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Abstract

Recovery of correspondences between point sets which
differ by some non-rigid transformation is an ill-posed
problem. Many existing methods underperform on noisy or
corrupted input data. In this study, a novel physics-based
approach – Non-Rigid Gravitational Approach (NRGA) –
for non-rigid point set registration is introduced which is
robust to the mentioned artifacts. Thereafter, a distributed
N-body simulation and iterative Procrustes alignment non-
rigidly transform and register the template point set. Fur-
thermore, in the force field evolution, per-point Gaussian
curvature serves as a shape matching descriptor whereas
the displacement fields are regularized by coherent collec-
tive motion. The optimal alignment is referred to as the
state of minimum gravitational potential energy between the
point sets. A thorough experimental evaluation and com-
parison are provided with widely used state-of-the-art meth-
ods on 2D and 3D datasets. Experiments show NRGA’s ro-
bustness against uniform outliers and missing data.

1. Introduction

Point set registration is a fundamental and challenging
problem in computer vision. The appearances and charac-
teristics of the input point sets can be different (e.g., den-
sity, the underlying structure they represent, origin, etc.),
and the objective is to recover the correspondences and dis-
placement fields which reasonably – according to some ap-
plication criteria – transforms one point set to other. A
point set which has fixed position and remains unchanged
is called reference, and the other one which is being trans-
formed is called template. The non-rigid point set regis-
tration problem is considered similar to the other classes
of pattern matching problems like image registration (us-
ing color cues and other image-based descriptors for 2D
and volume images)[12, 19], or shape registration (using
points, normals, faces and other shape features for different
types of deformation like large, articulated, locally isomet-

ric, conformal etc.) [33, 36]. The majority of the mentioned
variant classes solve the registration problem by defining
a distance error metric to optimize either for the deforma-
tion or the displacement field. The deformation field can be
an implicit function of transformation parameters which are
often regularized in conjunction.

Any non-rigid point set registration method finds diffi-
culty to tackle noisy or corrupted data (such as missing
chunks and clustered outliers) and to perform good when
input data are misaligned. Most widely-used instances are
descendants of iterative closest points (ICP) techniques [2].
The main idea of ICP-like methods consists in alternat-
ing between nearest neighbor search and transformation up-
dates, over and over until no changes are occurring.

Another prominent class of methods employs probabilis-
tic approaches (e.g., expectation-maximization) which ex-
plain observed reference data by a deformable template
[26, 7]. These methods inherit strengths and disadvantages
of the underlying unsupervised learning techniques, and
many approaches are sensitive to disturbing effects. As no-
ticed by Jian and Vemuri [20] more than a decade ago, there
is no clear winner among probabilistic approaches, and this
is still the case in the present. This aspect motivates us to
look into the alternative directions.

The physics-based class is a new class of point set reg-
istration methods. One method employs Schrödinger trans-
formation for non-rigid alignment [8], and the other one em-
ploys modified N -body simulation for rigid matching [15].
Both methods were shown to outperform representatives of
other classes — in many cases by a noticeable margin —
which suggests that have a high potential for further im-
provements. In addition, non-rigid registration methods of-
ten compromise with either correspondence accuracy or ge-
ometric consistency during data fitting. Some deformable
registration methods [29, 3] mainly address the geometric
smoothness factor, whereas, distance based non-rigid trans-
formation methods [1, 20] primarily prioritize correspon-
dence accuracy. A registration method which balances both
is desirable.

