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ABSTRACT
Lexical databases are invaluable sources of knowledge about words
and their meanings, with numerous applications in areas like NLP,
IR, and AI. We propose a methodology for the automatic con-
struction of a large-scale multilingual lexical database where words
of many languages are hierarchically organized in terms of their
meanings and their semantic relations to other words. This resource
is bootstrapped from WordNet, a well-known English-language re-
source. Our approach extends WordNet with around 1.5 million
meaning links for 800,000 words in over 200 languages, drawing
on evidence extracted from a variety of resources including exist-
ing (monolingual) wordnets, (mostly bilingual) translation dictio-
naries, and parallel corpora. Graph-based scoring functions and
statistical learning techniques are used to iteratively integrate this
information and build an output graph. Experiments show that this
wordnet has a high level of precision and coverage, and that it can
be useful in applied tasks such as cross-lingual text classification.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; I.2.4
[Artificial Intelligence]: Knowledge Representation Formalisms
and Methods; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

1. INTRODUCTION
Motivation. With the increasing degree of Internet penetration

all over the world, the English language represents a constantly de-
creasing fraction of the Web. China and the EU each have greatly
surpassed the U.S. in the number of Internet users, and other re-
gions are expected to follow. Multilingual knowledge bases ad-
dress this development by capturing relationships between words
and concepts and hence making the semantic connections between
words in different languages explicit. Lexical information of this
sort can be useful for various forms of natural language process-
ing [20], information retrieval (e.g. query expansion [18], cross-
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lingual IR [13], and question answering [33]), knowledge man-
agement (e.g. ontology construction [36] and ontology mapping
[22]), artificial intelligence (e.g. textual entailment [3] and visual
object recognition [27]), as well as human consultation. For ex-
ample, knowing that the French words ‘étudiant’, ‘élève’, ‘écol-
ier’ are synonymous can aid in query expansion, and knowing that
‘lycée’, ‘école’, ‘université ’, ‘académie’ are all specific types of
educational institutions is helpful for question answering.

Contribution. In this paper, we present new methods for auto-
matically creating a large-scale multilingual lexical database that
organizes over 800,000 words from over 200 languages in a hi-
erarchically structured semantic network, providing over 1.5 mil-
lion links from words to word meanings. This universal wordnet
(UWN) is bootstrapped from the Princeton WordNet, a well-known
lexical database for the English language [14] that we shall simply
refer to as ‘WordNet’, in contrast to the generic term ‘wordnet’.
WordNet consists of about 150,000 terms (words or short phrases)
and about 120,000 word senses (concepts). It links terms with the
senses that they denote (their meanings), thus providing a fairly
comprehensive database of synonymy and polysemy. Additionally,
it connects senses by semantic relationships like hypernymy, which
is similar to the subclass relation and hence induces a hierarchi-
cal organization, as well as meronymy (part/whole relation), etc.
For instance, ‘high school ’ is a hyponym of ‘educational institu-
tion’, and ‘classroom’ is a meronym (part) of ‘schoolhouse’. Sim-
ilar wordnets do exist for about 50 different languages, but none
of them are nearly as complete as the original English WordNet –
many are small and unmaintained. Moreover, for many actively
used languages, no such lexical databases exist at all. Our work ad-
dresses this gap and goes beyond the notion of monolingual word-
nets by constructing an integrated multilingual wordnet that maps
terms (words, phrases) of many languages to their meanings in the
language-independent space of senses (concepts). This allows, for
example, finding Greek hypernyms of the German word ‘Schul-
gebäude’ (‘school building’). This level of semantic connections
and support for IR and AI tasks can never be reached by a mere
translation dictionary between two languages.

Overview. Our method for building UWN starts with a limited
number of existing (monolingual) wordnets to derive a large set of
senses, i.e., possible word meanings, represented in a graph G0 of
terms and senses. This graph is extended by extracting informa-
tion from a range of sources like (mostly bilingual) translation dic-
tionaries, (monolingual) thesauri, and parallel corpora, as well as
applying automatic procedures. Statistical methods are then used
to link terms in different languages to adequate senses (the words’
meanings) by analysing this graph, as illustrated in Figure 1. The
left side depicts the input graph created from monolingual word-
nets and translation dictionaries. The right side shows the output



graph where several words in different languages have been con-
nected to the sense nodes that represent their possible meanings.
The difficulty is determining which senses apply to which transla-
tions, e.g. a simple English word such as ‘class’ has 9 senses listed
in WordNet, ‘form’ has 23 senses, and there are extreme examples
such as the word ‘break ’, for which 75 different senses are enu-
merated. We attempt to discern disambiguation information in a
series of graph refinements. To this end, we construct a rich set of
numeric features for assessing the validity of a graph’s edges. We
train a support vector machine (SVM) over this feature space with a
small number of hand-labelled edges. Then the SVM can automat-
ically discriminate edges that are likely to be valid from spurious
ones. The algorithm runs iteratively, i.e. several graphs Gi may be
constructed, each refining the previous graphGi−1 by recomputing
features and re-applying the SVM learner.

The rest of the paper is organized as follows. Section 2 reviews
WordNet and related work. Section 3 describes the initial graph
construction phase. Section 4 presents the feature space and learn-
ing model for graph refinement. Section 5 shows experimental re-
sults that confirm the high recall and precision of our method, and
demonstrates the benefit for cross-lingual text classification.

2. WORDNET AND RELATED WORK
The original WordNet [14] was manually compiled at Prince-

ton University to evaluate hypotheses about human cognition, but
rapidly became one of the most widely used lexical resources for
English natural language processing.

WordNet has sparked a number of endeavours aiming at sim-
ilar databases for other languages, most importantly perhaps the
EuroWordNet [40] and BalkaNet projects [39] that targeted many
European languages. Individual institutes have made similar efforts
for further languages, often under the auspices of the Global Word-
Net Association. Unfortunately, the work on such resources has
not resulted in a unified multilingual wordnet, as there are different
sense identifiers, formats, licences, etc.

