b}), or
- a built-in comparison predicate,
must occur in at least one non-comparison not-free literal in the body.

Example:

\begin{verbatim}
 a(X) :- not b(X), c(X).
 a(X) :- X > Y, node(X), node(Y).

 a(X) v -a(X).
 a(X) :- not b(X).
 :- X <= Y, node(X).
\end{verbatim}
Rule Safety

Each variable occurring in a rule (resp., constraint) in
- the head,
- a default literal (**not b**), or
- a built-in comparison predicate,

must occur in at least one non-comparison **not**-free literal in the body.

Example:

Safe!

\[
\begin{align*}
 a(X) & :- \text{not } b(X), \ c(X) . \\
 a(X) & :- X > Y, \ \text{node}(X), \ \text{node}(Y).
\end{align*}
\]

\[
\begin{align*}
 a(X) & \lor \neg a(X) . \\
 a(X) & :- \text{not } b(X) . \\
 :- X \leq Y, \ \text{node}(X) .
\end{align*}
\]
Rule Safety

Each variable occurring in a rule (resp., constraint) in
- the head,
- a default literal (\texttt{not }\texttt{b}), or
- a built-in comparison predicate,

must occur in at least one non-comparison \texttt{not}-free literal in the body.

Example:

Safe!

\begin{verbatim}
 a(X) :- not b(X), c(X).
 a(X) :- X > Y, node(X), node(Y).
\end{verbatim}

Unsafe!

\begin{verbatim}
 a(X) v -a(X).
 a(X) :- not b(X).
 :- X <= Y, node(X).
\end{verbatim}
Built-in Predicates

- **Comparison predicates** (for integers and strings):

 `<, >, <=, >=, =, !=`
Built-in Predicates

- **Comparison predicates** (for integers and strings):

 `<, >, <=, >=, =, !=`

- **Arithmetic predicates**:

 `#int, #succ, +, *`

 - `#int(X)`: X is a known integer ($1 \leq X \leq N$).
 - `#succ(X, Y)`: Y is successor of X, i.e., $Y = X + 1$.
 - `+(X, Y, Z)`: $Z = X + Y$. (both variants are possible)
 - `*(X, Y, Z)`: $Z = X \times Y$.

Just auxiliary predicates. An upper bound for integers has to be specified when DLV is invoked.
Built-in Predicates

- **Comparison predicates** (for integers and strings):

 \(<, \>, \leq, \geq, =, \neq\)

- **Arithmetic predicates**:

 \(#\text{int}, \#\text{succ}, +, \ast\)

\[
\begin{align*}
\#\text{int}(X): & \quad X \text{ is a known integer } (1 \leq X \leq N). \\
\#\text{succ}(X, Y): & \quad Y \text{ is successor of } X, \text{ i.e., } Y = X + 1.
\end{align*}
\]

\[
\begin{align*}
+(X, Y, Z): & \quad Z = X + Y. \text{ (both variants are possible)} \\
\ast(X, Y, Z): & \quad Z = X \ast Y.
\end{align*}
\]

- Just auxiliary predicates. An upper bound for integers has to be specified when DLV is invoked.
Example: Fibonacci Numbers

- Except for first two numbers, each value is defined as the sum of the previous two.
Example: Fibonacci Numbers

- Except for first two numbers, each value is defined as the sum of the previous two.

Encoding:

```
fib0(1,1).
fib0(2,1).
fib(N,X) :- fib0(N,X).
```

```
\% F_{N+2} = F_N + F_{N+1}
fib(N,X) :- fib(N1,Y1), fib(N2,Y2),
\quad N=N2+2, N=N1+1, X=Y1+Y2.
```

An upper bound for integers has to be specified when \texttt{dlv} is invoked.
Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by $\text{empl}(_,_)$

Problem: Compute linear ordering and successor relation for employees

Solve problem using projection and double negation!

$\text{Order employees by id}$

$\text{prec}(X,Y) :\text{- empl}(X,_)$, $\text{empl}(Y,_)$, $X < Y$.

Define successor

$\text{- succ}(X,Y) :\text{- prec}(X,Z)$, $\text{prec}(Z,Y)$.

$\text{succ}(X,Y) :\text{prec}(X,Y)$, $\text{not} \text{- succ}(X,Y)$.
Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by `empl(_,_)`

Problem: Compute linear ordering and successor relation for employees

Solve problem using projection and double negation!
Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by \texttt{empl(_, _)}

Problem: Compute linear ordering and successor relation for employees

Solve problem using projection and double negation!

% Order employees by id

\[
\text{prec}(X, Y) :\neg \text{empl}(X, _), \text{empl}(Y, _), X < Y.
\]

% Define successor

\[
\neg \text{succ}(X, Y) :\neg \text{prec}(X, Z), \text{prec}(Z, Y).
\]

\[
\text{succ}(X, Y) :\neg \text{prec}(X, Y), \text{not} \neg \text{succ}(X, Y).
\]
Smallest, Largest in a Linear Ordering

Example: Employees

Problem: Determine employee with smallest (resp., largest) id
Smallest, Largest in a Linear Ordering

Example: Employees

Problem: Determine employee with smallest (resp., largest) id

- Computing smallest and largest elements in a linear ordering works accordingly:

\[
\begin{align*}
- \text{first}(X) & : - \text{succ}(Y, X). \\
\text{first}(X) & : - \text{empl}(X, -), \text{not} \ - \text{first}(X). \\
- \text{last}(X) & : - \text{succ}(X, Y). \\
\text{last}(X) & : - \text{empl}(X, -), \text{not} \ - \text{last}(X).
\end{align*}
\]

Exercise: determine maximal (resp. minimal) salary of employees
Counting and Sum

How about counting or computing sums?