We propose a non-rigid point set registration method
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Figure 1. The NRGA method uses the law of universal gravitation for non-rigid alignment of point sets. On the left, the Cosine Surface
dataset f(x, y) = cos(x) sin(y) induces relativistic gravitational force field to attract the plane f(x, y) = −1, where x, y ∈ [−π, π]. On
the right, various registration results are demonstrated, i.e., noisy bunny [35] data alignment, conformal registration between human faces
of different expressions (from [4] on BU-3DFE [41]), and image registration between computer tomography of a human brain [38].

which is based on simulation of gravitational interactions
between points. Speaking in physical analogies, we think
of the points as particles with masses interacting inside an
isolated non-empty space according to the universal law of
gravitation. We call this method Non-Rigid Gravitational
Approach (NRGA). We see NRGA as the first to generalize
the principles proposed in [15] to the non-rigid case. The
solution-space is much larger for non-rigid registration. To
reduce it, we apply coarse-to-fine zonal interaction, preser-
vation of relative point position during motion and regular-
ization of the displacement fields. Fig. 1 illustrates how the
reference induces gravitational force fields near it. The tem-
plate deforms until a state of minimum gravitational poten-
tial energy (GPE) is obtained between them. As opposed to
single rigid transformation constraint on the whole template
in [15], in NRGA every single template point undergoes
a coherent Procrustes transformation, approximating local
transformation manifold around them (Secs. 4.2 and 4.3).

In total, there are several contributions in this work —
i) We present NRGA as the first method for non-rigid point
set registration in the gravitational class (Sec. 4). From
the point of algorithmic novelty, NRGA lets every template
point choose their own interaction zone from the reference
point cloud. It splits the template and the reference into
as many numbers of overlapping subsets as of the numbers
of template points. ii) Then, a series of locally multiply-
linked N -body problems are solved where the gravitational
force function is parameterized by the Gaussian curvature
[10] (Sec. 4.1 and 4.2) of reference points. This general-
izes the gravitational force in a curved space-time and gives
a strong hypothesis to match point sets. The main idea of

having such overlapping zones is to obtain many uncon-
strained (suboptimal) motion update hypotheses and regu-
larize them finally for individual displacements. iii) Coher-
ent Collective Motion (CCM) operator, which is often used
in the simulation of biological species [37], is used as mo-
tion and transformation regularizer in our method (Sec. 4.3).

Finally, we evaluate the new approach (Sec. 5) qual-
itatively and quantitatively on synthetic and real-world
datasets. In the experiments, NRGA exhibits robustness
against missing data and uniform noise, when compared to
widely used state-of-the-art methods.

2. Related Work
In this section, we provide a concise overview of mod-

ern non-rigid point set registration methods and position the
proposed NRGA among them. Though the body of litera-
ture on non-rigid point set registration is versatile, current
approaches can be classified into few categories.

Coarsely, the primary classes either involve nearest-
neighbor search step [2, 30] (variants of ICP), employ vari-
ous probabilistic principles for unsupervised learning of op-
timal transformation fields [20, 23], or are physics-based
schemes which adopt or simulate natural and physical phe-
nomena [22, 8].

Each category can be further refined through multi-
ple subcategories differentiating between used optimiza-
tion techniques (deterministic annealing scheme in [6],
expectation-maximization [23]), acceleration techniques
(spherical triangle constraint for nearest neighbor search
in ICP [17]), types of probabilistic models and distribu-
tions (Gaussian mixture model of GMMReg [20] versus



Student’s-t mixture model [42]), types of borrowed phys-
ical laws (Schrödinger distance transform [8]) or types of
displacement field regularizers (a thin-plate spline in [6] or
variational regularizer of motion coherence in [26]). More-
over, auxiliary classifications distinguish between two point
set (hereto belongs the majority of the approaches) and
multi-set registration [31], whether methods allow to em-
bed priors matches (akin to ICP methods) or require some
additional information aside from 3D coordinates [1, 14]1.

With only a few representatives in both rigid and non-
rigid domains [15, 8], the class of physics-based methods
is the least explored in point set registration. Many phys-
ical phenomena involve an interaction of elements and al-
low a quantitative description of the system’s state based on
the configuration of their elements (gravitational or electro-
static potential energy, quantum state). Another example is
the visual system of stereopsis-capable biological species
which is uninterruptedly solving the registration task of
vector-valued images (signals arising on the retina) [27].