Previous attempts to address this situation are still in their in-
fancy. Marchetti et al. [26] proposed a Semantic Web tool for
managing and interlinking wordnets in order to create a multilin-
gual grid, however they do not focus on the problem of actually
populating this grid. Another ambitious project started in 2006,
the Global Wordnet Grid [15], only contains very limited sets of
concepts for English, Spanish, and Catalan, as of August 2009.

A central problem in establishing wordnets is the laborious man-
ual compilation process, which typically leads to insufficient cov-
erage for practical applications. Several authors have attempted to
automatically or semi-automatically construct a wordnet for a not
yet covered language using existing wordnets [29, 2, 7, 16, 11, 21].
Our approach adopts some of the basic ideas of their work, but goes
beyond simple heuristics by computing more sophisticated features
that can account for very subtle differences between correct and in-
correct terms-sense mappings. Prior approaches have not been able
to produce both high coverage and high precision. Many of them
experienced difficulties with polysemous terms and were applied to
nouns only, while our technique works particularly well for com-
monly used polysemous terms. Isahara et al. [21] attempted to use
multiple existing wordnets to combine information from multiple
translation dictionaries, however with precision scores of 54% at
best. None of these studies have explored the ideas of letting au-
tomatically established mappings for different languages reinforce
each other or of exploiting evidence from multilingual translation
graphs. Finally, none of the previous approaches have been applied
to the task of building a large-scale multilingual wordnet.

There are not many alternative approaches to multilingual lexical

databases. The PANGLOSS ontology [24] was built in the 1990s
to facilitate machine translation. Interesting linking heuristics were
used; however no learning techniques were employed, and the final
coverage was limited to around 70,000 entities in two languages.
Cook [6] created a semantic network that incorporates WordNet
and links nouns in three languages to wordnet nodes based on sim-
ple heuristics as well as manual work. The heuristics yield high-
quality results but apply to monosemous nouns only and hence fail
to account for most commonly used words, as these tend to be pol-
ysemous. A much larger lexical resource has been presented by
Etzioni et al. [13], who use translation dictionaries and two ver-
sions of Wiktionary to create a very large translation graph, which
is then exploited for cross-lingual image search. Their central aim,
however, is to derive a translation resource rather than construct-
ing a semantic network with terms and senses equipped with ad-
ditional relations like hypernymy, meronymy, etc. More recently,
Adar et al. [1] have shown how to utilize the cross-linkage between
Wikipedia articles in different languages for aligning Wikipedia
infoboxes. This task is concerned with individual named entities
(persons, organizations, etc.) only; it does not address general ter-
minologies and term-sense mappings.

3. INITIAL GRAPH CONSTRUCTION
Lexical knowledge bases can be treated as labelled graphs. We

consider weighted labelled multi-digraphsG = (V,A, `,Σ`) where:

• V is a set of nodes
• A ⊆ V × V × Σ` × [0, 1] is a set of weighted labelled arcs
• ` : V ∪ A → Σ` is a labelling function that yields the re-

spective label for a given node or arc
• Σ` is the labelling alphabet for nodes and arcs, i.e. the set of

possible labels, defined as the union of the sets given below

Node labels are taken from the following sets:

a) T × L: for term nodes representing words or expressions,
where T is the set of NFC-normalized Unicode character
strings [9], and L is the set of ISO 639-3 language identi-
fiers

b) S × C: for sense nodes representing meanings, where S is
the set of sense identifiers provided by WordNet and C is the
set of lexical categories (noun, verb, adjective, etc.)

Arc labels are taken from:

a) {translation}×C×C: for term-to-term arcs that con-
nect term nodes to their translations into other languages,
with source and target lexical categories in C (e.g. noun,
verb, etc., or most commonly unknown)

b) {meaning} × N× {0, 1}: for arcs representing links from
terms to their meanings, with natural numbers representing
sense frequencies or 1 if unavailable (see Section 3.1), as
well as an indicator for distinguishing candidate arcs from
imported arcs

c) {lexicalization}: for arcs that connect sense nodes
back to their terms (the inverse of meaning arcs)

d) {related}: for term-to-term arcs that provide generic in-
dications of semantic relatedness, e.g. between ‘teach ’ and
‘university’

e) {hypernymy}: for arcs between two sense nodes n1, n2

when n2 denotes a generalization of the sense associated
with n1, e.g. n1 could denote high schools and n2 could
denote educational institutions in general



deu: “Reihe”

spa: “trayectoria”

academic course

part of a meal

route of travel

series of events

ita: “piatto”

fra: “suite”

eng: “course”

deu: “Kurs”

eng: “class”

deu: “Reihe”

spa: “trayectoria”

academic course

part of a meal

route of travel

series of events

ita: “piatto”

fra: “suite”

eng: “course”

deu: “Kurs”

eng: “class”

Figure 1: Arcs in the input graphG0 (left) and the desired output graphGi (right). Lines with arrows represent meaning arcs from
term nodes to sense nodes, while each line without an arrow represents two reciprocal translation arcs.

.

f) {meronymy,antonymy, . . . }: for other lexico-semantic
relationships provided by WordNet

For brevity, we shall use Γi(n,A) = {n′ | ∃l, w : (n′, n, l, w) ∈
A} to denote the in-neighbourhood, and Γo(n,A) = {n′ | ∃l, w :
(n, n′, l, w) ∈ A} for the out-neighbourhood of a node, given a
set of arcs A. In the following, we will work with multiple graphs
of the form just described. The initial input graph G0 will be the
result of an extraction and synthesis of data from existing sources,
while further graphs Gi (i ≥ 1) constructed later on will extend
G0 with statistically derived information that eventually yield the
multilingual UWN graph.

3.1 Information Extraction and Acquisition
The initial graph G0 = (V,A0, `0,Σ`) is populated by extract-

ing information from a range of different sources. Most imported
arcs have a weight of 1, while a large number of so-called candidate
arcs will be established with a weight of 0.

