Fast and Robust Hand Tracking Using Detection-Guided Optimization

Srinath Sridhar¹ Franziska Mueller¹,² Anti Oulasvirta³ Christian Theobalt³

1 Max Planck Institute for Informatics, Saarland University
2 Computer Science Department, Boston University
3 Department of Computer Science, Aalto University

Results & Evaluation

AVERAGE FINGERTIP ERROR: DEXTER 1 DATASET

19.6 mm average error

Input and Model Representation

- **Input:**
 - Depth features
 - Part labels

- **Model:**
 - 3D hand model

Part Labelling Random Forest

- Random forest trained with 50,000 real examples
- Multi-class classification into 11 hand parts
- 3 trees each with 22 levels
- 4000 feature tests per node

Pose Optimization

- **Objective:**
 - Maximize similarity between C₁ and C₂ while avoiding collisions and choosing smooth, biomechanically plausible poses

- **Formulation:**
 - Mixture models

Model Fitting

- **Objective:**
 - Detect hand model
 - Account for pose variation in hand width, height and thickness
 - Fitting takes < 1 second

Depth-only similarity
Detection-guided similarity

- Pose particles are optimized using depth-only and detection-guided energies

- Particle with best final pose fitting energy is chosen

Contributions

- **DETECTION-GUIDED POSE OPTIMIZATION**
 - Particle-based pose optimization
 - Depth and part labels

Hand Tracking

- **Challenges:**
 - Complex hand motions
 - Uniform skin color
 - Self occlusions
 - Varying camera-scene configurations
 - Real-time pose optimization

- **PRACTICAL:**
 - 25 FPS without GPU
 - Supports arbitrary moving camera-scene arrangements

Interaction with Future Devices

- Impractical to use keyboard and mouse. Hands are mobile, accessible and always with us.