Though the curvature was used in shape and image regis-
tration before [12, 13, 32, 34, 33], its application in point set
registration is not straightforward. One reason is that for an
arbitrary point set, the curvature is not everywhere defined.
Due to the synergy of direct curvature retrieval on a point
set and post-Newtonian mechanics, NRGA allows to over-
come this limitation and define curvature in every point of
space, irrespective whether the point set represents a surface
or a volumetric structure, perhaps a non-uniformly sampled
one and containing outliers. This is the crucial property not
found in other point set registration methods. At the same
time, many such existing methods chose either global mo-
tion coherency [39, 26] or local shape signatures [24] to
preserve the overall topology. In contrast, the CCM regu-
larizer in NRGA can be viewed as a locally-aware global
topology preservation operator.

Our method is related to GA [15]. We adopt the idea of
N -body simulations and generalize it to the non-rigid case.
Instead of recovering one single global rigid transformation,
we recover per-point displacements. To this end, in NRGA
every template’s point has its own transformation.

3. N-Body Simulation
In the classical N-body problem, N celestial bodies de-

fine their kinematic trajectories by interacting with each
other through a conservative gravitational force field [9].
Every celestial body possess a mass, and the interactions
are governed by the Newton’s law of universal gravitation.
The gravitational forces between the celestial bodies, of-
ten in large scale system, accounts for the change in GPE.

1though, with too many additional inputs, the class of methods might
change; for instance, shape registration considers alignment of watertight
meshes, i.e., point sets with known triangulation, normals, etc. and consti-
tutes a separate branch of research.

GPE is defined as the work done by the gravitational force
to displace the particle from one to another position. Most
frequently, the masses are assumed to be concentrated in an
infinitely small volume of space and inter-collisions are not
taken into account (no merging, splitting and re-distribution
of masses are allowed). Thus, if a system consists of a
plenum space and a set of particles i ∈ {1, . . . , N} with
masses mi, positions ri, then the total force acting on ith

particle Fi is equal to the sum of the negative gradient of
the gravitational potential φai and, if exists, some external
potential φexti (i.e., in other terms, as the sum of the force
components Fai and Fexti ) :

Fi = −∇ (φai )−∇
(
φexti

)
. (1)

The former force component Fai for the discrete particle
system

Fai = −Gmi

N∑
j=1,j 6=i

mj (ri − rj)(
‖ri − rj‖2 + ε2

) 3
2

(2)

is used to numerically approximate particle’s position over
time, where G is the gravitational constant, ‖.‖ denotes the
`2 norm, and ε is a regularizer of near-field interactions
called softening radius; j ∈ {1, . . . , N}, j 6= i indexes
N − 1 particles exerting gravitational force of attraction on
ith particle. Per particle acceleration is updated by the New-
ton’s Second Law of motion:

r̈i =
Fai
mi

, (3)

and ri is obtained by the double integration of acceleration
r̈i over time.

With the advent of the Einstein’s general relativity (GR)
[11], the perspective to the interaction between masses has
changed. According to modern GR, celestial masses bend
the space-time continuum. The bending strength changes
space-time curvature which is expanded into a separate di-
mension. The celestial masses placed in the curved space-
time do not move along straight lines but rather curved lines.
The latter phenomenon causes the effect known in Newto-
nian mechanics as gravitational force, whereas in GR, grav-
itational force does not exist. Thus, in presence of mass,
the space-time is a non-flat four-dimensional manifold M4

(Minkowski space). In GR, space-time curvature depends
on the mass and energy distribution in space, the speed of
light and G [40]. On the other hand, space-time curvature
influences G.

Even though gravitational force in GR is replaced by the
curvature of the 4D space-time, we use the notion of rela-
tivistic gravitational force (RGF), i.e., a gravitational force
parameterized by the Gaussian curvature of the force induc-
ing particles (Sec. 4).