Existing Wordnet Instances. To bootstrap the construction, we
rely on existing wordnets to provide term-to-sense meaning arcs
for a limited set of languages, as well as sense-to-sense arcs (e.g.
hypernymy) as described earlier. Apart from Princeton WordNet
3.0, such information is also taken from the Arabic, Catalan, Esto-
nian, Hebrew, and Spanish wordnets1, as well as from the human-
verified parts of MLSN [6]. Edges have a weight of 1 except in
some cases where mappings between different versions of Word-
Net [8] are applied to obtain uniform sense identifiers. Sense fre-
quency information for the sense-annotated SemCor corpus [14] is
incorporated as an annotation into meaning arc labels. Such in-
formation reveals to us how often for example the word ‘school ’
was used to refer to a school building in the corpus.

Translation Dictionaries. A considerable number of term-to-
term translation arcs with weight 1 are imported from over
100 open-source translation dictionaries that are freely available on
the Web2. As only few such resources consist of well-structured
XML, making their information amenable to machine processing
frequently requires custom preprocessing steps. These involve sep-
arating the actual terms from annotation information such as part-
of-speech (e.g. adverb), semantic domain (e.g. chemistry),

1See http://www.globalwordnet.org/
2For example from the FreeDict project,
http://www.freedict.org

etc. We treat translation information as n : n relationships between
words, adding source or target part-of-speech labels to the transla-
tion arcs whenever they are given.

Wiktionary. The community-maintained Wiktionary project3

offers a plethora of lexical information but relies on simple text-
based mark-up rather than an explicit, precise database schema.
We thus use rule-based information extraction techniques to mine
translation and other arcs from eight different language ver-
sions of Wiktionary.

Multilingual Thesauri and Ontologies. Translations are also
obtained from concept-oriented resources such as the GEneral Mul-
tilingual Environmental Thesaurus (GEMET4), OmegaWiki5, as well
as from OWL ontologies [4]. For each sense (concept) C, we con-
sider its set of label terms T (C) in the resource, and then add a
translation arc to the graph for each ti, tj ∈ T (C) (i 6= j),
unless they are from the same language, in which case we create a
related arc instead.

Parallel Corpora. Text from conventional multilingual corpora,
translation memories, film subtitles, and software localization files
can be word-aligned to harness additional translation information
for many language pairs. We make use of GIZA++ [28] and Uplug
[37] to produce lexical alignments for a subset of the OPUS cor-
pora [38], which includes the OpenSubtitles corpus. Since word
alignments tend to be unreliable, we compile alignment statistics
and add translation arcs to the graph between pairs of nodes
where the respective term pair is encountered with a high frequency
(above a specified threshold).

Monolingual Thesauri. Monolingual thesauri from the OpenOf-
fice software distribution6 provide related arcs between the terms
of a single language, revealing e.g. that ‘college’ is semantically
related to ‘university’.

Manually Classified Arcs. As our approach is based on super-
vised learning, we also depend on a limited amount of manually
classified meaning arcs from terms to senses, obtained via a col-
laborative Web editing environment. Such arcs are either labelled
as positive (correct, adequate) or negative (incorrect, inadequate).

3http://www.wiktionary.org
4http://www.eionet.europa.eu/gemet/
5http://www.omegawiki.org
6http://wiki.services.openoffice.org/wiki/
Dictionaries



3.2 Graph Enrichment and Pruning
After the initial information extraction, we apply additional pre-

processing heuristics to the input graph.
First of all, we assume the translation relation is symmetric

and add inverse translation arcs to ensure such links are reciprocal.
Additionally, while the relation is not transitive, we use so-called
triangulation heuristics to reduce the sparsity of translations. For
instance, when the Italian word ‘scuola’ has an English transla-
tion ‘school ’ and a French translation ‘école’, and the latter two
both have a Malay translation ‘sekolah ’, then we can infer that this
Malay word is also a likely translation for the Italian term. Trans-
lation arcs between two term nodes n1, n2 are added when

|{n′|n′ ∈ Γo(n1, A0) ∩ Γi(n2, A0)}| ≥ mmin

where mmin = 5 was chosen empirically for high accuracy.
Subsequently, the graph is pruned by merging duplicate and near-

duplicate arcs as follows. We define a partial ordering ≤` over arc
labels that captures when an arc label is considered more specific
than another one. We assume that specific labels should be pre-
ferred over generic ones, e.g. when we have two translation arcs,
one without and one with lexical category information, we choose
to keep only the latter although the translation might also hold for
other lexical categories. This then allows us to iterate over all arcs
a = (n1, n2, l, w) ∈ A0, discarding a whenever there exists an-
other arc a′ = (n1, n2, l

′, w′) with l ≤` l′, w ≤ w′.

3.3 Candidate Arc Creation
As a final preprocessing step that concludes the construction of

G0, we create a large set of zero-weighted arcs that denote poten-
tial relationships between words and meanings that will later be
evaluated. As candidate meanings we consider all senses of trans-
lations of a given term. We determine all 2-hop paths of the form
{(n0, n1, l, w), (n1, n2, l

′, w′)} ⊂ A0, where n0 is a term node,
the arc label l is a translation one, and n2 is a sense node.
For each such path, a new candidate arc (n0, n2, lm, 0) is created,
linking a term to one of its potential senses, where lm identifies the
arcs as zero-weighted meaning ones and as candidates. For in-
stance, in Figure 1, the Italian word ‘piatto’ has a translation arc
to ‘course’, which in turn has four outgoing meaning arcs in G0,
so four candidate arcs will be created for ‘piatto’. The arc to the
sense described as ‘part of a meal ’ would be an adequate candidate
arc for ‘piatto’ that should later receive a higher weight, while the
other senses, e.g. ‘academic course’ are inadequate, and should no
longer be present in the final output graph.

4. ITERATIVE GRAPH REFINEMENT
In each iteration, a new graph Gi = (V,Ai, `i,Σ`) is con-

structed that is topologically identical to Gi−1 and thus to G0.
However, the weights of all candidate meaning arcs are re-assessed
to reflect a refined measure of confidence in them being correct. To
this end, our approach is to learn a statistical model for assessing
the validity of candidate arcs. We employ a supervised classifier
that is trained by the small set of hand-labelled arcs included in
G0, which are labelled either as correct (positive training samples)
or incorrect (negative training samples). For a given candidate arc,
it predicts a weight in [0, 1] that represents the degree of confidence
in the respective arc being correct, given the previous graph Gi−1.

