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ABSTRACT
Light detecting and ranging (LIDAR) sensors are extensively stud-
ied in autonomous driving research. Monitoring the performance
of LIDAR sensors has become significantly important to ensure
their reliability and hence guarantee the safety of the vehicle. Un-
derestimation of sensor performance can give away reliable object
data, overestimation may result in safety issues. Besides light and
weather conditions, the performance is strongly affected by con-
taminations on the sensor front plate. In this paper, we focus on
classifying different types of contaminations using a deep learn-
ing approach. We train a deep neural network (DNN) following a
multi-view concept. For the generation of training and test data,
experiments have been conducted, in which the front plate of a
LIDAR sensor has been contaminated artificially with various sub-
stances. The recorded data is transformed to contain the essential
information in a compact format. The results are compared to clas-
sical machine learning techniques to demonstrates the potential of
DNN approaches for the problem under consideration.
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1 INTRODUCTION
Light detecting and ranging (LIDAR) sensors [17] have become
an important aspect for the autonomous driving industry. These
components are used to detect lanes, cars, pedestrians and other
objects [2, 11]. While a high performance of the corresponding
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(a) Salt (b) Dirt Type 1

(c) Dirt Type 2 (d) Frost

Figure 1: Different types of contaminations over the LIDAR front
plate: (a) Salt, (b) Dirt Type 1, (c) Dirt Type 2, (d) Frost.

detection functions is desirable, it is also important that this perfor-
mance is monitored [27]. In case a relevant object is not detected
by a LIDAR sensor, the system should take this performance limi-
tation into consideration to prevent critical situations. Likewise, a
good performance should not be underestimated to avoid giving
away reliable data. In the context of sensor data fusion [7, 9], it is
essential for each component to self-monitor its performance so
that dependencies can be avoided. Hence, it is necessary to a) iden-
tify all influences on the sensor performance, b) detect and classify
those influences and c) evaluate the impact of those influences on
detection functions of the sensor. This allows to provide the system
with reliable data, which is the foundation for an effective data
fusion under varying traffic and environmental conditions.

In autonomous cars, LIDAR sensors are used along with cam-
eras, radar and ultrasonic sensors. LIDAR sensors generate high
resolution point clouds of the environment. A point cloud consists
of scan points, each of which is given a 3-dimensional position
and, depending on the signal processing concept of the sensor, a
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quantity representing the intensity of the corresponding signal.
The main advantages of LIDAR sensors are high range and angu-
lar resolutions in combination with large detection distances. The
disadvantage of LIDAR sensors are the sensitivity to light, weather
and sensor front conditions.

Contaminations or damages on the sensor front reduce the
amount of transmitted light both in the sender and the receiver
path. This is caused by scattering and absorption of the laser light.
The point cloud is affected by this in various ways [21] a) The an-
gular and range accuracy is decreased, b) the intensity of signals is
reduced, which can lead up to c) missing scan points at certain dis-
tances and d) increased intensity and amount of near field signals.
Those effects depend on the particular contamination or damage
scenario, of which there are various combinations of types1 (e.g. salt,
dust, insects, snow, ice, scratches and stone chippings, few of which
are shown in Figure 1) and distribution (e.g. full or partial blockages
with different thicknesses of the blocking material). Hence, for the
evaluation of the impact on the point cloud, not only the detection
of sensor front influences, but also the classification is relevant. It
also plays a significant role in improving the efficiency of heating
and cleaning procedures. Contamination like dirt or salt need to
be removed through cleaning procedures, snow or ice can only be
removed through heating, while damages can not be removed at
all.

In section 2, related works are discussed in the context of LIDAR
performance as well as multi-modal fusion. Section 3 focusses on
the experiments performed to record and generate the dataset,
by applying different contaminations on the LIDAR sensor front
plate. Furthermore, in this sections we propose a novel solution for
classifying the contamination types with a deep neural network.
The approach uses a multi-view deep neural network (LIDAR-Net),
which fuses the front and the top view of the LIDAR sensors. In
section 4, we evaluate the proposed approach and demonstrate
that our results outperform those of classical algorithms. In our
conclusion in section 5, we bring up possible aspects of future
works.

2 RELATEDWORK
In this section we review the algorithms and related works and
position the proposed multi-view deep neural network among them.