Eventually, the N -body problem was extended to the
case of relativistic motion. Considering NRGA, we are es-
pecially interested in the simulation in a space with a con-
stant Gaussian curvature [10] so that RGF takes the form:

Fai = −Gmi

N∑
j=1,j 6=i

mj

(
ri

(
1− κr2ij

2

)
− rj

)
(
‖ri − rj‖2 + ε2

) 3
2

(
1−

κr2ij
4

) 3
2

, (4)

with rij = ‖ri − rj‖ and κ denoting constant Gaussian
curvature of the space. Similar to the classical case, ac-
celeration r̈i is computed by Eq. (3) and (4), and new ri is
updated as double integrals of r̈i w.r.t. time.

4. Non-Rigid Gravitational Approach

Figure 2. NRGA is comprised of two integral steps: i) applying
locally multiply-linked N -body interactions between all the cor-
responding regions. This local gravitational interactions estimate
the next point positions. ith and jth points select few nearest
points from Y and X to represent regions ΓY

i and ΓX
i bounded

by solid blue and red colour lines from Y and X respectively.
Rigid transformation parameters Ti are obtained for all regions
with Procrustes alignment between consecutive states. ii) apply-
ing coherent collective motion regulalizer on final position update
(as a consensus filter on all Ti).

Given two point sets, a reference or target XN×D =

(X1, . . . ,XN )
T , and a template or source YM×D =

(Y1, . . . ,YM )
T with N and M number of D dimensional

points respectively, the objective is to find a transformation
mapping T : RD → RD which minimizes a distance error
function between two sets. In NRGA, this error function is
the total GPE of Y w.r.t X which can be expressed as a sum
of weighted inverse values of the Euclidean distances:

φa = arg min
T

M∑
i=1

|N (i)|∑
j=1

ωij (d (T (Yi,Ti)−Xj))
−1 , (5)

where ωij = −Gmimj denotes the weight of ith minimum
GPE amongst its nearest neighbors N (i), and d (Yi,Xj)
= ‖Yi −Xj‖ + ε is the numerically stabilized Euclidean
distance. The transformation map T (Y,T) registers Y
to X using the set of optimal transformation tuples T =
{T1, . . . ,TM}. We employ N -body problem in curved
space (Eq. (4)) as an inverse problem toolbox to iteratively
solve for the optimal transformation parameters Ti and at-
tain the minimum value of energy function in Eq. (5). In
this process, the points represent particles with individual
masses; the process is collision-less. The overall registra-
tion process includes three steps —

First, we build k-d trees on X and Y separately. Since
X is always static and remains unchanged, we keep the k-d
tree on X same and rebuild the tree on Y in every iteration
as it deforms.

Second, in every iteration, each Yi selects a number of
nearest neighbors (see Sec. 4.2) from X and Y to define a
zone of influence ΓX

i and ΓY
i respectively. It reduces the

solution space for every Yi. We use the k-d trees to obtain
the nearest neighbors. For every Yi, ΓX

i attracts the cor-
responding zone ΓY

i , employing N -body problem param-
eterized by the Gaussian curvature of X. This is a locally
multiply-linked point-to-point interaction. Once the force
fields are computed, we independently update the template
point positions in ΓY

i . From the previous and current state
of ΓY

i , unconstrained transformation tuple Ti is obtained
using Procrustes alignment [21]. Serially, we estimate T
for all ΓY

i , where i ∈ {1, . . . ,M}. Every tuple Ti is a
transformation representative for the group of points in ΓY

i .
Conversely, a template point Yi can have multiple trans-
formation representatives as the adjacent regions overlap.
In every iteration, only the velocity of representative points
from each group are updated.

Third, we use coherent collective motion (CCM) opera-
tor Ξ to consolidate multiple unconstrained transformation
fields and velocities for every Yi into an optimal update.
The locally optimal solution is achieved when GPE of the
system reaches it’s minimum. The two integral steps of
NRGA are shown in Fig. 2.