The classifier operates over an appropriately defined feature space.
In our approach, the feature space is recomputed with each new
graph Gi of the refinement process. This is in the spirit of relax-
ation labelling methods and belief propagation methods for graph-
ical models [17]. Directly applying standard relational learning al-

gorithms to the huge graph in our task would face tremendous scal-
ability problems, since we need to capture certain non-straightforward
dependencies between different arcs and nodes even when they are
several hops apart. Therefore, we embed information about the
neighbourhood of an arc into its feature vector. In the ideal case, the
weight of an arc, given its feature vector, will then be conditionally
independent of the weights of other arcs, allowing us to use a more
traditional learner. In each iteration i, the previous graph Gi−1 is
used as the basis to derive a feature vector x ∈ Rm for each candi-
date arc in Gi (where m is the number of features). Details will be
given in Section 4.1.

Using the feature vectors for the hand-labelled training set, we
train an RBF-kernel SVM classifier. SVMs are based on the idea of
computing a separating hyperplane that maximizes the margin be-
tween positive and negative training instances in the feature space
or in a high-dimensional kernel space [12]. For each feature vector
x, SVM classification yields values f(x) ∈ R, which correspond
to distances from the separating hyperplane in the kernel space. To
obtain arc weights, we adopt Platt’s method of estimating poste-
rior probabilities using a sigmoid function w := P (w = 1|x) =

1
1+exp(af(x)+b)

, where parameter fitting for a and b is performed
using maximum likelihood estimation on the training data [30, 25].
This allows us to obtain new arc weights in w ∈ [0, 1] for all can-
didate arcs from term to sense nodes, concluding the construction
of the new graph Gi.

4.1 Feature Computation
For each candidate meaning arc (n0, n2, l, w) in Gi, we quan-

tify evidence from the graph as an m-tuple of numerical scores
x = (x1(n0, n2), . . . , xm(n0, n2)) ∈ Rm, such that the learn-
ing algorithm be able to assess whether the arc should be accepted.
We expect to see strong evidence for this arc if n2, a sense node,
denotes one of the senses of n0, a term node. Given the previous
graph Gi−1, we compute scores xi(n0, n2) as listed in Table 1. In
Equation 1, two nodes are directly compared by means of a cosine-
based context similarity score, which will be explained in Subsec-
tion 4.1.3. The underlying idea for Equations 2 and 3 (where φ1,
φ2, γ are arc and path weighting functions) is that a word’s most
likely senses can be determined by considering likely senses n′2 of
its translations and related terms n1 ∈ Γo(n0, Ai−1). Equation
2 considers each successor node n1, and looks at how similar the
successors of n1 are to n2. For instance, in the simplest case, if we
use an identity test as a similarity function for comparing those suc-
cessors n′2 to n2, then this score effectively computes a weighted
count of the number of two-hop paths from n0 to n2. For example,
in Figure 1, there are multiple paths from the German word ‘Kurs’
to the ‘academic course’ sense node. Equation 3 is similar, but
normalizes with respect to the number of alternative choices in the
denominator. In the simplest case, the dissim function will simply
count how many alternative senses there are, so if n1 has n2 as one
of its senses, and 4 other senses, it would return 4, and lead to a
summand of 1

1+4
for n1, which reflects the probability of reaching

n2 from n1. Equation 3 is also applied in the opposite direction to
quantify reachability information from a sense node to a term node.

More sophisticated scores are obtained by applying additional
weighting and normalization. The scores depend on a number of
auxiliary formulae, in particular combinations of arc weighting func-
tions φ1, φ2, as described in Section 4.1.1, path weighting func-
tions γ, described in Section 4.1.2, and measures of semantic relat-
edness, described in Section 4.1.3. For example, in Equation 3 we
may wish to not count all alternative senses, instead producing a
weighted score where alternative senses are not fully considered if
they are very similar or if their lexical category tags do not match.



4.1.1 Arc Weighting Functions
The different versions of φ1 listed in Table 2 estimate the rele-

vance of a connection from a term n0 to a translation or related term
n1. Equation 6 filters out related arcs, while Equation 7 consid-
ers the size of the out-neighbourhood of n0, counting the number
of terms that have outgoing meaning arcs. Equation 8 is similar
to Equation 3 and normalizes with respect to a weighted in-degree
of n1 for terms from the same language.

Instantiations of φ2 estimate the relevance of connections from
translations or related terms n1 to sense nodes n2. For this, Equa-
tion 10 considers the weights of meaning arcs, while Equation
11 uses sense corpus frequencies. Equations 9 and 12 are helper
functions.

4.1.2 Cross-Lingual Lexical Category Heuristics
Several features described in Table 1 integrate a function γ that

assigns weights to paths in the graph. Apart from the trivial choice
of setting it to a constant value, we use γlc as a version that consid-
ers lexical categories (part-of-speech tags) associated with nodes
in the graph. Many of the previous studies on automatically build-
ing wordnets dealt with nouns exclusively, whereas all lexical cate-
gories are respected in our approach, so some means of preventing,
for example, a noun from being mapped to a verb sense is required.
γlc(n0, . . . , nk) is supposed to estimate whether the nodes along

the path from n0 to nk have the same or at least compatible lexical
categories. It is computed as

γlc(n0, . . . , nk) = max
c∈C

k−1Y
i=1

µc(ni, ni+1).

Here, µc(ni, ni+1) estimates whether a local transition from ni to
ni+1 is possible with category c ∈ C with the following heuristics.

1. In some cases, there may be a translation arc with match-
ing lexical categories. As explained earlier in Sections 3
and 3.1, some dictionaries provide part-of-speech informa-
tion that is extracted and included as part of the arc’s label.

2. When this fails, we compare possible categories of ni and
ni+1. Categories for sense nodes can be derived from their
node labels. For term nodes, we first check if the term has
any incoming or outgoing translation arc labelled with
c, or any meaning arc to a sense node labelled with c.

