
JOINT PRE-ALIGNMENT AND ROBUST RIGID POINT SET REGISTRATION

Vladislav Golyanik, Bertram Taetz and Didier Stricker

University of Kaiserslautern, Germany
German Research Center for Artificial Intelligence (DFKI), Germany
{Vladislav.Golyanik, Bertram.Taetz, Didier.Stricker}@dfki.de

ABSTRACT

We present an elegant solution to joint pre-alignment and
rigid point set registration, given prior matches. Instead of
performing pre-alignment and the actual registration in the
separate steps, prior matches explicitly influence the regis-
tration procedure in our approach. This results in several
advantages. Firstly, our approach solves the pre-alignment
task — an approximate resolving of rotation and translation
— with an insufficient number of prior correspondences,
when other methods fail. Secondly, it produces more accu-
rate rigid registrations of noisy point sets than the state of
the art Coherent Point Drift method. Combined with applica-
tion specific methods for correspondence establishment, we
demonstrate superiority of our approach in several synthetic
and real-world scenarios.

Index Terms— Point set registration, image registration,
prior matches, Coherent Point Drift

1. INTRODUCTION

The problem of point set registration, i.e. aligning point
sets into a common coordinate frame, often arises in image
processing and computer vision. Medical image registration,
shape recognition and CAD modelling are notable application
examples amongst many others. If an underlying transforma-
tion between a reference and a transformed template point set
is entirely described by parameters of the rigid body motion,
the problem is specified as rigid point set registration. A de-
tailed overview of approaches for rigid point set registration
can be found in [1, 2].
Generally, registration algorithms perform well on point sets
representing noiseless objects. When this assumption is vi-
olated — (1) point sets represent partially overlapping parts
of an object, (2) contain outliers or (3) differences in scene
poses are significant — difficulties arise. All the violations
often happen in practice. Although some approaches can
handle different types of noise distributions [2, 3], it turns out
that outliers often do not obey a particular probability distri-
bution, but are rather clustered. Clustered outliers and regular
points in a point set can not be distinguished from each other
during the registration. For instance, the main advantage of

Fig. 1: Rigid registration of two point clouds (representing human
faces) with prior matches. (a): input with prior matches shown as
red connecting lines; (b): pre-alignment with Kabsch algorithm; (c):
registration results of the pre-aligned point sets by CPD; (d): regis-
tration results by our method, the rECPD. Given only two priors, our
algorithm is capable of resolving rotation and rigid transformation
correctly, whereas Kabsch algorithm fails to pre-estimate rotation
due to ambiguities in the solution space and CPD fails to register
point sets correctly due to severe initial misalignment.

mixture model based methods [4, 2] over Iterative Closest
Point (ICP) methods [5, 6, 7] lies in the soft assignment of
correspondences via probabilities, proving to be more robust
in the presence of outliers. However, if outliers are clustered,
the methods may fail (see §3). Partial shapes can also be com-
prehended as point sets with large areas of clustered outliers.
Consequently, violation (1) is a special case of violation (2).
To compensate for the aforementioned violations, prepro-
cessing steps are required. To cope with clustered outliers,
weighting the correspondences with respect to overlapping
parts is possible [7]. However, the performance of method



[7] strongly depends on the initialization. To cope with se-
vere misalignment between point sets, registration is usually
performed on a subset of reliable key points obtained by key
point detectors [8, 9]. Through evaluation and comparison of
the key points, correspondences are established [10]. Thus,
the problem reduces to a transformation estimation prob-
lem, since all correspondences are known and the number of
points in both sets is equal. An overview and comparison of
methods for solving transformation estimation problems can
be found in [11].
As already mentioned, often one or several correspondences
between the template and the reference — prior matches
— are known in advance. They can constraint the solution
space in favourable way ensuring convergence to a disired
range. At the same time, integration of prior matches is not
straightforward: either prior matches are used in the pre-
alignment step to assure an advantageous initial orientation,
or a registration algorithm allows embedding of prior matches
explicitly. In the first case prior matches are decoupled from
the registration procedure. Considering probabilistic point
set registration methods, especially the state of the art Co-
herent Point Drift algorithm [2], effective embedding of prior
matches was recently shown in the literature for the non-rigid
case [12]. To investigate embedding of prior matches into
a rigid probabilistic point set registration algorithm is the
main contribution of this paper. More specifically: (1) we
derive a solution for embedding prior correspondences into
the CPD algorithm. This results in a robust and convenient
approach, the rigid Extended Coherent Point Drift (rECPD)
combining rough pre-alignment and robust dense rigid point
set registration; (2) we reveal the synergy arising from the
interdependency between the generic rigid registration and
predominance of particular correspondences. If number of
prior matches Nc < D (D is space dimensionality), instead
of barely taking insufficient amount of correspondences to
pre-estimate rotation, our method additionally exploits infor-
mation contained in the point sets.