4.1. Modified N-body problem

Several additional assumptions are made in NRGA to
adopt and fit the relativistic N -body problem toolbox com-
pared to Sec. 3. First, only X induces gravitational field
and remains fixed (see Fig. 1). We compute the force val-
ues on demand, whereas the curvature of X is precomputed
following [28]. Second, we avoid gravitational interactions
between the particles from the same set (e.g., Y), other-
wise the template and reference would deform at rest and
topology will be lost. Third, the external potential energy in
Eq. (1), is considered here as a dissipative loss. This consid-
eration is natural when the space is non-empty. Hence, we



add an external drain force Fexti to Fai as a small fraction η
of its velocity acting in the opposite direction:

Fexti = −η ṙi. (6)

As a result, a part of the system’s kinetic energy is dissi-
pated in every iteration.

4.2. Locally Multiply-Linked N-Body Problem

NRGA is a locally multiply-linked method which iter-
atively registers Y to X. The groups of nearest neighbor
multi-sets from Y and X, further metasets of point in-
dices, are denoted by RY ≡

{
ΓY

1 , . . . ,Γ
Y
K

}
and RX ≡{

ΓX
1 , . . . ,Γ

X
K

}
respectively. In total, there are K = M

elements in RY and RX each. The number of elements
in the metasets is picked as a proportion ρY and ρX of the
total number of points in Y and X respectively. Variation
in the values of the proportion factors decides the magni-
tude of overlaps between the adjacent zones. ρY and ρX

can be different depending on the dissimilarity factors of
input point sets (e.g., densities and noise ratios). It is pos-
sible to set ρX = ρY = ρ when the densities or the num-
ber of points are roughly same for X and Y respectively.
We choose ρX and ρY as a function of N and M respec-
tively and typically ρ ∈ [0.02, 0.1]. Hence, P = bρMc (or
bρXNc and bρYMc) nearest neighbors define each subset
of the regions.

Locally multiply-linked N -body problem is solved on
the multi-sets of corresponding regions. The particle-
particle interactions are restricted between the regions —
the goal is to refine local transformation rather than to re-
cover a single global transformation. Henceforth, local rigid
transformation tuple Tk = {Rk, sk, tk} for every region
ΓY
k is estimated with rotation Rk, scale sk and translation

tk (Tk has 7 DoF). The force exerted by ΓX
k on Yp is:

Fap∈ΓY
k

= −Gmp

∑
q∈ΓX

k

mq

(
rp

(
1− κqr

2
pq

2

)
− rq

)
(
‖rp − rq‖2 + ε2

) 3
2

(
1− κqr2pq

4

) 3
2

,

(7)
where p ∈ ΓY

k . The notations in Eq. (7) are akin to the nota-
tions used in Eq. (4), i.e., rp and rq (mp andmq) are coordi-
nates (masses) of the points from the template and reference
respectively; rpq = ‖rp − rq‖, and κq stands for the Gaus-
sian curvature of Xq . We apply a coarse-to-fine policy for
softening radius parameter ε which results in a sharp direc-
tional displacement towards true correspondences, as it falls
exponentially in every iteration step t:

ε(t) = ε exp

(
1− t

ξ

)
, (8)

where ξ ≤ 150 is the maximum number of iterations.

In every pairwise gravitational interaction, we stack the
forces exerted to the points p ∈ ΓY

k into a force matrix Fk:

F t
k =

[
. . . ,Fap − ηvtp, . . .