3. If this fails, we attempt to use learnt models for surface prop-
erties of term strings, which often reveal likely lexical cat-
egories. For each lexical category and language, we check
whether criterion 3 above provides us with sufficient exam-
ples to create a training set and a withheld validation set (dis-
joint from the training set) of part-of-speech labelled terms.
If so, we learn surface form properties as described below.

4. If none of the aforementioned steps apply, a default score of
0.5 may be used, which means that we assume the chance of
a compatible lexical category to be 50%.

The surface form learning is carried out by growing a C4.5 deci-
sion tree [12] with the following features:

1. Prefixes and suffixes of a word up to a length of 10 (with-
out case conversion): In many languages, affixes mark the
part-of-speech tag of a word. For instance, in Italian, lemma
forms of virtually all verbs end in ‘-are’, ‘-ere’, or ‘-ire’.

2. Boolean features for first character capitalization and com-
plete capitalization: In many languages, capitalized words
tend to be nouns (e.g. acronyms such as ‘USA ’, proper
nouns like ‘London’, all nouns in German, Luxemburgish).

The reliability of the decision tree depends largely on the language.
For each lexical category and language, we evaluated on the re-
spective validation set, obtaining F1-scores between 0.03 and 0.99.
Later on, for a given term to be analysed, we use the confidence es-
timate c from the decision tree’s leaves only in the following cases:

1. the F1-score on the validation set was high
2. c > 0.5 and the precision on the validation set was high
3. c < 0.5 and the recall on the validation set was high

4.1.3 Measures of Semantic Relatedness
The feature vector computation also uses a set of different se-

mantic relatedness measures. To see the potential benefit of this
technique, consider the following example. The single sense of
‘schoolhouse’ is related to the educational institution sense of the
word ‘school ’, but not to the sense of ‘school ’ that refers to groups
of fish. So, if a term node has translation arcs to both ‘school ’ and
‘schoolhouse’, their semantic relatedness tells us that the educa-
tional senses of ‘school ’ are much more likely to be correct than
the one referring to fish. We consider four different measures of
semantic relatedness.

• simid(na, nb) is the identity indicator function, i.e. yields 1
if na = nb, and 0 otherwise.
• simn(na, nb) considers the graph neighbourhood. For a given

path in the graph, we compute a proximity score multiplica-
tively from relation-specific arc weights (e.g. 0.8 for hy-
pernymy, 0.7 for holonymy). The similarity is then defined
to be the maximum score for all paths between na and nb
if this maximum is above or equal a pre-defined threshold
αn = 0.35, and 0 otherwise. It can be obtained efficiently
using a variant of Dijkstra’s shortest-path algorithm [10].
• simc(na, nb) uses the cosine similarity of context strings for

nodes. For senses, context strings are constructed by con-
catenating English sense descriptions (WordNet glosses) and
terms linked to the original sense and neighbouring senses.
For terms, the set of all English translations is used. Two con-
text strings are compared by stemming using Porter’s method,
creating TF-IDF vectors xa, xb, and computing the cosine of
the angle between them, i.e. xTa xb(||xa|| ||xb||)−1.
• simm(na, nb) = max{simn(na, nb), simc(na, nb)} com-

bines the power of simn, and simc, which are each based on
rather different characteristics of the senses.

4.2 Iterative Procedure
Our iterative learning procedure makes use not only of the small

set of manually classified meaning arcs supplied as training in-
stances, but also benefits from the enormous numbers of originally
unlabelled instances. There is often some form of mutual reinforce-
ment of correct and highly weighted (but not known to be correct)
arcs and there is some gradual down-weighting of incorrect arcs in
the course of the iterations. Thus, our method can be seen as a form
of semi-supervised learning. As a stopping criterion, we use either
a withheld validation set of manually classified arcs (not used for
training) or apply cross-validation with the training data, and check
if a loss function L(Gi) shows a reduction L(Gi−1)− L(Gi) ≥ ε
(where epsilon may also be slightly negative). In practice, we ob-
served that 2-4 iterations suffice to stabilize the precision and recall
measures on the graph.

Having determined the most profitable iteration i∗ = arg maxi
L′(Gi) with a loss function L′ (possibly different from L), we can
transform Gi∗ into the final UWN graph G′i∗ using the following
steps:



Table 1: Feature computation formulae, where sim∗n0,φ2(n1, n2) yields the maximum weighted similarity between successors of n1

and n2, and dissimn0,φ2(n1, n2) produces weighted sums of dissimilarities between successors of n1 and n2

xi(n0, n2) = sim(n0, n2) (1)

xi(n0, n2) =
X

n1∈Γo(n0,Ai−1)

φ1(n0, n1) sim∗n0,φ2(n1, n2) (2)

xi(n0, n2) =
X

n1∈Γo(n0,Ai−1)

φ1(n0, n1)
sim∗n0,φ2(n1, n2)

sim∗n0,φ2(n1, n2) + dissimn0,φ2(n1, n2)
(3)

sim∗n0,φ2(n1, n2) = max
n′2∈Γo(n1,Ai−1)

γ(n0, n1, n
′
2) φ2(n1, n

′
2) sim(n2, n

′
2) (4)

dissimn0,φ2(n1, n2) =
X

n′2∈Γo(n1,Ai−1)

γ(n0, n1, n
′
2) φ2(n1, n

′
2)(1− sim(n2, n

′
2)) (5)

Table 2: Arc weighting functions plugged into the formulae in Table 1, where φslc
3 compares the part-of-speech of sense nodes,

freq(n1, n2) yields the frequency of term n1 with sense n2 in the SemCor corpus (or 1 if n1 does not occur in the corpus), and Ns
is the set of all sense nodes in the graph. `i−1 is the labelling function of Gi−1, which, among other things, captures languages and
lexical categories.

