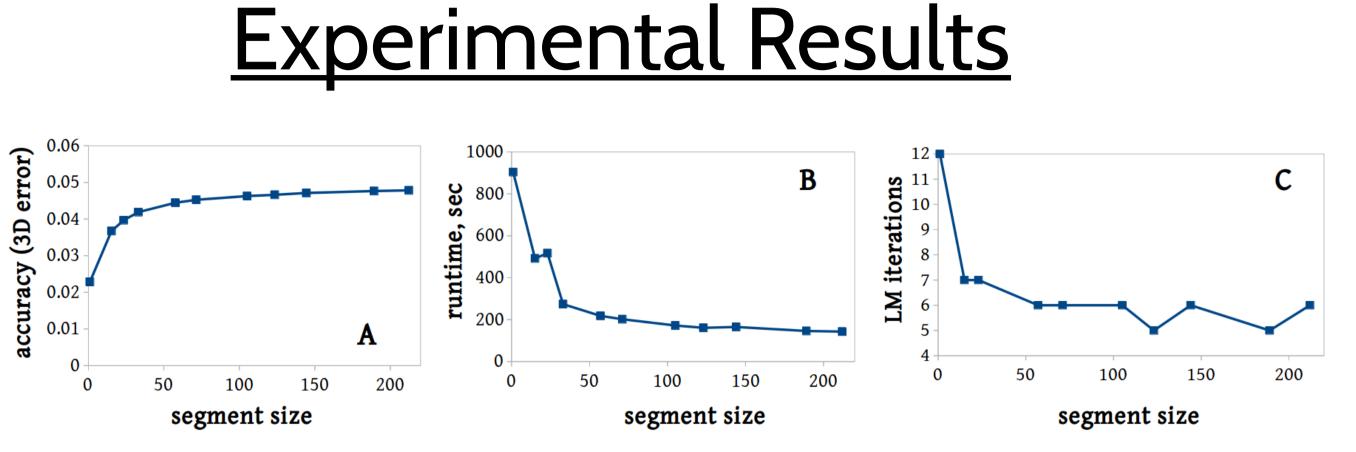


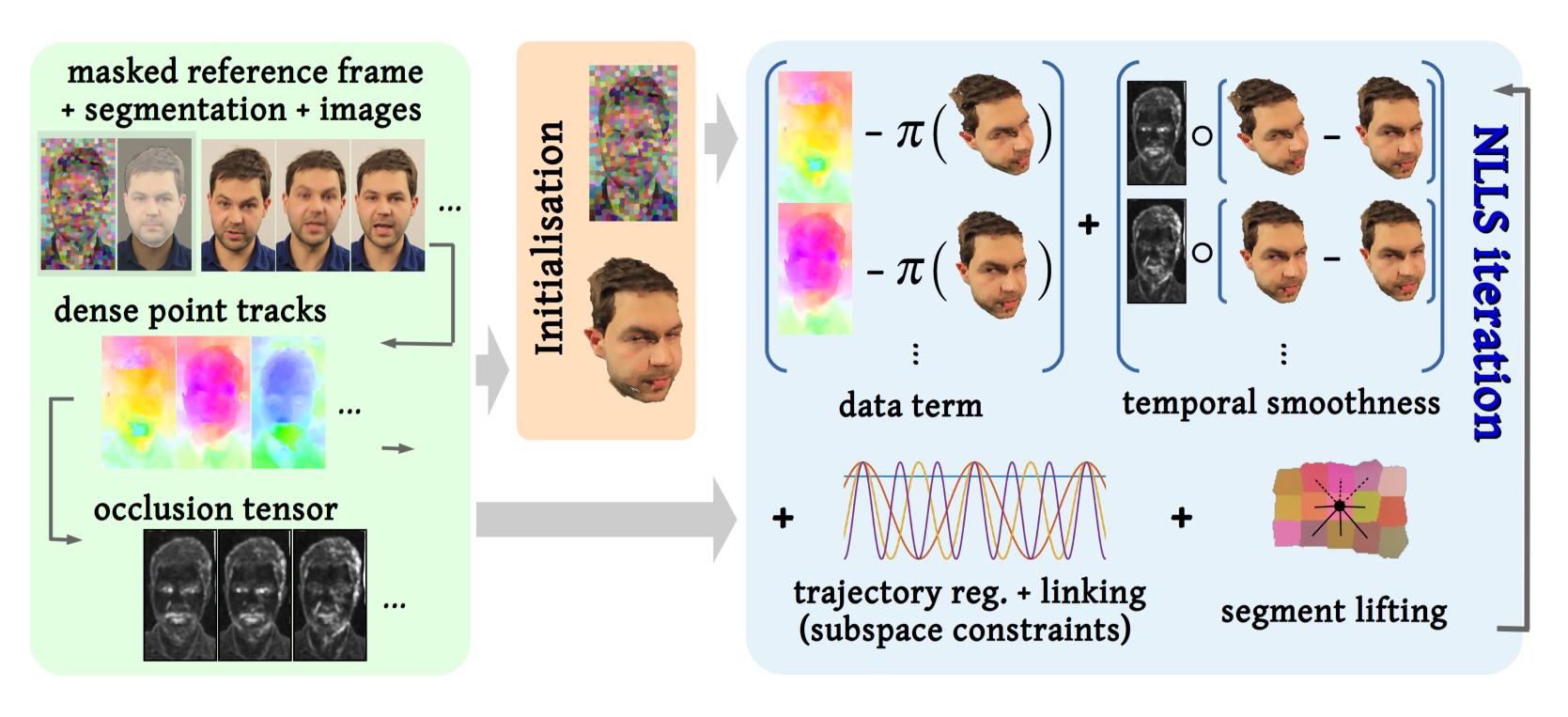
Consolidating Segmentwise Non-Rigid Structure from Motion