]T
, (9)

and point velocities in the region:

V t
k = [. . . , vtp, . . .]. (10)

Next, we obtain the unconstrained velocity updates:

V t+1
k = V t

k + ∆tF t
k ◦ [. . . ,m−1

p , . . .]T , (11)

where ◦ denotes elementwise matrix multiplication, and an
unconstrained updates for the displacements:

D t+1
k = ∆tV t+1

k . (12)

Taking the current coordinates of P points (Yp)
t and the

new unconstrained updates of the state space as (Yp)
t

+
D t+1
k , ∀p ∈ ΓY

k , we first resolve sk as a curl-free compo-
nent of the displacement field D t+1

k [15], then the absolute
orientation problem [21, 18] is solved to obtain Rk, and, fi-
nally, the tk is obtained as the mean of D t+1

k . We serially
estimate Tk for all k ∈ {1, . . . ,K} regions and forward
them to the CCM step (Sec. 4.3) for the final position up-
dates. Besides, only the velocity of the main representative
point per region is updated.

4.3. Coherent Collective Motion

In Sec. 4.2, we have shown how locally multiply-linked
N -body problem is solved separately for individual over-
lapping regions. Yi can appear in several regions. Consider
a set Ψi =

{
∀k : Yi ∈ ΓY

k

}
. We say (i,Ψi) a mapping be-

tween a point index and its shared region indices (e.g., the
Fig. 2 illustrates that ith point is shared by three regions:
ΓY
i , ΓY

i−1 and ΓY
i+1 ). The CCM operator Ξ is defined for

(i,Ψi) and it regularizes the velocity vti of Yi:

Ξ(vti) = |vti |(ϑ)

(∑
k∈Ψi

vtk

)
, (13)

where (ϑ)(.) is the normalization operator. Ξ preserves the
velocity magnitude of the representative point Yi and re-
places its direction by the mean of normalized force direc-
tions of all Yk, ∀k ∈ Ψi from its shared groups. The CCM
operator ensures the point trajectories do not cross over and
relative point positions are preserved. Originally, the Ξ op-
erator was proposed by Vicsek et al. [37] in the context of
interactions encountered in biological systems. Similarly,
we apply Ξ operator to the transformation tuple Ti:

Ξ(Ti) =

(ϑ)

 ∑
k∈Ψi

Rk

 , (ϑ)

 ∑
k∈Ψi

tk

 , (ϑ)

 ∑
k∈Ψi

sk

 ,

(14)



Figure 3. Point trajectories of fish and bunny datasets regularized by the proposed CCM – (a) and (c). The same trajectories collapse or
cross over each other in absence of CCM regularizer – (b) and (d). These trajectories are complete path integrals of the particles leading
from the initial misalignment (blue) to the registration result (red). Each superscripted figure is the registered template.

i.e., in every iteration, the final position is obtained by ap-
plying the Ξ(Ti) on Yt

i . For a given point, this consensus
filter averages out several transformation tuples. The nature
of collective particle dynamics in NRGA is similar to the
smoothed particle hydrodynamics [25]. Fig. 3 shows the
impact of the CCM regularizer on point trajectories.

4.4. Algorithm and Complexity Analysis

NRGA is summarized in Alg. 1. A breeze over Alg. 1
allows estimation of the NRGA complexity:

O( ξ︸︷︷︸
iterations

(M logM︸ ︷︷ ︸
k-d tree

+ MρM ρN︸ ︷︷ ︸
NRGA: N-body

+ M︸︷︷︸
NRGA: CCM

) ) = O
(
M

2
N
)
.

(15)

The coarse analysis is not taking into account that usually
ρ ∈ [0.02; 0.1]. Suppose ρ = 0.05 and M ≤ 5 · 104. In this
case, ρ2M2 ≤ M1.45. Thus, the revised complexity will
be at most O(MβN), with β = 1.45. With smaller M , β
will drop. The core implementation of NRGA requires only
several hundred lines of an unoptimized C++ code.

5. Evaluation
We perform experiments on a platform with 32 GB RAM

and Intel i7-6700K CPU running at 4.0GHz. We typically
set η = 0.05, G = 1.67, ρ = 0.05, ∆t = 0.006, ξ = 100
and ε = 0.1. All other methods [1, 5, 26] are running en-
tirely in Matlab, except GMMReg [20] which calls a Linux
executable compiled from a C++ source.