2. RIGID EXTENDED COHERENT POINT DRIFT

We extend CPD algorithm [2] by embedding prior correspon-
dences, deliberately influencing the rigid point set registra-
tion. Given a set of prior matches (yj ,xk), j, k ∈ Nc ⊂ N2,
we model them by the product of independent density func-
tions

Pc(Nc) =
∏

(j,k)∈Nc

pc(xj ,yk) with (1)

pc(xj ,yk) =
1

(2πα)D/2
exp(−‖xj − T (yk, θ)‖

2

2α2
). (2)

The parameter 0 < α < 1 reflects the prior’s degree of relia-
bility. We embed prior matches into the CPD by superposition
of the prior probability Pc(Nc) and the GMM. The modified

probability density function for a particular point x reads

p̃(x) = Pc(Nc)p(x). (3)

Taking the negative logarithm of the combined modified
GMM we obtain

Ẽ(θ, σ2) = − log

(
Pc(Nc)

N∏
i=1

p(xn)

)
=

= E(θ, σ2)−
∑

(j,k)∈Nc

log(pc(xj ,yk)) (4)

— the modified energy function. Rewriting the last term of
Eq. (4) and leaving out the constant terms w.r.t. θ and σ2, the
modified objective function reads

Q̃ = Q+
1

2α2

∑
(j,k)∈Nc

‖xj − T (yk, θ)‖2 =

= Q+
1

2α2

N∑
n=1

M∑
m=1

P̃m,n‖xn − T (ym, θ)‖2, (5)

where the sparse selection matrix P̃M×N contains 1 in the
(j, k) entry, if (j, k) ∈ Nc. To specify the parameter set θ
we impose the rules of rigid body dynamics on the GMM
centroids. Thus, the rECPD objective function reads

Q̃(R, t, s, σ2) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)‖xn − sRym − t‖2+

+
NpD

2
log σ2 +

1

2α2

N∑
n=1

M∑
m=1

P̃m,n‖xn − sRym − t‖2, (6)

so that RTR = I, det(R) = +1 andNp =
∑

n,m P old(m|xn).
We find minimizer of the rECPD objective function in Eq. (6)
taking advantage of lemma 1 from [13]. First, we reformulate
it to match the form tr(ATR). To eliminate the translation
term from Q̃, we compute its first derivative w.r.t. t and
equate it to zero. This yields the modified term

t =

[
XTPT1+ σ2

α2X
T P̃T1− sR(YTP1+ σ2

α2Y
T P̃1)

]
Nc
P

, (7)

where 1 = (1, 1, . . . , 1)TM×1 and P is a matrix with elements
pm,n = P old(m|xn) (P old is computed as in the original
CPD). From Eq. (7) follows

Nc
P = 1TP1+

σ2

α2
1T P̃1 = NP +

σ2

α2
NPc (8)

with NPc =
∑

(j,k)∈Nc pc(xj ,yk). Considering the mean
vectors

µx = E(X) =
XTPT1

NP
, µy = E(Y ) =

YTP1

NP
(9)

we define the modified mean vectors

µcx =
1

Nc
P

[
NPµx +

σ2

α2
XT P̃T1

]
and (10)

µcy =
1

Nc
P

[
NPµy +

σ2

α2
YT P̃1

]
. (11)



Algorithm 1 Rigid Extended Coherent Point Drift
Input: Reference and template point sets X,Y, prior matches Nc

1: Initialization: R = I, t = 0, s = 1, 0 ≤ w ≤ 1, σ2 =
1

DNM

∑N
n=1

∑M
m=1 ‖xn−ym‖

2, P̃ precomputed as in Eq. (5).
2: EM-optimization
3: repeat
4: E-step: compute P with pm,n = P old(m|xn) as in the orig-

inal CPD.
5: M-step: solve for R, s, t, σ2

6: Nc
P as in Eq. (8) and µcx, µcy as in Eq. (10).