Filtering φf
1(n0, n1) =

(
1 ∃(n0, n1, l, w) ∈ Ai−1 : l 6= related

0 otherwise
(6)

Normalization φnm
1 (n0, n1) =

1

|{n1 ∈ Γo(n0, Ai−1) | Γo(n1, Ai−1) ∩Ns 6= ∅}|
(7)

Weighted In-Degree φbt
1 (n0, n1) =

sim∗
n0,φ

ln
1

(n1, n0)

sim∗n0,φ
ln
1

(n1, n0) + dissimn0,φ
ln
1

(n1, n0)
(8)

Language Matching φln
1 (n0, n

′
0) =

(
1 `i−1(n0), `i−1(n′0) provide same language code
0 otherwise

(9)

Thresholding φtα
2 (n1, n2) =

(
1 ∃(n1, n2, l, w) ∈ Ai−1 : w > α

0 otherwise
(10)

Corpus Freq. φcf
2 (n1, n2) =

freq(n1, n2)P
n′2∈Γo(n1,Ai−1)

φslc
3 (n2, n′2) freq(n1, n′2)

(11)

Sense Lexical Category φslc
3 (n2, n

′
2) =

(
1 `i−1(n2), `i−1(n′2) provide same lexical category
0 otherwise

(12)

(i) We retain fromGi∗ only arcs whose labels designate them as
candidate meaning arcs or as from a specific set of language-
independent sense-to-sense arcs from Princeton WordNet.

(ii) Optionally, we threshold using two parameters wmin,ŵmin,
retaining only arcs with either w > wmin, or w > ŵmin and
¬∃n′2, l′, w′ : (n0, n

′
2, l
′, w′) ∈ A,w′ > w. This enforces

a minimal weight wmin or possibly a slightly lower weight
ŵmin in the absence of alternative arcs for n0.

(iii) Finally, we remove all nodes of degree 0.

Omitting step (ii) leads to a statistical form of lexical database
where edge weights provide the degree of confidence of a link.
Weighted edges can be useful in certain application settings. In-
cluding this step yields a more conventional, unweighted lexical
database where only high quality links are retained. Our specific
choices of loss functions and thresholds are given in the section on
experimental results.

5. EXPERIMENTAL EVALUATION

5.1 Implementation and Setup
We used the Java programming language to develop a platform-

independent knowledge base processing framework. For efficiency
reasons, the weighted labelled multi-digraphs were stored in cus-
tom binary format databases, with optimized index and data caching
as well as Bloom filtering for reduced disk access, i.e. avoiding un-
necessary reads when no data is available. This framework allowed
us to flexibly plug together information extraction modules, knowl-
edge base processors, as well as exporters and analysis modules
into knowledge base processing pipelines. Our graph refinement
procedure is integrated as a link processor that assesses links be-
tween two entities and produces new weights. For statistical learn-
ing, it relies on the LIBSVM implementation [5] using an RBF
kernel K(x, y) = exp(− 1

m
||x − y||2) where m is the number of

features.



Table 3: Iterations of algorithm with validation set scores (for
wmin = 0.7, ŵmin = 0.6)

Graph Precision Recall F1 # accepted
meaning

arcs
G0 N/A 0.00% 0.00% 0
G1 83.96% 67.42% 74.79% 1,540,206
G2 83.70% 68.48% 75.33% 1,594,652
G3 83.89% 68.64% 75.50% 1,595,763
G4 83.90% 67.88% 75.04% 1,573,395

Table 4: Precision of UWN Result Graph
Dataset Sample

Size
Precision (Wilson)

French 311 89.23%± 3.39%
German 321 85.86%± 3.76%
Mandarin Chinese 300 90.48%± 3.26%

Following Section 3, G0 was constructed with 448,069 existing
meaning arcs (from the input wordnets, mainly English, Spanish,
Catalan), 10,805,400 translation arcs (from the dictionaries,
Wiktionary, thesauri and parallel corpora), and 10,343,601 candi-
date meaning arcs (generated following Section 3.3, on average
7.7 per term node). It contained roughly 129,500 sense nodes and
1.3 million term nodes with candidate arcs (5 million overall). We
added 2,445 human-classified meaning arcs for training, out of
which 610 were positive examples. The training set was compiled
by manual annotation of candidate meaning arcs as either positive
or negative for randomly selected French and German terms, rather
than for randomly selected instances. This means that the risk of
overfitting is reduced and the learner is channelled to focus explic-
itly on the distinction between negative and positive examples for
a given word rather than coincidental differences between different
words. We used a validation set of 2,901 French/German candidate
meaning arcs, classified manually as positive or negative using
the same methodology, and selected F1 scores for this validation
set on the output graph for wmin = 0.6, ŵmin = 0.5 as the loss
function.

5.2 Results for Meaning Arcs
The algorithm ran for four iterations until it failed to improve

the F1-score, as shown in Table 3. The input graph G0 does not
cover any of the validation arcs, and thus has a recall and F1-score
of 0%. English is the most widely represented language within the
input graph, both with respect to the input wordnets and for the
translations, so the first iteration provided for the most significant
gains and already delivered excellent results. In the next iteration,
G1 served as the input graph, leading to an improved F1-score for
G2 because a larger range of terms are equipped with non-zero
meaning arcs in G1 compared to G0. These improvements de-
crease very quickly, since the additional amount of information
available to the feature computation process, compared to previous
iterations, keeps diminishing.

At this point, we have the choice of preferring high precision,
e.g. G2 has 91.59% precision at 44.55% recall for wmin = 0.9,
ŵmin = 0.75, or high recall, e.g. G3 gives us 73.92% precision
at 80.30% recall for wmin = 0.3, ŵmin = 0.25. Our loss func-
tion balances precision and recall, making G3 the most profitable
graph. Figure 2 shows the tradeoff between precision and recall
on G3. For the final UWN output graph, we chose wmin = 0.6,

Figure 2: Precision-Recall curve on validation set for G3 when
wmin = ŵmin

ŵmin = 0.5 as it provided good coverage at a reasonable pre-
cision. Figure 3 provides an excerpt from this graph, highlight-
ing how words in different languages have been disambiguated to
link to the appropriate senses of the English word ‘school ’, e.g.,
in French, the term ‘banc’ is used to refer to a school of fish. We
recruited human annotators for three languages, and asked them
to evaluate randomly chosen arcs in the respective language from
this output graph, relying on Wilson score intervals to generalize
our findings in a statistically significant manner, as listed in Ta-
ble 4. These randomly chosen arcs are not related to the training
or validation sets, which moreover did not contain any Mandarin
Chinese terms, so the results show that our learning approach ap-
plies cross-lingually. It must be pointed out that it is not possible
to reliably evaluate the accuracy of a wordnet using pre-existing
wordnets, as they do not fulfil the closed world assumption, i.e. a
term-sense arc not occurring in an existing wordnet does not war-
rant the conclusion that the link is false. This is particularly true for
current non-English wordnets, which often have limited coverage
and sense inventories based on older versions of WordNet.