Evaluation methodology and datasets. A thorough
quantitative evaluation is performed on synthetic bench-
mark datasets fish, line (2D) and bunny (3D) with known
ground truth correspondences. The input template data is
modified in four degradation scenarios and 100 experiments
are run for each of the scenarios. We report the root-mean-
squared error (RMSE) value on every run defined as:

Ermse =

√√√√ 1

N

N∑
j=1

(
rij − Emean

)2
, (16)

Algorithm 1: Non-Rigid Gravitational Approach
Input: a reference XN×D and a template YM×D
Output: a displacement field T (Y,T) registering Y to X
Parameters : ε ∈ (0, 1], η ∈ (0, 1], G, m(Y ), m(X), ∆t,

ρ ∈ [0.02, 0.1], εE = 10−4, ξ
1 Initialization: T = 0
2 build a k-d tree on X

while |φcurr
g − φprev

g | < εE or t ≤ ξ do
3 build a k-d tree on (Y)t

4 build multi-set of regionsRX (Sec. 4.2)
5 build multi-set of regionsRY (Sec. 4.2)

for all k ∈ {1, . . . ,M} do
6 select the regions ΓY

k and ΓX
k fromRY andRX

7 compute F t
k using Eqs. (6) – (9)

8 compute V t+1
k and Dt+1

k using Eqs. (11) – (12)
9 compute Tk = {Rk, sk, tk} for ΓY

k :
10 . solve for sk from the curl-free component of Dt+1

k [15]
11 . solve absolute orientation problem for Rk [21, 18]
12 . tk = mean(Dt+1

k )

for all Yk , k ∈ {1, . . . ,M} do
13 update velocities vt+1

k = Ξ
(
vt+1
k

)
using Eq. (13)

14 update transformation Tt+1
k = Ξ

(
Tt+1
k

)
using Eq. (14)

15 update Yt+1 = T
(
Yt,T

)

where Emean denotes mean error. First, we introduce uni-
formly and Gaussian distributed noise into the templates, in
the amounts ranging from 5% to 60% of the total points,
in every run of the experiment. Additional input noises in-
crease the number of uncertain correspondences and make
the problem more ill-posed. Second, we randomly perturb
the initial point positions in template. The direction and
magnitude of perturbation are obtained as the realizations of
a Gaussian distribution. The magnitude of perturbation in-
creases linearly with every experimental attempt. Third, we
randomly delete 20% of the original data in a chunk from
the templates. The fourth scenario is imposing random mis-
alignment on the template where the axis-angle orientation
values (θx, θy, θz) are the realizations from a uniform dis-



Figure 4. Quantitative results on fish, line, and bunny (in 1st, 2nd, and 3rd row respectively) show the error statistics for the cases with
Gaussian noise, uniform noise, missing data patterns, rotations and perturbed setting (ordered in columns). NRGA is the most stable
method under uniform noise and missing data, with lowest RMSE. The high peaks of GMMReg [20] and NRICP [1] are due to inherent
instability. The bottom right graph shows loge(Ermse) values for clear perception.

tribution U(−π4 ,
π
4 ). Although, in non-rigid registration an

optimal rigid pre-alignment is considerable, we show that
NRGA can still cope with fairly misaligned point sets.

Compared methods. We compare several widely-used
and state-of-the-art methods for non-rigid point set regis-
tration, i.e., non-rigid ICP [1], TPS-RPM [5], CPD [26]
and GMMReg [20]. We choose optimal settings for every
method — this allows us to compare the best possible per-
formances in the corresponding scenarios.