7: X̂c = X− 1(µcx)
T , Ŷc = Y − 1(µcy)

T

8: Compute R as in Eq. (13).
9: s = tr[ATR]

tr[ŶTc d(P1)Ŷc+
σ2

α2 ŶTc d(P̃1)Ŷc]
with A as in Eq. (13).

10: Compute t as in Eq. (7).
11: σ2 = tr[X̂T

c d(P1)X̂c]− s tr[ATR] + s2 σ
2

α2 tr[Ŷ Tc d(P1)Ŷc]

12: until step size of the EM algorithm dL ≤ ε or number of itera-
tions exceeds a predefined value.

Output: Aligned point set T (Y) = sYRT+1tT . Correspondence
probabilities are given by P.

By substituting t from Eq. (7) back into Eq. (6) and further
defining centered point set matrices X̂c = X − 1(µc

x)
T and

Ŷc = Y − 1(µc
y)

T , we rewrite the obtective function as

Q̃ = − s

σ2︸︷︷︸
>0

tr


(
(X̂T

c P
T Ŷc)

T +
σ2

α2
(X̂T

c P̃
T Ŷc)

T

)
︸ ︷︷ ︸

=:AT

R

 (12)

(to achieve this form, we also utilize the orthogonality of the
rotation matrix and the fact that the trace is linear and invari-
ant under cyclic matrix permutations). Minimization of Q̃ is
equal to maximization of tr(ATR) as defined in Eq. (12), so
that RTR = I and det(R) = +1. We apply lemma 1 from
[13] and obtain the rotation matrix

R = UCV with (13)

C = d(1, 1, . . . , det(UVT )) and (14)

USV = svd

X̂T
c P

T Ŷc +
σ2

α2
(X̂T

c P̃
T Ŷc)︸ ︷︷ ︸

=A

 . (15)

Analogously, in order to obtain the optimal s and σ2, respec-
tive derivatives of Q̃ in Eq. (12) have to be computed and
equated to zero. The whole method is summarized in Algo-
rithm 1.

Now we are ready to investigate how rECPD contrasts
from most closely related approaches. From CPD with a
pre-alignment step our approach differs in the way that prior
matches influence the registration procedure explicitly in ev-
ery EM iteration. If α = 1, the prior matches are not valid
and our approach reduces to CPD. In opposite, if α posi-
tive and infinitely close to zero, rECPD operates similar to

the Kabsch algorithm [14]. Indeed, the term (X̂T
c P̃

T Ŷc)
T in

Eq. (12) can be rewritten as (ŶT
c P̃X̂c). At the same time, our

approach differs from the Kabsch algorithm in several ways.
Firstly, all points of both point sets are involved in the opti-
mization, whereas prior matches are usually several orders of
magnitude stronger weighted. Secondly, different weighting
and thus the uncertainty level adjustment for every distinct
prior is possible. This allows to combine priors from vari-
ous sources in a flexible manner. Depending on settings and
number of prior matches, different effects are possible such
as pre-alignment with insufficient number of prior matches or
robust registration in presence of clustered outliers.

3. EVALUATION

In this section we evaluate performance of rECPD in syn-
thetic and real-world scenarios. We use publicly available
implementation of CPD [2] as well as Matlab’s implementa-
tion of the Kabsch algorithm [15]. We implemented rECPD
in C++ and ran experiments on the system with 32 GB RAM
and Intel Xeon E3-1245 processor.
Experiments on Synthetic Data. In an experiment on syn-
thetic data we take the sparse 3D face point set from [2],
duplicate it and systematically change orientation of the copy
jointly around the x, y and z axes with the angle-step size of
36◦. This results in 1000 different initial orientations of the
point sets. The scaling factor and the translation vector are
chosen randomly. In the preprocessing step we establish prior
matches between the point sets. Those are obtained through
comparison of the Persistent Feature Histograms (PFHs) [10]
at the 3D key points. We find the 3D key points with the
Harris3D (H3D) [9] and the Intrinsic Shape Signatures (ISS)
[8] 3D key point detectors. Only correspondences with the
highest match scores are taken into account. Thus, we ob-
tain two reliable matches in total. Note that in both cases
the prior matches relate not exactly the same points. For
every initial orientation we perform a preprocessing step with
Kabsch algorithm and eventually register the point sets with
CPD and rECPD. In the latter case, prior matches are input
directly (no preprocessing step undertaken) as one of the al-
gorithm’s parameters. In Fig. 1 selected results are shown.
CPD is able to restore correct rigid transformations in 242
cases out of 1000 (24% success rate), mostly when absolute
values of the individual inclination angles do not exceed 72
degrees. CPD performs as if no rotation pre-estimate would
be accomplished, since two prior matches do not suffice to
unambiguously pre-estimate rotation in 3D space (Nc ≤ D).
In opposite, rECPD is able to recover correct rigid trans-
formations in all cases, achieving 100% success rate in this
experiment. This experiment shows that synergetic effect
of joint point set registration and explicit incorporation of
prior matches results in the correct transformation in this
underconstrained case. In other words, taking into account
all other point allows to compensate for missing information.