Table 5 shows the coverage of the output graph. Keeping in mind
that the final UWN graph retains only candidate meaning arcs,
these figures do not include any meaning arcs imported from the in-
put wordnets, and only count term nodes that are connected to sense
nodes via these new candidate meaning arcs. There are terms in
more than 200 languages in UWN. The most well-represented lan-
guages result quite directly from the selection of translations in the

deu: Schulgebäude

school 
(group of fish)

school
(institution)

school
(building)

deu: Schulhaus

deu: Fischschwarm

ces: hejno

fra: banc

ind: sekolah

jpn: 学校

kor: 학교

lao: ໂຮງຮຽນ

kat: სკოლა

Figure 3: Excerpt from UWN graph with meaning arcs from
terms to three sense nodes



Table 5: Coverage of final UWN graph with respect to accepted
candidate meaning arcs as well as terms.

Language Meaning Arcs Distinct Terms
Overall 1,595,763 822,212
By Language
German 132,523 67,087
French 75,544 33,423
Esperanto 71,247 33,664
Dutch 68,792 30,154
Spanish 68,445 32,143
Turkish 67,641 31,553
Czech 59,268 33,067
Russian 57,929 26,293
Portuguese 55,569 23,499
Italian 52,008 24,974
Hungarian 46,492 28,324
Thai 44,523 30,815
Others 795,782 427,216

By Lexical Category
Nouns 1,048,003 589,536
Verbs 221,916 88,189
Adjectives 289,328 147,257
Adverbs 36,095 26,254

input graphG0. We found that terms with translations to many lan-
guages had high chances of being included. Our approach thus ad-
dresses a long-standing problem in automatic construction of word-
nets, namely that of insufficient coverage of commonly used words,
which tend to be more polysemous. Using sophisticated features,
it carefully benefits from cross-lingual evidence to find meanings
of such terms, while previous approaches had trouble coping with
the polysemy of commonly used words. The break-down by part-
of-speech shows that the majority of terms are nouns. The terms
in UWN have meaning links to a total of 80,620 distinct sense
nodes. Table 6 shows average degrees with respect to meaning
arcs for term nodes (out-degree) and sense nodes (in-degree), re-
vealing the level of polysemy of terms according to UWN. The
middle column shows average out-degrees when term nodes with
only one meaning arc are excluded.

5.3 Results for Semantic Relations
We further evaluated to what extent relationships imported from

Princeton WordNet apply to UWN. The intuition is that relations
between senses, e.g. hypernymy, apply independently of the lan-
guage of the terms associated with the respective senses. For sev-
eral types of relations, at least 100 randomly selected links between
two senses were assessed, where both senses have associated Ger-
man language terms (linked via meaning arcs). Table 7 shows
that the overall precision is high. Incorrect relationships resulted
almost entirely from incorrect meaning arcs.

In addition to relations between senses, WordNet also provides
relations between specific words with respect to senses of those
words. Such relations cannot be applied directly to UWN, how-
ever, in some cases, we can infer from them more generic relation-
ships between senses. For instance, when WordNet tells us that
the word ‘scholastic’ is derivationally related to the word ‘school ’,
we can interpret this as a generic indicator of semantic relatedness.
Antonymy relationships between words such as between ‘good ’
and ‘bad ’ are re-interpreted as a generic form of semantic opposi-
tion between senses. These, too, were evaluated in Table 7.

Table 6: Average degree with respect to meaning arcs of term
nodes (out-degree) and sense nodes (in-degree)

Term Node
Out-Degree

Term Node
Out-Degree
Excluding

Monosemous

Sense Node
In-Degree

(Multilingual)

Nouns 1.78 3.20 12.76
Verbs 2.52 4.24 16.12
Adjectives 1.96 3.63 15.19
Adverbs 1.37 2.53 9.97
Total 1.94 3.38 13.56

Table 7: Quality assessment for imported relations
Relation Precision (Wilson

interval)
hypernymy 87.1% ± 4.8%
instance 89.3% ± 4.4%
similarity 92.0% ± 3.8%
category 93.3% ± 4.5%
meronymy (part-of) 94.4% ± 4.1%
meronymy (member-of) 92.7% ± 4.0%
meronymy (substance-of) 95.6% ± 3.5%
antonymy (as sense opposition) 94.3% ± 3.9%
derivation (as semantic similarity) 94.5% ± 4.0%

5.4 Semantic Relatedness
We studied semantic relatedness assessment as an application of

UWN in conjunction with Princeton WordNet’s sense relations and
descriptions. The objective is to automatically estimate the degree
of relatedness between two words, producing scores that correlate
well with the average ratings by human evaluators. For instance,
‘curriculum’ is much more closely related to a word like ‘school ’
than ‘water’. Given two term nodes t1, t2, we estimate their relat-
edness as

rel(t1, t2) = max
s1∈Γo(t1,A)

max
s2∈Γo(t2,A)

w(t1, s1)w(t2, s2)sim(s1, s2)

using semantic relatedness measures for sense nodes described in
Section 4.1.3 andw(t, s) denoting the meaning arc weight. Three
German-language datasets are compared with state-of-the-art scores
obtained for GermaNet, the manually compiled German wordnet,
and Wikipedia, as reported by Gurevych et al. [19]. In Table 8, the
first row lists the inter-annotator agreement between different hu-
man evaluators and the number of term pairs rated for each dataset.
The following rows show that UWN can be more useful than hand-
crafted resources, with respect to both the correlation with human
judgments (Pearson product-moment correlation coefficient) and
the coverage (the number of term pairs from the dataset where both
terms are found in the respective lexical database).