Results. Quantitative results shown in Fig. 4 reveal
NRGA’s strength against uniform noise — with increasing
noise, the relative accuracy of NRGA increases (for the case
of 60% of noise, NRGA shows the lowest RMSE on two
datasets). For the Gaussian noise, the winner is CPD — this
approach explicitly models Gaussian noise, and we were
always choosing the respective optimal parameter. Never-
theless, NRGA is close to GMMReg and TPS-RPM which
do not make such assumption. NR-ICP fails on the experi-
ments with noise. In the case of missing data, NRGA sig-
nificantly outperforms all compared methods with consis-
tent performance. NRGA shows stability as the error does
not fluctuate across all different scenarios and datasets.

In Fig. 5, selected results from the experiments with
missing data are shown. Note how NR-ICP, TPS-RPM

Figure 5. NRGA outperforms other evaluated methods in the han-
dling of missing data. In this picture, results of evaluated methods
on fish, bunny and line datasets are shown. In this experiment,
more than 30% of points have been removed from all templates.

and CPD either stretch or dilate the template. In contrast,
NRGA displaces points towards the appropriate regions as
the attractive force function is parameterized by shape cur-
vature. In Fig. 1, we demonstrate the performance of NRGA
on real data (image registration). 2D point sets originate
from computer tomography (CT) of a human brain [38].
Both images represent the same state and differ only by a



Figure 6. Qualitative results of non-rigid point set registration
methods: NRGA, CPD [26], GMMReg [20], NR-ICP [1] when
applied to human faces (from [4] on BU-3DFE [41]) differ in their
expressions and spatial scaling. The upper and lower row in all
pairs illustrate the Hausdorff distance between the target and the
deformed template as a color-map (with histogram).

rectification applied on the reference image. 2D point sets
are obtained by the sampling of image contours.

Regarding the practical applications of NRGA, qual-
itative registration results on human faces (BU-3DFE
datasets [41]) using different methods are shown in Fig. 6.
The template and target faces differ by facial expression
and scaling factor. NRGA achieved high correspondence
accuracy and geometric consistency because of using the
locally aware global topology preserving CCM operator.
Probabilistic approaches overfit ignoring the local minimas,
whereas nearest neighbor approach is not aware of the in-
trinsic geometry. The noticeable point is that NRGA uses
only positions and does not use other geometric attributes
(e.g., face or vertex normals).

We also evaluate the performance of NRGA on the real
scan data. Two types of face scans are captured to test
NRGA – 1) The frontal face as a part of our full body
scan using multi-view system [16]. We tag this scan as the
reference. The template is a synthetic data with no facial
details. The scan and template contain ' 3.9K and 4K

Figure 7. 1st experimental instance: in the first two rows, a syn-
thetic template with no geometric level of details is registered to a
scan data (point sets only) with holes and complex surface details
like hair and skin roughness. 2nd experimental instance: in the last
two rows, the template is same as 1st, the scan contains significant
low-amplitude noise and little geometric details of the underlying
surface. In both cases, NRGA robustly registers template to scans.
Iterative results at the right side show distance error with same
color coding as in Fig. 6.

points respectively. The reference face contains complex
details on the surface (e.g., curly hair, rough skin mem-
branes, and several missing chunks). 2) The second scan
is a point cloud with significant amount of low-amplitude
noises. Fig. 7 shows that NRGA accurately fits the template
onto real scans in these challenging scenarios.

6. Conclusions and Future Directions
In this draft, we have presented NRGA — the first

physics-based algorithm for non-rigid point set registration
of gravitational class. NRGA interprets alignment problem
as a series of altered relativisticN -body problems in a space
with constant Gaussian curvature. The curvature of the ref-
erence operates as a local inherent shape descriptor and in-
fluences gravitational attraction. The core CCM regulariza-
tion merges multiple update proposals for the same point
from several overlapping regions. Thorough experiments
have shown either state-of-the-art or superior robustness of
NRGA in scenarios with noisy and missing data. At the
same time, real data examples demonstrated the maturity of
our approach for practical applications (e.g., medical image
registration and template to scan fitting of faces).
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