2.1 Performance of laser scanners
The related work [21] tries to solve the problem of estimating the
performance of LIDAR sensors by quantify the influence of contam-
inations on LIDAR sensors performance. The approach measures
the transmission and reflecting properties and analyze LIDAR sen-
sors position measurement accuracy, and identify potential forward
scattering caused by contaminations. Real-world contaminations
samples accumulated over the LIDAR front plate were collected
and analyzed in the experiments, which is similar to our data col-
lection pipeline. Our proposed approach classifies various types
of contaminations. We measure the classification accuracy by per-
forming various experiments, with different combinations of labels.
In the related work [21], the influence of contaminations on the

1Different contamination types used for the experiments include Salt, Dirt type 1
which is Arizona-Staub Quartz, Dirt type 2 which is KSL 11046 Prüfstaub and Frost.

position measurement is calculated as a standard deviation relative
to a clean sensor. The correlation between contaminations and the
presence of rain and the performance degradation has also been
studied. In our approach, we estimate the classification accuracy
with deep neural networks. We performed various experiments to
record the training and testing data from different traces. A part of
the test dataset was used for validation, during the training phase.
The final test results contributed to the classification accuracy.

2.2 Multi-modal Fusion
In the related work [2] a multi-view concept is introduced, which
takes LIDAR point cloud and RGB images as input to predict 3D
bounding boxes for object detection. The LIDAR point clouds are
transformed to the front and top view respectively. Finally, the
inputs to the network [2] are front view, top view and the RGB
images. Similarly, in our approach we have introduced the multi-
view concept by transforming the front and top view of the LIDAR
sensor to usable image formats, which is given as inputs to a deep
neural network (LIDAR-Net). The related work [2] introduces the
concepts of early fusion, late fusion and deep fusion of deep neural
networks. In our approach, the multi-model fusion was inspired by
Fractal-Net [15] and Deeply-Fused Net [29], where we have adopted
the late fusion over other fusion approaches. We implemented the
late fusion of the views by applying the concatenation operation.
Finally, our method gives the highest classification accuracy for
classifying different types of LIDAR sensor front influences which
are similar to the high accuracy results of object detection in the
related work [2],

3 PROPOSED APPROACH
In this section we discuss a novel approach for classifying the con-
tamination accumulated over the LIDAR sensor front plate. We use
the method of deep-learning for solving this problem. Two different
deep-learning approaches were used 1. Transfer learning [30], for
carrying out the initial experiments and 2. Training a network from
scratch, which overcomes the shortcoming of the first approach.

Initial evaluations, whichwere carried out using the deep-learning
approach of transfer learning, are based on two image formats A
and B as shown in Figure 2 and 3, which represents the front view
and top view, respectively. Transfer Learning was performed sep-
arately with these image formats, to compare the performance of
their classification. Later, we introduce a multi-view deep-learning
network (LIDAR-Net), which takes image formats A and B as input
to concatenate its features.

For the data acquisition, we performed various experiments to
apply and record different contaminations over the LIDAR sensor
front plate. The following contaminations were applied for the ex-
periments: Salt, Dirt Type 1, Dirt Type 2 and Frost. All experiments
were carried out manually. The recorded data transformed to image
formats A and B were labeled with their respective contamination
name type.
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Figure 2: Image format A, where each pixel pair represents hori-
zontal angle, which is in the range ±72.5 degree and layer number,
ranging from 1 to 16.
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Figure 3: Image format B, where each pixel pair represents horizon-
tal angle, which is in the range ±72.5 degree and radial distance(cm).
The color indicates the layer number ranging from 1 to 16.

3.1 Dataset Acquisition
The dataset is acquired through a dataset creation pipeline as shown
in Figure 7. We only considered the near field, which does not
change under dynamic conditions. Hence no objects other than the
contaminations appear at the near field of the LIDAR sensor. The
recorded raw data is transformed into two image formats A and B,
which represents the front and top view, respectively. Each image
is then labeled with its contamination type. For all evaluations the
dataset was separated into training and testing data in the ratio 4:1.

Datasets from same and different traces were made as part of the
experiments. Same trace are made by reusing the contamination

over the LIDAR sensor front plate (without re-applying the contam-
ination). Different trace are made by re-applying the contamination
over the LIDAR sensor front plate, after cleaning the sensor. During
the dataset acquisition, the following recording parameters were
considered: 1. Type of the contamination applied over the LIDAR
sensor front plate, which was later used for labeling the data, 2.
Number of layers for the contamination, 3. Weather conditions, 4.
Light conditions and 5. Temperature.

