Optimising for Scale in Globally Multiply-Linked Gravitational Point Set Registration Leads to Singularities

Vladislav Golyanik and Christian Theobalt

GRavitational METHODS FOR POINT SET ALIGNMENT

- **Rigid Gravitational Approach (Second-Order ODEs)** [3]
- **Modified Rigid Gravitational Approach with Shape Descriptors** [4]
- **Non-Rigid Gravitational Approach (Second-Order ODEs)** [5]

ANALYSIS OF THE ENERGY LANDSCAPE WITH CALCULUS

- **Unit Circle** S^1
 \[E_a = \int_0^1 (1 - \cos \theta) \, d\theta \]
- **Unit Sphere** S^2
 \[E_a = \frac{1}{2} \int_0^1 \sin \theta \, d\theta \]

WHAT IS A SCALE SINGULARITY?

- A singularity is a state when a template collapses to a single point, and scale ~ 0.
- A singularity can arise in 7DoF point set alignment approaches due to numerical reasons (e.g., it can be observed in CPD [2]).

ELLIPITIC INTEGRALS

... of the second kind in the Legendre form are integrals of type

\[E(k, \phi) = \int_0^\phi \sqrt{1 - \sin^2 \theta} \, d\theta \]

- Elliptic integrals arise in the study of the arc length problem for ellipses.
- As a rule, they cannot be simplified and analytically evaluated.

APPENDIX

\[I_1 = \int_0^\pi \sqrt{1 + 2 \cos \phi \sin^2 \theta} \, d\phi \]

REFERENCES

2. A. Myronenko and X. Song. Point Set Registration: Coherent Point Drift. TPAMI, 2010.