Fig. 2: Rigid registration of Lion data set. (a): inputs with prior matches shown on red; (b): registration results by CPD (left) and cloud-to-
cloud distance in Blue<Green<Yellow<Red scale (right), saturation point = 7.0 distance units, (mean error; std. deviation) = (0.940; 0.902);
(c): registration results by rECPD and cloud-to-cloud distance in Blue<Green<Yellow<Red scale (right), saturation point = 7.0 distance
units, (mean error; std. deviation) = (0.483; 0.855).

Thereafter, the above-stated experiment is repeated in dif-
ferent configurations, swapping reference and template point
set and using only one prior match at a time. In 25% cases
CPD was able to resolve rotation correctly. Interestingly,
rECPC achieves 98% success rate with only one prior match.
For the sake of completeness we repeat the experiment also
with three prior matches, obtaining 100% success rate for
both methods, as expected. In this experiment rECPD —
both with one and two matches — clearly outperforms the
state-of-the art rigid registration algorithm CPD with the pre-
processing step. The results also reveal that the performance
of rECPD is equivalent to the performance of CPD with pre-
alignment step if Nc = D. In this experiment point sets do
not contain clustered outliers. Under real world conditions
this prerequisite is not always fulfilled and further advantages
of rECPD can be observed as shown below.
Experiments on Real Data. In the experiment on real data
we evaluate out method on the scans form the Lion data set
(Fig. 2, (a); reference is located on the right). Both point
clouds represent the same object, namely the statue of a lion.
The scans were reconstructed with the PMVS-2 algorithm
[16] with different parameters. Therefore, they are noisy
and contain areas with clustered outliers constituting 1.5% of
points in the reference and 3% of points in the template point
clouds. Totally the reference point cloud contains 5 · 105
points and the template point cloud 1.5 · 105 points.
We perform the preprocessing step to obtain prior matches
that are used to pre-align the scans (in case of CPD) or as one
of the input parameters (in case of rECPD). Correspondence
establishment follows similar steps as in the experiment on
synthetic data. The ISS key point detector is used and two
correspondences with highest scores are taken. Eventually
we register scans with CPD and rECPD. The running times
amounted to 80 seconds and 72 seconds respectively. Re-

sults are shown in Fig. 2. Influence of clustered outliers is
substantial and CPD fails to register the scans in the ROI
correctly. In opposite, rECPD performs more accurately. Re-
sults are also reflected in the corresponding cloud-to-cloud
comparisons (Fig. 2, (b), (c), right parts contain plots with
root-mean-square errors). The measure reveals that rECPD,
provided reliable prior matches, is more robust compared to
CPD in presence of clustered outliers in this experiment.

4. CONCLUSIONS

To the best of our knowledge, the proposed method is the
first allowing to embed prior matches into a rigid point set
registration algorithm. On the one hand, our solution makes
rigid point set registration convenient in cases with given prior
matches, since no pre-alignment step is required. On the
other hand, additional synergy from the explicit embedding
emerges. Prior knowledge is sustained during the whole reg-
istration procedure and influences it in a favourable way. In
scenarios with only one or two prior matches, rECPD clearly
outperforms CPD with a pre-alignment step. In scenarios
when scans contain clustered outliers, rECPD outperforms
CPD with pre-alignment step in terms of cloud-to-cloud dis-
tance in ROI. Both statements are supported by the experi-
ments on synthetic and real data. Future work aims at appli-
cation of the proposed technique in medical scenarios.
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