Find Your Place: Simple Distributed Algorithms for Community Detection

Emanuele Natale∗

joint work with

Luca Becchetti†, Andrea Clementi⋆, Francesco Pasquale⋆ and Luca Trevisan⋆∗

ACM-SIAM Symposium on Discrete Algorithms

16-19 January 2017 - Barcellona, Spain
Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.
Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- **3-Median dyn.**
 [Doerr et al. ’11]

- **3-Majority dyn.**
 [Becchetti et al. ’14, ’16]

- **Undecided-state dyn.**
 [Becchetti et al. ’15]
Dynamics

Dynamics: For every graph, agent and round, states are updated according to fixed rule of current state and symmetric function of states of neighbors.

Examples of Dynamics:

- **3-Median dyn.**
 [Doerr et al. ’11]

- **3-Majority dyn.**
 [Becchetti et al. ’14, ’16]

- **Undecided-state dyn.**
 [Becchetti et al. ’15]

Can dynamics solve a problem non-trivial in centralized setting?
Community Detection as Minimum Bisection

Minimum Bisection Problem.

Input: a graph G with n nodes.

Output: $S = \arg \min_{S \subseteq V} |S| = n/2 \ E(S, V - S)$.

[Garey, Johnson, Stockmeyer ’76]: Min-Bisection is NP-Complete.
Stochastic Block Model (SBM). Two “communities” of equal size V_1 and V_2, each edge inside a community included with probability p, each edge across communities included with probability $q < p$.
The Stochastic Block Model

Reconstruction problem:
Given graph generated by SBM,

\[p \sim q \sim p \]

find original partition
Regular SBM (RSBM) [Brito et al. SODA’16]. A graph $G = (V_1 \cup V_2, E)$ s.t.

- $|V_1| = |V_2|,$
- $G\big|_{V_1}, G\big|_{V_2} \sim$ random a-regular graphs
- $G\big|_{E(V_1,V_2)} \sim$ random b-regular bipartite graph.

4-regular 4-regular
Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA’16]. A graph $G = (V_1 \cup V_2, E)$ s.t.

- $|V_1| = |V_2|$,
- $G\mid_{V_1}$, $G\mid_{V_2} \sim$ random a-regular graphs
- $G\mid_{E(V_1,V_2)} \sim$ random b-regular bipartite graph.

2-regular bipartite
Regular Stochastic Block Model

Regular SBM (RSBM) [Brito et al. SODA’16]. A graph $G = (V_1 \cup V_2, E)$ s.t.

- $|V_1| = |V_2|$,
- $G|_{V_1}$, $G|_{V_2} \sim$ random a-regular graphs
- $G|_{E(V_1, V_2)} \sim$ random b-regular bipartite graph.
When is Reconstruction Possible?

[Decelle, Massoulie, Mossel, Brito, Abbe et al.]: Reconstruction is possible iff

- \(a - b > 2\sqrt{a + b} \) in SBM (weak)
- \(a - b > 2(\sqrt{a} - \sqrt{b})\sqrt{b} + 2\log n \) in SBM (strong)
- \(a - b > 2\sqrt{a + b} - 1 \) in Regular SBM (strong)

Upper bounds obtained by linearizations of Belief Propagation, advanced spectral methods (power and Lanczos method), SDP.
Al nodes at the same time:
• At $t = 0$, randomly pick value $x^{(t)} \in \{+1, -1\}$.
• Then, at each round
 1. Set value $x^{(t)}$ to average of neighbors,
 2. Set label to blue if $x^{(t)} < x^{(t-1)}$, red otherwise.
The Average Dynamics

Al nodes at the same time:
- At $t = 0$, randomly pick value $x^{(t)} \in \{+1, -1\}$.
- Then, at each round
 1. Set value $x^{(t)}$ to average of neighbors,
 2. Set label to blue if $x^{(t)} < x^{(t-1)}$, red otherwise.
The Average Dynamics

Al nodes at the same time:
• At $t = 0$, randomly pick value $x(t) \in \{+1, -1\}$.
• Then, at each round
 1. Set value $x(t)$ to average of neighbors,
 2. Set label to blue if $x(t) < x(t-1)$, red otherwise.
The Average Dynamics

All nodes at the same time:
- At $t = 0$, randomly pick value $x(t) \in \{+1, -1\}$.
- Then, at each round
 1. Set value $x(t)$ to average of neighbors,
 2. Set label to blue if $x(t) < x(t-1)$, red otherwise.
Al nodes at the same time:
- At \(t = 0 \), randomly pick value \(x^{(t)} \in \{+1, -1\} \).
- Then, at each round
 1. Set value \(x^{(t)} \) to average of neighbors,
 2. Set label to blue if \(x^{(t)} < x^{(t-1)} \), red otherwise.
The Average Dynamics