Example: Employees (cont’d)

Problem: Compute the sum of salaries of the employees
Counting and Sum

How about counting or computing sums?

Example: Employees (cont’d)

Problem: Compute the sum of salaries of the employees

- Recursion is needed:

 \[
 \text{partialSum}(X,S) :- \text{first}(X), \text{empl}(X,S).
 \]

 \[
 \text{partialSum}(Y,S) :- \text{succ}(X,Y), \text{partialSum}(X,S1),
 \quad \text{empl}(Y,S2), \ S = S1 + S2.
 \]

 \[
 \text{sum}(S) :- \text{last}(X), \text{partialSum}(X,S).
 \]
Weak Constraints

- Allow to formalize *optimization problems* in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints “kill” unwanted models;
 - weak constraints express desiderata to satisfy if possible.
Weak Constraints

• Allow to formalize **optimization problems** in an easy and natural way.

• Integrity constraints vs. weak constraints:
 • integrity constraints “kill” unwanted models;
 • weak constraints express desiderata to satisfy if possible.

• Syntax (DLV):

 \[\sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m \cdot \text{ [Weight: Level]} \]

 where

 • all \(b_i \) are atoms (resp. “classical” literals)
 • \textit{Weight}, \textit{Level} are numbers (or variables occurring in some \(b_i, i \leq k \), that instantiate to numbers)
Weak Constraints

- Allow to formalize **optimization problems** in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints “kill” unwanted models;
 - weak constraints express desiderata to satisfy if possible.
- Syntax (DLV):
 \[\sim b_1, \ldots, b_k, \; \text{not } b_{k+1}, \ldots, \; \text{not } b_m \; \square \; \text{Weight} : \text{Level} \]
 where
 - all \(b_i \) are atoms (resp. “classical” literals)
 - \text{Weight, Level} are numbers (or variables occurring in some \(b_i, i \leq k \), that instantiate to numbers)

- **Informally:** for \((P, WC)\), where \(P \) is a program and \(WC \) is a set of weak constraints, each \(M \in AS(P) \) with least violation of \(WC \) is an answer set (**best model**), where \(AS(P) = \) set of answer sets of \(P \).
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[wc : \sim b_1, \ldots, b_k, \not b_{k+1}, \ldots, \not b_m. \quad [\text{Weight: Level}] \]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
Weak Constraints: Semantics for $\langle P, WC \rangle$

Semantics via aggregated violation cost ($WC = \{wc_1, \ldots, wc_n\}$):

$$wc: \, \sim b_1, \ldots, b_k, \, \text{not } b_{k+1}, \ldots, \, \text{not } b_m. \quad \text{[Weight: Level]}$$

- as usual, consider the grounding $\text{grnd}(wc)$ of wc
- Interpretation I violates a ground wc ($I \not\models wc$), if $\{b_1, \ldots, b_k\} \subseteq I$ and $I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset$
- The cost of I at level ℓ is
 $$c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in \mathcal{V}_i(I, \ell)} w,$$
 where
 $$\mathcal{V}_i(I, \ell) = \{ (\theta, w) \mid wc_i \theta = \sim B. \, [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta \}$$
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[wc : \sim b_1, \ldots, b_k, \ not b_{k+1}, \ldots, \ not b_m . \]

[Weight: Level]

- as usual, consider the grounding \(\text{grnd}(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
- The cost of \(I\) at level \(\ell\) is
 \[c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in \mathcal{V}_i(I, \ell)} w, \]
 where
 \[\mathcal{V}_i(I, \ell) = \{(\theta, w) \mid wc_i \theta = :\sim B. \ [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta\} \]
- \(I\) is safe, if each \(c(I, \ell)\) is well-defined (all \(w\)'s are numbers)
Weak Constraints: Semantics for \((P, WC)\)

Semantics via aggregated violation cost \((WC = \{wc_1, \ldots, wc_n\})\):

\[
wc : \sim b_1, \ldots, b_k, \ not b_{k+1}, \ldots, \ not b_m . \quad \text{[Weight : Level]}
\]

- as usual, consider the grounding \(grnd(wc)\) of \(wc\)
- Interpretation \(I\) violates a ground \(wc\) \((I \not\models wc)\), if \(\{b_1, \ldots, b_k\} \subseteq I\) and \(I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset\)
- The cost of \(I\) at level \(\ell\) is

\[
c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in V_i(I, \ell)} w,
\]

where

\[
V_i(I, \ell) = \{(\theta, w) \mid wc_i \theta = :\sim B. \ [w, \ell] \in grnd(wc_i), I \not\models wc_i \theta\}
\]

- \(I\) is safe, if each \(c(I, \ell)\) is well-defined (all \(w\)'s are numbers)
- a safe \(M \in AS(P)\) dominates a safe \(M' \in AS(P)\), if \(c(M, \ell) < c(M', \ell)\) for some \(\ell\) and \(c(M, \ell') = c(M', \ell')\) for all \(\ell' > \ell\)
Weak Constraints: Semantics for (P, WC)

Semantics via aggregated violation cost ($WC = \{wc_1, \ldots, wc_n\}$):

$$wc : \sim b_1, \ldots, b_k, \ not b_{k+1}, \ldots, \ not b_m. \ \text{[Weight: Level]}$$