5.5 Cross-Lingual Text Classification
Another applied task we considered was cross-lingual text clas-

sification. This is a very challenging task, where text documents
are supposed to be classified, usually by topic, given only class-
labelled training documents for a completely different language.

We preprocess a document by removing stop words and per-
forming part-of-speech tagging as well as lemmatization using the
TreeTagger [34]. In addition to the original term frequencies, we
map each term to the respective sense nodes listed by UWN or by
Princeton WordNet (for English words), embracing a rather sim-



Table 8: Evaluation of semantic relatedness measures, using Pearson’s sample correlation coefficient. We apply our three semantic
relatedness measures on the UWN graph and compare with the agreement between human annotators as well as scores for two
alternative measures as reported by Gurevych et al. [19], one based on Wikipedia, the other on GermaNet.

Dataset GUR65 GUR350 ZG222
Pearson r Coverage Pearson r Coverage Pearson r Coverage

Inter-Annotator Agreement 0.81 (65) 0.69 (350) 0.49 (222)
Wikipedia (ESA) 0.56 65 0.52 333 0.32 205
GermaNet (Lin) 0.73 60 0.50 208 0.08 88
UWN (simn) 0.77 60 0.62 242 0.43 106
UWN (simc) 0.77 60 0.68 242 0.52 106
UWN (simm) 0.80 60 0.68 242 0.51 106

Table 9: Cross-lingual text classification in terms of micro-
averaged precision, recall, and F1-score.

Precision Recall F1

English-Italian
Terms only 69.90% 66.81% 68.32%
Terms and senses 83.24% 70.49% 76.34%

English-Russian
Terms only 57.86% 46.67% 51.66%
Terms and senses 67.87% 74.94% 71.23%

Italian-English
Terms only 71.97% 77.06% 74.43%
Terms and senses 76.59% 79.67% 78.10%

Italian-Russian
Terms only 59.65% 57.15% 58.37%
Terms and senses 68.03% 79.26% 73.21%

Russian-English
Terms only 68.36% 66.34% 67.34%
Terms and senses 73.56% 80.29% 76.78%

Russian-Italian
Terms only 67.85% 57.48% 62.24%
Terms and senses 71.38% 72.21% 71.79%

ple approach that foregoes disambiguation: For every single oc-
currence of a term t, we take all sense nodes ns with a matching
part-of-speech tag, and normalize by dividing by the sum of their
meaning arc weights. Thus, if a term has four equally relevant
sense nodes in UWN, then each receives a local weight of 1

4
. Ad-

ditionally, these senses pass on their weight to neighbouring nodes
immediately connected via hypernymy arcs. Summing up the
weights of local occurrences of a token t (either an original doc-
ument term or a sense node) within a document d, one arrives at
document-level occurrence scores n(t, d), from which one can then
compute TF-IDF feature vectors using the following formula:

n(t, d) log

„
|D|

|{d ∈ D | n(t, d) ≥ 1}|

«
(13)

where D is the set of training documents.
This approach was tested using a cross-lingual dataset derived

from the Reuters RCV1 and RCV2 collections of newswire arti-
cles [31, 32]. These articles are mostly business related, and have
topical class labels such as ‘accounts/earnings’, ‘economic perfor-
mance’ or ‘funding/capital ’. For several pairs of languages, we
created independent datasets by randomly selecting 10 topics cov-
ered by both languages in order to arrive at

`
10
2

´
= 45 separate

binary classification tasks, each based on 150 training documents
in one language, and 150 test documents in a second language, like-
wise randomly selected with balanced class distributions.

Table 9 compares the standard bag-of-words TF-IDF represen-
tation for terms (using only genuine term frequencies as n(t, d) in
Equation 13) with the extended representation that includes map-
pings to sense nodes as frequencies. The scores shown were pro-
duced with linear kernel SVMs using the SVMlight implementa-
tion in its default settings, which are known to work well for text
classification [23] – LIBSVM produced similar margins between
the two approaches but overall slightly lower absolute scores. Since
many of the Reuters topic categories are business-related, using
only the original document terms, which include names of com-
panies and people, already works surprisingly well. By consider-
ing sense nodes, both precision and recall are boosted significantly.
This shows e.g. that English terms in the training set are being
mapped to the same senses as the corresponding Russian terms in
the test documents. The margins could be boosted even further by
invoking more intelligent word sense disambiguation strategies or
using more advanced sense expansion strategies. [10].

6. CONCLUSION
We have presented a novel approach to building a large-scale

universal wordnet (UWN) that contains 1.5 million meaning rela-
tionships from over 800,000 terms in over 200 languages. UWN is
available at http://www.mpii.de/yago-naga/uwn/. Our ex-
periments have shown that UWN is useful in applied tasks. In ad-
dition to the existing applications of WordNet, such as question an-
swering, text classification, semantic relatedness assessment, and
so on, which are now possible for a greater range of languages,
we also anticipate UWN being used for tasks that explicitly make
use of multilingual connections in the network, e.g. cross-lingual
information retrieval or cross-lingual text classification.

We have created a public querying and editing website for UWN
that in the long run may allow us to address issues such as correct-
ing inaccurate arcs and adding new senses to cope with language-
specific subtleties (in particular lexical gaps, incongruence). Since
the confidence estimates derived from the learnt models correlate
quite well with the evaluated precision on the arcs, manual efforts
could be channelled to focus explicitly on arcs with borderline con-
fidence values and terms without accepted meaning arcs. An update
submitted to the Web interface or an additionally imported transla-
tion dictionary for one language can subsequently lead to a suffi-
cient amount of accumulated evidence to sway the model towards
accepting mappings in entirely different languages. Hence, it is
safe to expect continued growth and refinement in the future.

Finally, we envision new data-driven techniques that automati-
cally expand the sense inventory of UWN. Snow et al. [35] have
shown that this is feasible by extending WordNet using monolin-
gual corpora. Using our universal wordnet as the underlying core,
improved algorithms are conceivable.
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