Al nodes at the same time:
- At $t = 0$, randomly pick value $x^{(t)} \in \{+1, -1\}$.
- Then, at each round
 1. Set value $x^{(t)}$ to average of neighbors,
 2. Set label to blue if $x^{(t)} < x^{(t-1)}$, red otherwise.
The Average Dynamics

Al nodes at the same time:
- At $t = 0$, randomly pick value $x(t) \in \{+1, -1\}$.
- Then, at each round
 1. Set value $x(t)$ to average of neighbors,
 2. Set label to blue if $x(t) < x(t-1)$, red otherwise.
Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t = 0$, randomly pick value $x(t) \in \{\text{blue, red}\}$.
- Then, at each round
 1. Set color $x(t)$ to average of neighbors,
 2. Set label to blue if $x(t) < x(t-1)$, red otherwise.

P transition matrix of simple random walk on the graph

Averaging is a linear dynamics

$x(t) = P \cdot x(t-1) = P^t \cdot x(0)$
Properties of the Averaging Dynamics

Al nodes at the same time:

- At $t = 0$, randomly pick value $x(t) \in \{\text{blue}, \text{red}\}$.
- Then, at each round
 1. Set color $x(t)$ to average of neighbors,
 2. Set label to blue if $x(t) < x(t-1)$, red otherwise.

P transition matrix of simple random walk on the graph

Averaging is a \textbf{linear} dynamics

\[
x(t) = P \cdot x(t-1) = P^t \cdot x(0)
\]

Bottleneck of mixing time for spectral methods:

\textit{Distributed computation of second eigenvector [Kempe & McSherry ’08]: $O(\tau_{mix} \log^2 n)$.}

$\lambda_2(P) \approx \frac{a-b}{a+b} \implies$ mixing time of a random walk on $G_{n,p,q}$ is $\geq \frac{1}{1-\lambda_2} \approx \frac{a+b}{2b}$.

Our Results
Our Results
Our Results

Let's say nodes are in the same community if their distance is at least ϵ...

- How to set ϵ?
- Not a global clustering.

Let’s say nodes are in the same community if their distance is at least ϵ...
Our Results

\[x^{(\infty)} = \alpha \approx \frac{1}{n} \sum_v x_v \]
Our Results

\[x^{(\infty)} = \alpha \approx \frac{1}{n} \sum_{v} x_v \]
Our Results

\[x^{(\infty)} = \alpha \approx \frac{1}{n} \sum_v x_v \]

\[v_1, \ldots, v_n \text{ eigenvectors of random walk matrix } P: \]

\[v_1 = 1 = (1, \ldots, 1) \]

\[v_2 \approx \chi = (1, \ldots, 1, -1, \ldots, -1) \]

“nice” graph
Our Results

(Informal) Theorem. $G = (V_1 \dot{\cup} V_2, E)$ s.t.

i) $\chi = 1_{V_1} - 1_{V_2}$ close to right-eigenvector of eigenvalue λ_2 of transition matrix of G, and

ii) gap between λ_2 and $\lambda = \max\{\lambda_3, |\lambda_n|\}$ sufficiently large, then

Averaging (approximately) identifies (V_1, V_2).

Above conditions are met w.h.p. if

- in Regular SBM, $a - b > 2\sqrt{a + b - 1}$ (Strong reconstruction)
- in SBM, if $a - b > \sqrt{(a + b) \log n}$ and $b > \frac{\log n}{n^2}$ ($O(\frac{(a+b) \log n}{(a-b)^2})$-weak reconstruction.)
Analysis: Roadmap

Strong reconstruction on “clustered” regular graphs

weak reconst. on clustered graphs

$O\left(\frac{(a+b) \log n}{(a-b)^2}\right)$-weak reconstruction on SBM

Strong reconstruction on Regular SBM
Strong reconstruction on “clustered” regular graphs

Weak reconstruction on clustered graphs

\(O\left(\frac{(a+b) \log n}{(a-b)^2}\right)\)-weak reconstruction on SBM

Strong reconstruction on "clustered" regular graphs
Analysis on Regular SBM

P symmetric \implies orthonormal eigenvectors v_1, \ldots, v_n and real eigenvalues $\lambda_1, \ldots, \lambda_n$.
Analysis on Regular SBM

\[x(t) = P^t \cdot x(0) = \sum_i \lambda_i^t (v_i^T x(0)) v_i \]
Analysis on Regular SBM

\[P \text{ symmetric } \implies \text{ orthonormal eigenvectors } v_1, \ldots, v_n \text{ and real eigenvalues } \lambda_1, \ldots, \lambda_n. \]

\[x(t) = P^t \cdot x(0) = \sum_i \lambda_i^t (v_i^\top x(0)) v_i \]

\[v_1 = \frac{1}{\sqrt{n}} 1 \]