- as usual, consider the grounding $\text{grnd}(wc)$ of wc
- Interpretation I violates a ground wc ($I \not\models wc$), if $\{b_1, \ldots, b_k\} \subseteq I$ and $I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset$
- The cost of I at level ℓ is
 $$c(I, \ell) = \sum_{i=1}^{n} \sum_{(\theta, w) \in V_i(I, \ell)} w,$$
 where
 $$V_i(I, \ell) = \{(\theta, w) \mid wc_i \theta = \sim B. [w, \ell] \in \text{grnd}(wc_i), I \not\models wc_i \theta\}$$
- I is safe, if each $c(I, \ell)$ is well-defined (all w’s are numbers)
- a safe $M \in AS(P)$ dominates a safe $M' \in AS(P)$, if $c(M, \ell) < c(M', \ell)$ for some ℓ and $c(M, \ell') = c(M', \ell')$ for all $\ell' > \ell$
- a safe $M \in AS(P)$ is best (optimal), if no $M' \in AS(P)$ dominates M
Weak Constraints: Examples

Example: Default values for weights and levels

```
a v b.   c :- b.
~ a.
~ a.
~ b.
~ c.
```
Weak Constraints: Examples

Example: Default values for weights and levels

\[a \lor b. \quad c \leftarrow b. \]
\[\sim a. \]
\[\sim b. \]
\[\sim c. \]

Best model: \(a\)
Cost ([Weight:Level]): \([1:1]\)

Answer set \(\{b, c\}\) is discarded because it violates two weak constraints!
Example: Weights vs levels

Weights:

\(a \lor b \cdot \)
\(\neg a. [1:] \)
\(\neg a. [1:] \)
\(\neg b. [2:] \)
Example: Weights vs levels

Weights:

\[a \lor b. \]
\[\neg a. [1:] \]
\[\neg a. [1:] \]
\[\neg b. [2:] \]

Best model: \(b \)
Cost ([Weight:Level]): \(<[2:1]> \)

Best model: \(a \)
Cost ([Weight:Level]): \(<[2:1]> \)

Note: \(WC = \{ wc_1, wc_2, wc_3 \}, \)
\[wc_1 = \neg a.[1:], \]
\[wc_2 = \neg a.[1:], \]
\[wc_3 = \neg b.[2:] \]
Example: Weights vs levels

Weights:

\[
\begin{align*}
\text{a} & \lor \text{b}.\\
\leadsto & \sim \text{a. [1:]}\\
\leadsto & \sim \text{a. [1:]}\\
\leadsto & \sim \text{b. [2:]} \\
\end{align*}
\]

Best model: \(\text{b} \)

Cost ([Weight:Level]): \(<[2:1]>\)

Levels:

\[
\begin{align*}
\text{a} & \lor \text{b1} \lor \text{b2}.\\
\leadsto & \sim \text{a. [:1]}\\
\leadsto & \sim \text{b1. [:2]}\\
\leadsto & \sim \text{b2. [:2]} \\
\end{align*}
\]

Best model: \(\text{a} \)

Cost ([Weight:Level]): \(<[2:1]>\)

Note: \(WC = \{wc_1, wc_2, wc_3\}, \)

\[
\begin{align*}
wc_1 & = \sim \text{a. [1:]} \\
wc_2 & = \sim \text{a. [1:]} \\
wc_3 & = \sim \text{b. [2:]} \\
\end{align*}
\]
Weak Constraints: Examples/2

Example: Weights vs levels

Weights:

\[a \lor b. \]
\[\neg a. \ [1:] \]
\[\neg a. \ [1:] \]
\[\neg b. \ [2:] \]

Best model: b
Cost ([Weight:Level]): \(<[2:1]>\)

Best model: a
Cost ([Weight:Level]): \(<[2:1]>\)

Levels:

\[a \lor b1 \lor b2. \]
\[\neg a. \ [::1] \]
\[\neg b1. \ [::2] \]
\[\neg b2. \ [::2] \]

Best model: a
Cost ([Weight:Level]): \(<[1:1],[0:2]>\)

Note: \(WC = \{wc_1, wc_2, wc_3\}, \)
\[wc_1 =:\neg a. [1:], \]
\[wc_2 =:\neg a. [1:], \]
\[wc_3 =:\neg b. [2:] \]
Weak Constraints with Levels

Levels express the relative importance of the requirements.

Example: Divide employees in two project groups \(p_1 \) and \(p_2 \)

1. Skills of group members should be different
2. Persons in the same group should not be married to each other
3. Members of a group should possibly know each other

Requirement (3) is less important than (1) and (2)
Weak Constraints with Levels

Levels express the relative importance of the requirements.

Example: Divide employees in two project groups p_1 and p_2

1. Skills of group members should be different
2. Persons in the same group should not be married to each other
3. Members of a group should possibly know each other

Requirement (3) is less important than (1) and (2)

```prolog
assign(X,p1) v assign(X,p2) :- employee(X).

\[\sim\] assign(X,P), assign(Y,P), X!=Y, same_skill(X,Y). [:2]
\[\sim\] assign(X,P), assign(Y,P), X!=Y, married(X,Y). [:2]
\[\sim\] assign(X,P), assign(Y,P), X!=Y, not know(X,Y). [:1]
```
Weak Constraints with Weights

- A single weak constraint in some layer n is more important than all weak constraints in lower layers ($n - 1$, $n - 2$, ...) together!