(F-1)L

8L

<u>Abstract</u>

We introduce a new **segmentwise technique** which **consolidates multiple principles for NRSfM** into **a single energy-based framework**. The energy functional of our **CMDR approach** is optimised by **NLLS** and includes terms allowing to define the deformation model and additional constraints **simultaneously in the metric and trajectory spaces**. CMDR achieves high accuracy on several tested sequences while providing **robustness** and **scalability** due to the **spatial scene segmentation** and the **new lifted spatial Laplacian term**.


<u>Method Overview</u>

3D error, runtime and number of Gauss-Newton solver iterations as the functions of the segment size, for the *actor mocap* sequence

ground truth Metric Projections Trajectory Basis

Energy Functional and Optimisation

Segmentwise data term: $\mathbf{E}_{\text{data}}(\mathbf{R}, \mathbf{T}) = \sum_{k=1}^{F} \left\| \mathbf{W}_{f} - \pi \left(\mathbf{R}_{f} \left[g(\mathbf{T}_{1}^{f}, \mathbf{S}_{1}) \dots g(\mathbf{T}_{L}^{f}, \mathbf{S}_{L}) \right] \right) \right\|_{1}^{2} \qquad \qquad FP$

synthetic face	Variational (TV)Image: Constraint of the second seco	SMSR	CMDR	A (ours)	toss CMDR SMSR GT			
	TB	MP	VA	DSTA	CDF	SMSR	GM	CMDR
	eq. $3 0.1252$ eq. $4 0.1348$	$\begin{array}{c} 0.0611 \\ 0.0762 \end{array}$	$0.0346 \\ 0.0379$	$\begin{array}{c} 0.0374 \\ 0.0428 \end{array}$	$0.0886 \\ 0.0905$	$\begin{array}{c} 0.0304 \\ 0.0319 \end{array}$	$\begin{array}{c} 0.0294 \\ 0.0309 \end{array}$	$\begin{array}{c} 0.0324 \\ 0.0369 \end{array}$
Comparison of methods on synthetic faces [3], observed by two different camera settings.								

Comparison of methods on synthetic faces [3], observed by two different camera settings. CMDR achieves the third highest accuracy with a volatile difference to SMSR [6] and GM [7]

approach	coin	toss	flag mocap	$synth.\ flag$	$actor \\ mocap$	actor mo- $cap \ \#2$
SMSR [23]	0.2424	0.4003	0.196	0.1467	0.054	0.0145
CMDR	0.0696	0.3064	0.0792	0.084	0.0257	0.0228

SMSR [6] vs. CMDR (ours) on multiple sequences [3, 8, 9]

seq.	all terms	${ m no} { m {f E}_{ m reg.}}$	${f no}\ {f E}_{ m lift.}$	$\mathbf{E}_{\mathrm{data}}, \ \mathbf{E}_{\mathrm{temp.}}$ and $\mathbf{E}_{\mathrm{lift.}}$	$egin{array}{l} {f E}_{ m data}, \ {f E}_{ m temp}. \end{array}$
-		$0.0616 \\ 0.0678$		$0.0622 \\ 0.0682$	$0.0681 \\ 0.0736$

results of the ablation study (actop mocap)

ground truth

CMDR (different segment sizes)

$$\mathbf{L}_{\text{data}}(\mathbf{I}\mathbf{C}, \mathbf{I}) = \sum_{f=1}^{\infty} \left\| \mathbf{v}\mathbf{v}_{f} - \pi \left(\mathbf{I}\mathbf{C}_{f} \left[g(\mathbf{I}_{1}, \mathbf{S}_{1}) \dots g(\mathbf{I}_{L}, \mathbf{S}_{L}) \right] \right) \right\|_{\epsilon}$$

+ Segment trajectory smoothness: $\mathbf{E}_{\text{temp}}(\mathbf{T}) = \sum_{f=2}^{F} \sum_{l=1}^{L} \left\| \mathbf{\Phi}_{f}^{l} \circ (\mathbf{T}_{l}^{f} - \mathbf{T}_{l}^{f-1}) \right\|_{\epsilon}^{2}$

+ Subspace constraints on segment trajectories:

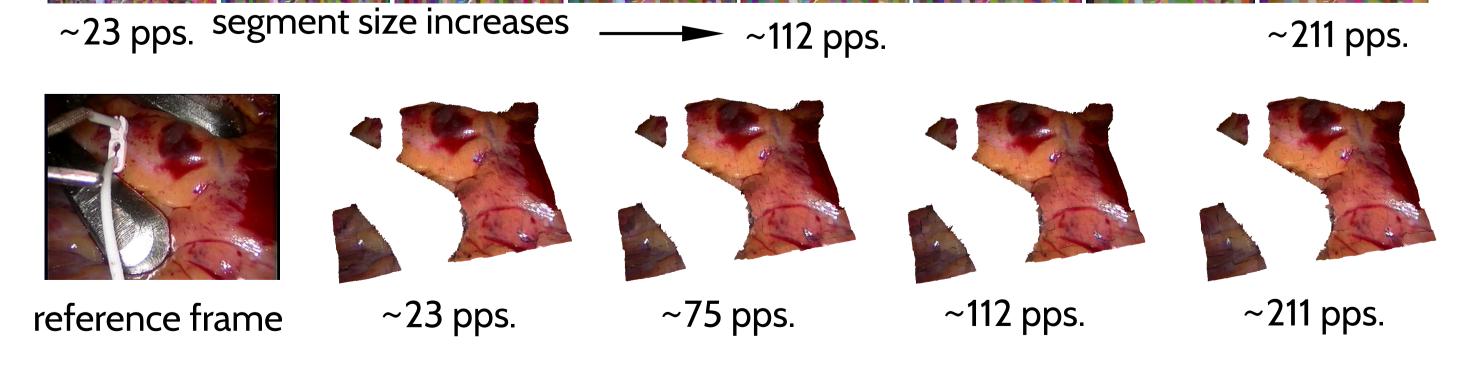
 $\mathbf{E}_{\text{linking}}(\mathbf{S}, \mathbf{A}) = \left\| \mathbf{\Psi} - (\Theta \otimes \mathbf{I}_3)_{3F \times 3K} \, \mathbf{A}_{3K \times L} \right\|_{\epsilon}^2$

where
$$\boldsymbol{\Psi} = \begin{bmatrix} g(\mathbf{T}_1^1, \mathbf{S}_1) \ g(\mathbf{T}_2^1, \mathbf{S}_2) \dots g(\mathbf{T}_L^1, \mathbf{S}_L) \\ g(\mathbf{T}_1^2, \mathbf{S}_1) \ g(\mathbf{T}_2^2, \mathbf{S}_2) \dots g(\mathbf{T}_L^2, \mathbf{S}_L) \\ \vdots \\ g(\mathbf{T}_1^F, \mathbf{S}_1) \ g(\mathbf{T}_2^F, \mathbf{S}_2) \dots g(\mathbf{T}_L^F, \mathbf{S}_L) \end{bmatrix}$$
 and $\boldsymbol{\Theta} = \begin{pmatrix} \theta_{11} & \dots & \theta_{1K} \\ \vdots & \ddots & \vdots \\ \theta_{F1} & \dots & \theta_{FK} \end{pmatrix}$

+ Trajectory coefficient regularisation: $\mathbf{E}_{\text{reg.}}(\mathbf{A}) = \sum_{k=1}^{L} \sum_{k=1}^{K} \mathbf{w}(l) \|\nabla \mathbf{A}_{k,l}\|_{\epsilon}^{2}$

 $l = 1 \ k = 1$

Segment coherency regulariser (segment lifting for detection of topological changes):


$$\mathbf{E}_{\text{lifting}}(\mathbf{T}, \mathbf{w}) = \sum_{f=1}^{F} \sum_{\forall w_{j,h}} \left(\zeta_1 \| w_{j,h}^2 (\mathbf{T}_j - \mathbf{T}_k) \|_2^2 + \zeta_2 \| (1 - w_{j,h}^2) \|_2^2 \right)$$
 8*FL*

= The energy functional of CMDR M = FP + L(10F + 7)

Q = 3F + 7LF + 3KL + 8L parameters:

3Ffor global poses3KLfor DCT coefficients7LFfor segment orientations
per every frame8Lfor the lifting weights

 $\mathbf{F}(\mathbf{x}): \mathbb{R}^Q \to \mathbb{R}^M$ (optimised with Levenberg-Marquardt)

[1] Akhter et al.: Trajectory space: A dual representation for nonrigid structure from motion, 2011.
 [2] Paladini et al.: Optimal metric projections for deformable and articulated structure-from-motion, 2012.
 [3] Garg et al.: Dense variational reconstruction of non-rigid surfaces from monocular video, 2013.
 [4] Dai et al.: Dense non-rigid structure-from-motion made easy – a spatial-temporal smoothness based solution, 2017.
 [5] Golyanik et al.: Introduction to coherent depth fields for dense monocular surface recovery, 2017.
 [6] Ansari et al.: Scalable dense monocular surface reconstruction, 2017.
 [7] Kumar et al.: Scalable dense non-rigid structure-from-motion: A grassmannian perspective, 2018.
 [8] White et al.: Capturing and animating occluded cloth, 2007.
 [9] Valgaerts et al.: Lightweight binocular facial performance capture under uncontrolled lighting, 2012.