Regular SBM \implies \[P \chi = \left(\frac{a-b}{a+b}\right) \cdot \chi \]
Analysis on Regular SBM

\[P \rightarrow \text{symmetric} \implies \text{orthonormal} \]

eigenvectors \(\mathbf{v}_1, ..., \mathbf{v}_n \) and real
eigenvalues \(\lambda_1, ..., \lambda_n \).

\[\mathbf{x}(t) = P^t \cdot \mathbf{x}(0) = \sum_i \lambda_i^t (\mathbf{v}_i^T \mathbf{x}(0)) \mathbf{v}_i \]

\[\mathbf{v}_1 = \frac{1}{\sqrt{n}} \mathbf{1} \]

Regular SBM \(\implies \)

\[P \chi = \left(\frac{a-b}{a+b} \right) \cdot \chi \]

\[
\frac{1}{a+b} \begin{pmatrix}
\cdots & \cdots & \cdots \\
\cdots & a \text{ "1"s} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & b \text{ "1"s} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & b \text{ "1"s} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & a \text{ "1"s} & \cdots \\
\end{pmatrix}
\begin{pmatrix}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
1 \\
-1 \\
\end{pmatrix}
= \frac{a-b}{a+b} \begin{pmatrix}
1 \\
\vdots \\
1 \\
-1 \\
\vdots \\
1 \\
-1 \\
\end{pmatrix}
Analysis on Regular SBM

\[P \xrightarrow{\text{symmetric}} \text{orthonormal} \]

\[\text{eigenvectors } v_1, \ldots, v_n \text{ and real eigenvalues } \lambda_1, \ldots, \lambda_n. \]

\[x(t) = P^t \cdot x(0) = \sum_i \lambda_i^t (v_i^T x(0)) v_i \]

\[v_1 = \frac{1}{\sqrt{n}} 1 \]

Regular SBM \[\implies P\chi = \left(\frac{a-b}{a+b} \right) \cdot \chi \]

W.h.p. \[\max\{\lambda_3, |\lambda_n|\} (1 + \delta) < \frac{a-b}{a+b} = \lambda_2, \] then

\[x(t+1) = \frac{1}{n} (1^T x(0)) 1 + \lambda_2^t \frac{1}{n} (\chi^T x(0)) \chi + e(t) \]

with \[\|e(t)\| \leq (\max\{\lambda_3, |\lambda_n|\})^t \sqrt{n} \]
Analysis on Regular SBM

\[
\left(\frac{1}{n} \sum_{u \in V_1} x^{(0)}(u) - \frac{1}{n} \sum_{u \in V_2} x^{(0)}(u) \right)
\]

\[
\frac{1}{n} \sum_{u \in V} x^{(0)}(u)
\]

\[
W.h.p. \ max\{\lambda_3, |\lambda_n|\}(1 + \delta) < \frac{a-b}{a+b} = \lambda_2, \ then
\]

\[
x^{(t+1)} = \frac{1}{n}(1^\top x^{(0)})1 + \lambda_2^t \frac{1}{n}(\chi^\top x^{(0)})\chi + e^{(t)}
\]

with \(\|e^{(t)}\| \leq (\max\{\lambda_3, |\lambda_n|\})^t \sqrt{n}\)
Analysis on Regular SBM

\[x^{(t)} = \frac{1}{n} (1^T x^{(0)}) 1 + \lambda_2^t \frac{1}{n} (\chi^T x^{(0)}) \chi + e^{(t)} \]
Analysis on Regular SBM

\[x(t) = \frac{1}{n} (1^T x(0)) 1 + \lambda^t_2 \frac{1}{n} (\chi^T x(0)) \chi + e(t) \]

\[x(t) - x(t-1) = (\chi^T x(0)) \lambda^{t-1}_2 (\lambda - 1) \chi + e(t) - e(t-1) \]

\[\ll \lambda^{t-1}_2 \text{ if } t = \Omega(\log n) \]
Analysis on Regular SBM

\[
x^{(t)} = \frac{1}{n} (1^\top x^{(0)}) 1 + \lambda^t_2 \frac{1}{n} (\chi^\top x^{(0)}) \chi + e^{(t)}
\]

\[
x^{(t)} - x^{(t-1)} = (\chi^\top x^{(0)}) \lambda^{t-1}_2 (\lambda_2 - 1) \chi + e^{(t)} - e^{(t-1)} \ll \lambda^{t-1}_2 \text{ if } t=\Omega(\log n)
\]

\[
\text{sign}(x^{(t)}(u) - x^{(t-1)}(u)) \propto \text{sign}(\chi(u))
\]
Future Work: Sparsification

At each round, pick an edge u.a.r. (population protocols):
those two nodes averages their values.

Simulations. Does not seem to work for $a - b \ll \log n$.

Analysis. A version with $\log n$ parallel instances
(say two nodes are in same community only iff at least a certain fraction of instances agree), works for
$a - b \gg \log^{\Theta(1)} n$.
Thank You!