- Weak constraints are weighted to make finer distinctions among elements of the same priority: $\sim B1. [3.5:1] \sim B2. [4.6:1]$

- The weights of violated weak constraints are summed up for each layer.
Weak Constraints with Weights

• A single weak constraint in some layer n is more important than all weak constraints in lower layers $(n-1, n-2, \ldots)$ together!

• Weak constraints are weighted to make finer distinctions among elements of the same priority: $\sim B1. [3.5:1] \sim B2. [4.6:1]$

• The weights of violated weak constraints are summed up for each layer.

Example: High School Time Tabling Problem

Structural Requirements $>$ Pedagogical Requirements $>$ Personal Wishes.
Example: Traveling Salesperson (TSP)

Input: a directed graph represented by node(_), straight connections edge(_,_,_) and a starting node start(_).

Problem: find a cheapest roundtrip beginning at the starting node
Example: Traveling Salesperson (TSP)

Input: a directed graph represented by `node(_),` straight connections `edge(_,_,_,_)` and a starting node `start(_).`

Problem: find a cheapest roundtrip beginning at the starting node

\[
\text{inPath}(X,Y) \lor \text{outPath}(X,Y) :\neg \text{edge}(X,Y) .
\]

\[
\begin{align*}
\text{Guess} \\
\text{:-inPath}(X,Y), \text{inPath}(X,Y1), Y \neq Y1. \\
\text{:-inPath}(X,Y), \text{inPath}(X1,Y), X \neq X1. \\
\text{:-node}(X), \text{notreached}(X). \\
\text{:-not start_reached}.^2 \\
\text{reached}(X):-\text{start}(X). \\
\text{reached}(X):-\text{reached}(Y), \text{inPath}(Y,X). \\
\text{start_reached} :- \text{start}(Y), \text{inPath}(X,Y).
\end{align*}
\]

\[
^2\text{This line is added, since the trip must be round.}
\]
Example: Traveling Salesperson (TSP)

Input: a directed graph represented by node(_,), straight connections edge(_,_,_,_) and a starting node start(_).

Problem: find a cheapest roundtrip beginning at the starting node

\[
\text{inPath}(X,Y,C) \lor \text{outPath}(X,Y,C) :- \text{edge}(X,Y,C). \]

\[
\begin{align*}
\text{inPath}(X,Y,C), \text{inPath}(X,Y1,C1), Y & \neq Y1. \\
\text{inPath}(X,Y,C), \text{inPath}(X1,Y,C1), X & \neq X1. \\
\text{node}(X), \text{notreached}(X). \\
\text{not start_reached}.^2
\end{align*}
\]

\[
\text{reached}(X) :- \text{start}(X). \\
\text{reached}(X) :- \text{reached}(Y), \text{inPath}(Y,X,C). \\
\text{start_reached} :- \text{start}(Y), \text{inPath}(X,Y,C).
\]

\[
\sim \text{inPath}(X,Y,C).[C:1]
\]

\[^2\text{This line is added, since the trip must be round.}\]
Example: Minimum Spanning Tree

Input: A directed graph represented by node(_), weighted edges edge(_,_,_) and a starting node start(_).

Problem: Find a minimum spanning tree with root at the starting node

\[
\text{inTree}(X,Y) \lor \text{outTree}(X,Y) :\neg \text{edge}(X,Y). \quad \text{Guess}
\]

\[
\begin{align*}
: & \neg \text{inTree}(X,Y), \text{start}(Y). \\
: & \neg \text{inTree}(X,Y), \text{inTree}(X1,Y), X \neq X1. \\
: & \text{node}(X), \neg \text{reached}(X).
\end{align*}
\]

\[
\text{reached}(X): \neg \text{start}(X). \\
\text{reached}(X): \neg \text{reached}(Y), \text{inTree}(Y,X).
\]

\[
\text{Auxiliary Def.}
\]
Example: Minimum Spanning Tree

Input: A directed graph represented by node(_), weighted edges edge(_,_,_) and a starting node start(_).

Problem: Find a minimum spanning tree with root at the starting node

\[
\text{inTree}(X,Y) \lor \text{outTree}(X,Y) :\neg \text{edge}(X,Y). \quad \text{Guess}
\]
\[
:\neg \text{inTree}(X,Y), \text{start}(Y).
:\neg \text{inTree}(X,Y), \text{inTree}(X1,Y), X \neq X1.
:\neg \text{node}(X), \text{not reached}(X).
\]

\[
\text{reached}(X) :\neg \text{start}(X).
\text{reached}(X) :\neg \text{reached}(Y), \text{inTree}(Y,X).
\]

Auxiliary Def.
Example: Minimum Spanning Tree

Input: A directed graph represented by `node(_,_)`, weighted edges `edge(_,_,_)` and a starting node `start(_)`.