The LIDAR sensor used for recording was developed by Valeo,
as shown in Figure 4. It has a vertical field of view of ±5 degrees
and horizontal field of view of ±72.5 degrees. Its resolution is 16
vertically and 701 horizontally. The LIDAR sensor used for this
experiment has a frame rate of 25 frames per second. E.g., with a
recording length of 10 seconds, 250 images could be generated for
each image format.

Figure 4: LIDAR sensor developed by Valeo.

The experimental settings were the following: 1. Experiments
were conducted outside to have natural light conditions, 2. Some
experiments were conducted during different times of the day and
under different weather conditions, e.g. during sunny, cloudy or
rainy weather. Therefore, the evaluated database includes record-
ings of different light conditions, 3. The variation of light conditions
has not been studied systematically, neither have all conditions been
analyzed (e.g. no experiments during night time) nor did the light
conditions play any role in the separation of the database into train-
ing and testing data, 4. No ground, objects or any kind of obstacles
were present in the near field.

For the experiments, the contaminations were mixed with water
in the ratio of 1:1. Using a spray gun connected to a compressor,
the front plate of the LIDAR sensor was contaminated with up to
five layers of dirt or salt. Once the contamination over the LIDAR
sensor front plate was dry, the recording was started.

3.2 Raw Data Transformation
The raw data acquired is transformed andmapped into usable image
formats with the Matlab [18] scripts. We transform the raw data
into the image formats A and B using the data creation pipeline
mentioned in the Figure 7. The image formats after transformation
is visualized and compared in Figures 5,6.

3.2.1 Image Format A (Front View). The image format A is a 701x16
image. Each pixel pair represents horizontal angle and the layer
number (Layers 1-16). The value of each pixel indicates the Echo
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Pulse Width (EPW), which is an indicator of the reflectance of an
object. The EPW values are normalized and mapped to a jet color
map. Here only the first echo2 of every scan point is considered, as
the nearest scan points are relevant for detecting the contamination.
The image has been enlarged in the Figures 2, 3, 5, 6 for visualization.

Figure 5 shows the comparison between a clean sensor and a
sensor contaminated with dirt type 1, with image format A.

(a) Clean Sensor (b) Sensor with 5 layers of Dirt Type 1

Figure 5: Image format A compared for a clean sensor and a sensor
contaminated with dirt type 1.

3.2.2 Image Format B (Top View). The image format B is a 710x40
image. Each pixel pair represents horizontal angle and radial dis-
tance. The values of each pixel indicate the layer number repre-
sented by RGB color code, exclusively assigned to each layer (Layers
1-16). Where ever there is no scan point, the pixel is represented
by the color black. Here we have considered radial distance up to
160 centimeters from the LIDAR sensor front plate. The image has
been enlarged in the Figures 2, 3, 5, 6 for visualization.

Figure 6 shows the comparison between a clean sensor and a
sensor contaminated with Dirt type 1, with image format B.

(a) Clean Sensor (b) Sensor with 5 layers of Dirt Type 1

Figure 6: Image format B compared for a clean sensor and a sensor
contaminated with dirt type 1.

2Every laser shot receives 3 echoes, each echo represents a scan point in the order of
distance.

3.3 Deep-learning Architectures
The experiments for the problem of classification was carried out
by two approaches: 1. Transfer Learning [30], 2. Training a Deep
Neural Network from scratch.

3.3.1 Transfer Learning. Transfer Learning [30] was performed
using the per-trained network InceptionV4 [28] . The experiments
were carried out on a smaller dataset and the network was trained
only over the last layer. Separate experiments were performed
with the front view (image format A) and top view (image format
B). While performing the experiments test data from same3 and
different trace4 were used. The results for the classification declined
over the number of labels and the contamination types.

3.3.2 Training a Deep Neural Network from scratch. We propose a
novel architecture LIDAR-Net which takes two views of the LIDAR
sensor, the front view (image format A) and top view (image format
B) which are feed forwarded through the network simultaneously,
with the same label name. The network was trained with different
combinations of class labels with 2400 images per class per view.

The LIDAR-Net as shown in Figure 8, is a multi-view architec-
ture [2] and has a structure with 3 convolution [14] layers, each
having a filter size of (2x2). Each convolution layer is followed by a
max pool [8] layer of filter size (2x2). This structure is duplicated
to create the multi-view, i.e the feature maps from the 3rd Pool-
ing layer are concatenated which is further connected to two fully
connected layers. Each fully connected layer has a 1-Dimensional
length of 2048. From the experiments performed by tweaking the
architecture, we conclude that two fully connected layers with a
dimension of 2048 was converging to a stable accuracy. The last
fully connected layer is connected to a soft-max classifier [6].