Problem: Find a minimum spanning tree with root at the starting node

```
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).  } Guess

:-inTree(X,Y,C), start(Y).
:-inTree(X,Y,C), inTree(X1,Y,C), X != X1.
:-node(X), not reached(X).

reached(X):-start(X).
reached(X):-reached(Y), inTree(Y,X,C).  } Auxiliary Def.

:\~ inPath(X,Y,C).[C:1]  } Optimize
```

Check

Optimize
Example: Minimum Spanning Tree (ctd.)

\[P_D = \{ \text{node}(a), \text{node}(b), \text{node}(c), \text{node}(d), \text{edge}(a, b, 1), \text{edge}(a, c, 1), \text{edge}(c, b, 2), \text{edge}(b, c, 1), \text{edge}(b, d, 1), \text{edge}(c, d, 1), \text{start}(a) \} \]
Example: Minimum Spanning Tree (ctd.)

\[P_D = \{ \text{node}(a), \text{node}(b), \text{node}(c), \text{node}(d), \text{edge}(a, b, 1), \text{edge}(a, c, 1) \text{edge}(c, b, 2), \text{edge}(b, c, 1) \text{edge}(b, d, 1), \text{edge}(c, d, 1) \text{start}(a) \} \]
Aggregates

- Allow arithmetic operations over a set of elements, as e.g. in SQL:

  ```sql
  select count(*) from empl;
  ```
Aggregates

- Allow **arithmetic operations over a set** of elements, as e.g. in SQL:

  ```sql
  select count(*) from empl;
  ```

- ASP provides aggregation functions **#count, #sum, #min, #max**

  ```prolog
  #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```
Aggregates

- Allow **arithmetic operations over a set** of elements, as e.g. in SQL:

  ```
  select count(*) from empl;
  ```

- ASP provides aggregation functions **#count, #sum, #min, #max**

  ```
  #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```

- these aggregate functions occur in aggregate atoms in rule bodies

  ```
  small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
  ```
Aggregates

- Allow arithmetic operations over a set of elements, as e.g. in SQL:

 select count(*) from empl;

- ASP provides aggregation functions \(\#\text{count}, \#\text{sum}, \#\text{min}, \#\text{max} \)

 \[
 \#\text{count}\{\text{Emp, Dept, Job}: \text{empl}(\text{Emp, Dept, Job})\}
 \]

- these aggregate functions occur in aggregate atoms in rule bodies

 \[
 \text{small_dept}(D) :- \#\text{count}\{\text{E, D}: \text{empl}(\text{E, D, J})\} < 10, \text{dept}(D)
 \]

- aggregates as first-class citizen: need no auxiliary computations

 - linear ordering, successor relation, smallest and largest element, and
 - recursion needed to count the employees
Aggregates

- Allow arithmetic operations over a set of elements, as e.g. in SQL:
  ```sql
  select count(*) from empl;
  ```

- ASP provides aggregation functions `#count`, `#sum`, `#min`, `#max`
  ```prolog
  #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
  ```

- these aggregate functions occur in aggregate atoms in rule bodies
  ```prolog
  small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
  ```

- aggregates as first-class citizen: need no auxiliary computations
 - linear ordering, successor relation, smallest and largest element, and
 - recursion needed to count the employees

- challenging: semantics of aggregates (problem: recursion)

- we consider non-recursive aggregates, DLV (general: ASP-Core2)
Symbolic Set

Symbolic Set Expression

\[
\{ Vars : Conj \}
\]

where

- *Vars* is a set of variables, and
- *Conj* is a conjunction of standard literals, i.e., literals and default negated literals.
Symbolic Set

Symbolic Set Expression

\{ Vars : Conj \}

where

- \(Vars \) is a set of variables, and
- \(Conj \) is a conjunction of standard literals, i.e., literals and default negated literals.

Example: \{ S, X : empl(X, S) \}

Informal Meaning: The set of ids and salaries of all employees, i.e.,

- for a set of standard literals (an interpretation)
 \(I = \{ empl(1, 2200), empl(2, 1800) \} \),
- the symbolic set above represents a set of tuples
 \(S = \{ \langle 2200, 1 \rangle, \langle 1800, 2 \rangle \} \).
Aggregate Functions

Aggregate Function Expression

\[f\{S\} \]

where

- \(S \) is a symbolic set, and
- \(f \) is a function among \(#\text{count}, #\text{sum}, #\text{times}, #\text{min}, #\text{max}\)
Aggregate Functions

Aggregate Function Expression

\[f\{S\} \]

where

- \(S \) is a symbolic set, and
- \(f \) is a function among \{\#count, \#sum, \#times, \#min, \#max\}

Example: \#sum\{S, X : empl(X, S)\}

Informal Meaning: The sum of salaries of all employees.
Aggregate Functions

Aggregate Function Expression

\[f\{S\} \]

where

- \(S \) is a symbolic set, and
- \(f \) is a function among \{\#count, \#sum, \#times, \#min, \#max\}

Example: \#sum\{S, X : empl(X, S)\}

Informal Meaning: The sum of salaries of all employees.

- \#count returns the cardinality of the symbolic set;
- the other functions apply to the multiset of the elements in the symbolic set projected to the first component.
Identical Projections

Note:

$$\#\text{sum}\{S : \text{empl}(X, S)\} \neq \#\text{sum}\{S, X : \text{empl}(X, S)\}$$

as identical projections S of different elements count multiple times
Aggregate Functions, cont’d

Identical Projections

Note:

$$\#\text{sum}\{S : \text{empl}(X, S)\} \neq \#\text{sum}\{S, X : \text{empl}(X, S)\}$$

as identical projections S of different elements count multiple times

for $S = \emptyset$:

- $\#\text{sum}$ returns 0
- $\#\text{times}$ returns 1
- $\#\text{min}$ and $\#\text{max}$ undefined
Aggregate Atoms

Aggregate Atom Syntax

\[Lg <_{1} f\{S\} <_{2} Rg \]

where

- \(Lg \) and \(Ug \) are terms, called **left guard** and **right guard**, respectively,
- and \(<_{1}, <_{2}\) in \(\{=, <, \leq, >, \geq\} \);
- one of the guards can be omitted (assuming “0 \leq” and “\leq +\infty”)

Example:

\[\#\text{sum}\{S, X: \text{empl}(X, S)\} \leq 3800 \]

Informal Meaning:

True if sum of salaries \(\leq 3800 \), false otherwise.

If the argument of an aggregate function does not belong to its domain, then false and warning.
Aggregate Atoms

Aggregate Atom Syntax

\[Lg <_1 f\{S}\] <_2 Rg \]

where

- \(Lg \) and \(Ug \) are terms, called left guard and right guard, respectively,
- and \(<_1, <_2 \) in \(\{=, <, \leq, >, \geq\} \);
- one of the guards can be omitted (assuming “0 \(\leq \)” and “\(\leq +\infty \)”)

Example: \#\text{sum}\{S, X : \text{empl}(X, S)\} \leq 3800

Informal Meaning: True if sum of salaries \(\leq 3800 \), false otherwise.

- If the argument of an aggregate function does not belong to its domain, then false and warning.
Aggregate Atom: Common Mistakes

Let \(\text{pay}(\text{transaction}, \text{person}, \text{value}) \) represent a payment, consider: \{\text{pay}(t1, p1, 5), \text{pay}(t2, p1, 8), \text{pay}(t3, p1, 5), \text{pay}(t4, p2, 10), \text{pay}(t5, p2, 20)\}. Task: Compute the sum of payments for each person.
Aggregate Atom: Common Mistakes

Let \texttt{pay(transaction, person, value)} represent a payment, consider:
\{\texttt{pay(t1, p1, 5), pay(t2, p1, 8), pay(t3, p1, 5), pay(t4, p2, 10), pay(t5, p2, 20)}\}.
Task: Compute the sum of payments for each person.

- \textbf{Correct}: \texttt{sum(P, S) :- person(P), S = \#sum\{V, T : pay(T, P, V)\};}

 symbolic set is \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle\} for \(p1 \Rightarrow \text{sum}(p1, 18)\);
 symbolic set is \{\langle 10, t2 \rangle, \langle 20, t2 \rangle\} for \(p2 \Rightarrow \text{sum}(p2, 30)\).
Aggregate Atom: Common Mistakes

Let pay(transaction, person, value) represent a payment, consider:
\{pay(t1, p1, 5), pay(t2, p1, 8), pay(t3, p1, 5), pay(t4, p2, 10), pay(t5, p2, 20)\}.

Task: Compute the sum of payments for each person.

- **Correct:** sum(P, S) :- person(P), S = \#sum\{V, T : pay(T, P, V)\};
 symbolic set is \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle\} for p1 \Rightarrow sum(p1, 18);
 symbolic set is \{\langle 10, t2 \rangle, \langle 20, t2 \rangle\} for p2 \Rightarrow sum(p2, 30).

- **Mistake 1:** sum(P, S) :- person(P), S = \#sum\{T, V : pay(T, P, V)\};
 symbolic set is \{\langle t1, 5 \rangle, \langle t1, 8 \rangle, \langle t1, 5 \rangle\} for p1 \Rightarrow wrong first element! (here t1 is not even numeric)
Aggregate Atom: Common Mistakes

Let \texttt{pay(transaction, person, value)} represent a payment, consider:
\{\texttt{pay(t1, p1, 5)}, \texttt{pay(t2, p1, 8)}, \texttt{pay(t3, p1, 5)}, \texttt{pay(t4, p2, 10)}, \texttt{pay(t5, p2, 20)}\}.

Task: Compute the sum of payments for each person.

- **Correct**: \texttt{sum(P, S) :- person(P), S = \#sum\{V, T : \texttt{pay(T, P, V)}\};}
symbolic set is \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle\} for \texttt{p1} \Rightarrow \texttt{sum(p1, 18)};
symbolic set is \{\langle 10, t2 \rangle, \langle 20, t2 \rangle\} for \texttt{p2} \Rightarrow \texttt{sum(p2, 30)}.

- **Mistake 1**: \texttt{sum(P, S) :- person(P), S = \#sum\{T, V : \texttt{pay(T, P, V)}\};}
symbolic set is \{\langle t1, 5 \rangle, \langle t1, 8 \rangle, \langle t1, 5 \rangle\} for \texttt{p1} \Rightarrow \texttt{wrong first element!}
 (here \texttt{t1} is not even numeric)

- **Mistake 2**: \texttt{sum(P, S) :- person(P), S = \#sum\{V : \texttt{pay(T, P, V)}\};}
symbolic set is \{\langle 5 \rangle, \langle 8 \rangle\} for \texttt{p1}, \texttt{value 5 is added only once}.

Aggregate Atom: Common Mistakes

Let `pay(transaction, person, value)` represent a payment, consider: `{pay(t1, p1, 5), pay(t2, p1, 8), pay(t3, p1, 5), pay(t4, p2, 10), pay(t5, p2, 20)}`.

Task: Compute the sum of payments for each person.

- **Correct:** `sum(P, S) :- person(P), S = #sum{T, V: pay(T, P, V)}`;
 symbolic set is `{⟨5, t1⟩, ⟨8, t2⟩, ⟨5, t3⟩}` for p1 ⇒ `sum(p1, 18)`;
 symbolic set is `{⟨10, t2⟩, ⟨20, t2⟩}` for p2 ⇒ `sum(p2, 30)`.

- **Mistake 1:** `sum(P, S) :- person(P), S = #sum{T, V: pay(T, P, V)}`;
 symbolic set is `{⟨t1, 5⟩, ⟨t1, 8⟩, ⟨t1, 5⟩}` for p1 ⇒ wrong first element!
 (here t1 is not even numeric)

- **Mistake 2:** `sum(P, S) :- person(P), S = #sum{V: pay(T, P, V)}`;
 symbolic set is `{⟨5⟩, ⟨8⟩}` for p1, value 5 is added only once.

- **Mistake 3:** `sum(S) :- S = #sum{P: pay(T, P, V)}`;
 symbolic set is `{⟨5, p1⟩, ⟨8, p1⟩, ⟨10, p2⟩, ⟨20, p2⟩}`, persons merged.
Safety

Variables that appear solely in aggregate functions are called local variables.

- Additional safety requirements:
 - Each local variable in \{ Vars : Conj \} also appears in a positive literal in Conj.
 - Each global variable also appears
 - in a non-comparison, non-aggregate, not-free literal in the body; or
 - as a guard of an assignment aggregate atom \(X = f\{S\}, f\{S\} = X \), or \(X = f\{S\} = X \), respectively
 - Each guard of an aggregate atom is either a constant or a global variable.
Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set M of literals and a ground program P, the reduct (or Gelfond-Lifschitz reduct) P^M is now as follows:

- remove rules from P
 - with $\neg a$ in the body, such that a is true wrt. M, or
 - with a in the body, such that a is an aggregate atom that is false wrt. M; and

- remove literals $\neg a$ and aggregate atoms from all other rules.
Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set M of literals and a ground program P, the reduct (or Gelfond-Lifschitz reduct) P^M is now as follows:

- remove rules from P
 - with $\textit{not } a$ in the body, such that a is true wrt. M, or
 - with a in the body, such that a is an aggregate atom that is false wrt. M; and
- remove literals $\textit{not } a$ and aggregate atoms from all other rules.

- limitations (dlv build 21-12-2012):
 - $\#\text{min, } \#\text{max}$ just on integer constants like $\#\text{sum}$ and $\#\text{times}$
 - no recursion through aggregates (aggregate stratification)
Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set M of literals and a ground program P, the reduct (or Gelfond-Lifschitz reduct) P^M is now as follows:

- remove rules from P
 - with $\text{not } a$ in the body, such that a is true wrt. M, or
 - with a in the body, such that a is an aggregate atom that is false wrt. M; and
- remove literals $\text{not } a$ and aggregate atoms from all other rules.

- limitations (dlv build 21-12-2012):
 - $\#\text{min}, \#\text{max}$ just on integer constants like $\#\text{sum}$ and $\#\text{times}$
 - no recursion through aggregates (aggregate stratification)

- recursion through aggregates: use instead GL-reduct P^M the FLP-reduct $fP^M = \{ r \in P \mid r = H \leftarrow B, M \models B \}$;
that is, keep the rules r whose bodies are satisfied.
DLV Usage: Examples
Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).
Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).

% Check that we are really dealing with a tree!
:- start(R), not #count{X : inTree(X,R,C)} = 0.
:- edge(_,Y,_) , not start(Y),
 not #count{X : inTree(X,Y,C)} = 1.
% Note: ensures also that each node
% in the graph is reached.
Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).

% Check that we are really dealing with a tree!
:- start(R), not #count{X : inTree(X,R,C)} = 0.
:- edge(_,Y,_), not start(Y),
 not #count{X : inTree(X,Y,C)} = 1.
% Note: ensures also that each node
% in the graph is reached.

% Nothing in life is free..
% pay for every edge that is in the solution
~ inTree(X,Y,C). [C:1]
Example: Seating Problem

Problem: Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.
Example: Seating Problem

Problem: Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

\[
\text{at}(P, T) \lor \text{not } \text{at}(P, T) :\text{- person}(P), \text{ table}(T).
\]
Example: Seating Problem

Problem: Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

\[
\text{at(P,T) v not at(P,T) :- person(P), table(T).}
\]
\[
:- \text{table(T), nchairs(C), not#count}\{P : \text{at(P,T)}\} \leq C.
\]
Example: Seating Problem

Problem: Given some tables of a given number of chairs each, generate a sitting arrangement for a number of given guests, such that:

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

\[
\text{at}(P,T) \lor \neg \text{at}(P,T) :- \text{person}(P), \text{table}(T).
\]

\[
:- \text{table}(T), \text{nchairs}(C), \neg \#\text{count}\{P : \text{at}(P,T)\} \leq C.
\]

\[
:- \text{person}(P), \neg \#\text{count}\{T : \text{at}(P,T)\} = 1.
\]

\[
:- \text{like}(P1,P2), \text{at}(P1,T), \neg \text{at}(P2,T).
\]

\[
:- \text{dislike}(P1,P2), \text{at}(P1,T), \text{at}(P2,T).
\]
Example: Seating Problem, cont’d

\[P_D = \{\text{person}(p1), \text{person}(p2), \text{person}(p3), \text{person}(p4), \text{table}(t1), \text{table}(t2), \text{nchairs}(4), \text{like}(p1, p2), \text{dislike}(p1, p3)\} \]
Example: Seating Problem, cont’d

\[P_D = \{person(p1), person(p2), \]
\[person(p3), person(p4), \]
\[table(t1), table(t2), \]
\[nchairs(4), \]
\[like(p1, p2), \]
\[dislike(p1, p3)\} \]
Example: Optimal Golomb Ruler (OGR)

Problem: Place a given number of marks on a ruler, such that no two pairs of marks measure the same distance, and the length of the ruler is minimal.

- **Applications:** antenna design, mobile communication technology

![Diagram of an OGR example]
Example: Optimal Golomb Ruler (OGR)

Problem: Place a given number of marks on a ruler, such that no two pairs of marks measure the same distance, and the length of the ruler is minimal.

- **Applications:** antenna design, mobile communication technology

% Example input for an OGR of size 4
position(0..10).
mark(1..4).
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).
% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
um(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.
% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
 :- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.

% Find the maximum used position P.
non_maxused(P1) :- used(P1), used(P2), P1 < P2.
maxused(P) :- used(P), not non_maxused(P).
Example: Optimal Golomb Ruler (OGR), cont’d

% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
um(N) :- #count{M : mark(M)} = N.
/- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.

% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.

% Find the maximum used position P.
non_maxused(P1) :- used(P1), used(P2), P1 < P2.
maxused(P) :- used(P), not non_maxused(P).

% Minimize the cost of the solution.
/~ maxused(P). [P:1]
Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the \texttt{#max} aggregate atom to find the maximum used position:

\begin{verbatim}
\% Minimize the cost of the solution,
\% i.e., the value of the largest used position.
:- #int(P1), P1 = #max\{P:used(P)\}. [P1:]
\end{verbatim}
Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the #max aggregate atom to find the maximum used position:

% Minimize the cost of the solution,
% i.e., the value of the largest used position.
:^1 #int(P1), P1 = #max{P:used(P)}. [P1:]

Program output for both variants (run with option -filter=used):

Best model: used(0), used(2), used(5), used(6)
Cost ([Weight:Level]): <[6:1]>

Best model: used(0), used(1), used(4), used(6)
Cost ([Weight:Level]): <[6:1]>
Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the \(\#\text{max} \) aggregate atom to find the maximum used position:

\[
\text{\% Minimize the cost of the solution,}
\text{\% i.e., the value of the largest used position.}
\]

\[
:\sim \#\text{int}(P1), \ P1 = \#\text{max}\{P: \text{used}(P)\}. \ [P1:]
\]

Program output for both variants (run with option \(-\text{filter}=\text{used}\)):

Best model: \text{used}(0), \text{used}(2), \text{used}(5), \text{used}(6)
Cost ([Weight:Level]): <[6:1]>

Best model: \text{used}(0), \text{used}(1), \text{used}(4), \text{used}(6)
Cost ([Weight:Level]): <[6:1]>

Results are by chance perfect optimal Golomb Rulers (i.e., no gaps in the sequence of all occurring distances).

Exercise: Which additional constraint would be needed to ensure only perfect optimal Golomb Rulers to be calculated?
Overview: DLV Extensions

DLV-Complex: extension of DLV with function symbols, lists and sets fully integrated into DLV since release 2010-10-14

dlvex an extension of DLV providing access to "external predicates" which are supplied via libraries

dlvhex a system for ASP with external computation sources

\[\text{http://www.kr.tuwien.ac.at/research/systems/dlvhex/}\]
\[\text{http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php}\]

- enables queries to Description Logic KBs in rules

DLT extends DLV with reusable template predicate definitions

DLV^DB an extension of DLV with a tight coupling to relational DBs

- native DLV offers an ODBC interface

NLP-DL a coupling of ASP programs with Description Logics

\[\text{https://www.mat.unical.it/ianni/swlp/index.html}\]
Summary

1. The DLV system
 - DLV syntax
 - Rule safety
 - Built-in predicates

2. Weak constraints
 - Weights
 - Levels

3. Aggregates
 - Symbolic sets
 - Aggregate functions

4. DLV usage: Examples

5. DLV extensions
Software Engineering Issues

- Software engineering tools for ASP are subject of ongoing research.
 IDEs: ASPIDE3, SeaLion4

- Particular problem: debugging

- What to do if my program does not have (intended) answer sets?

- Some naive suggestions:
 - Decompose: divide & conquer
 - Use small/specific instances for testing
 - Test constraints one by one
 - Check auxiliary predicates separately

- Support for debugging: e.g. Spock5

3www.mat.unical.it/~ricca/aspide/
4www.kr.tuwien.ac.at/research/projects/mmdasp/#Software
5www.kr.tuwien.ac.at/research/systems/debug/index.html
ASP Integrated Development Environments (IDEs)

IDE: ease programming for both novice and skilled developers

- **SEA LION** [Busoniu et al., 2013]
 - first environment offering debugging for non-ground programs
 - unique tools for model-based engineering (ER diagrams), testing via annotations, and bi-directional visualization of interpretations.

- **ASPIIDE** [Febbraro et al., 2011]
 - comprehensive framework integrating several tools for advanced program composition and execution.
 - test-driven software development in the style of JUnit, e.g.
 - dependency graph visualizer, designed to inspect predicate dependencies and browsing the program,
 - debugger (Dodaro et al. 2015),
 - DLV profiler,
 - ARVis comparator of answer sets,
 - answer set visualizer IDPDraw.
 - data source plugin for JDBC connectivity
ASP Development Environments, cont’d

- ASPIDE is extensible
- user can provide new plugins:
 - new input formats
 - new program rewritings
 - customizing the visualization/output format of solver results
- more information: See RR 2013 tutorial

Paula-Andra Busoniu, Johannes Oetsch, Jörg Pührer, Peter Skocovsky, and Hans Tompits.

Sealion: An eclipse-based IDE for answer-set programming with advanced debugging support.

Onofrio Febbraro, Kristian Reale, and Francesco Ricca.

ASPIDE: integrated development environment for answer set programming.