Initial experiments were also made with the base architecture
as VGG16 [23]. It was observed that a simple architecture with
less number of layers gave similar results with better run time for
training.

3.4 Training the Deep Neural Network
The labels used to train the network were 1. Clean, 2. Salt, 3. Dirt
type 1, 4. Dirt type 2, and 5. Frost. A total of 2400 frames were
collected for each label, which represents the contamination types.
Each frame was used to generate two view, the front view (image
format A) and top view (image format B). Hence a total of 4800
images per label were used to train the multi-view architecture.
The test data was recorded separately with newly simulated con-
taminations, hence we have two different traces for training and
testing. A portion of the test data was used as the validation data
for fine tuning the hyper-parameters [5]. Finally, the weights of
the network which gave the highest classification accuracy were
saved for performing the test accuracy. The frameworks used for
the experiments were Keras [3] and Tensorflow [1]. The Transfer
learning experiments were carried out using Keras, where as the
experiment for multi-view architecture was done with Tensorflow.
The hardware equipments for training the Deep Neural Network

3Same trace are made by reusing the contamination over the LIDAR sensor front
plate(without re-applying the contamination).
4Different trace are made by re-applying the contamination over the LIDAR sensor
front plate, after cleaning the sensor.
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Figure 8: LIDAR-Net: A multi-view deep neural network for classifying different types of contaminations over the LIDAR front plate.

were the following: Three Nvidia Tesla X [16] GPU, and a training
server.

3.5 Hyper Parameters
The following were the hyper parameters [5] for training the multi-
view deep neural network:

3.5.1 Number of Hidden Layers and Units. We used 3 convolution
layers along with 3 max pool layers for each view. The first convolu-
tion layer has an input of dimension 3, filter size of (2x2) and output
feature map [24] size of 32. The second convolution layer has an
input of dimension 32, filter size of (2x2) and output feature map
size of 64. The third convolution layer has an input of dimension 64,

filter size of (2x2) and output feature map size of 128. All max pool
layers between the convolution layers has a filter size of (2X2). The
first fully connected layer has an input dimension of (28x14x128)
and an output dimension of 2048. The second fully connected layer
has an input dimension of 2048 and an output dimension of 2048.
The soft-max classifier has an input dimension of 2048. The final
class size has been varied from 3 to 5 for various experiments.

3.5.2 Dropout. The dropout [26] is used to prevent overfitting of
the data. We use SELU with the dropout probability of .05%.

3.5.3 Activation Function. The activation function used here is
SELU or Scaled Exponential Linear Units [13]. The SELU activation
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functions is preferred over the RELU because of its converging
property.

selu(x) = λ

{
x , i f x > 0

αex − α , i f x ≤ 0
Where the values α and λ are 1.673 and 1.050 respectively for

mean 0 and standard deviation 1.

3.5.4 Loss Function. The loss function used here is Soft-max cross
entropy [19]. The cross entropy is given by the equation:

H (y,p) = −
∑
i
yi loд(pi )

3.5.5 Optimizer. TheOptimizer used here is the Adamoptimizer [12].
The following are the configuration parameters for an ideal learning
problem, alpha=0.001, beta1=0.9, beta2=0.999 and epsilon=10E-8.

3.5.6 Learning Rate. Here, we have used a decaying learning rate [25].
Table 1 shows the parameters for the decaying learning rate:

Table 1: Decaying Learning Rate

Parameters Value

Initial learning rate 0.0001
Learning rate decay factor 0.7

Number of epochs before decay 2

3.5.7 Batch Size and Number of Epochs. The batch size is 128 and
the network was trained for 20 epochs.

4 EVALUATION AND COMPARISON
In this section we evaluate and compare the proposed approach
with the classical machine learning algorithms.

4.1 K-Means Clustering Algorithm
K-Means clustering algorithm [10] separates n data points into k
clusters. The data points are assigned to the cluster with the closest
mean value. The k-means algorithm is very similar to the k-nearest
neighbor classifier [10].

Table 2: K-Means Clustering

EPW Centroids Cluster size after 100 iterations

278.18 990
211.44 494
245.06 491
326.41 38
252.24 487

Here we cluster the mean EPW values of a complete scan, with
500 scan for each class. Mean EPW values from five different classes
were used for the clustering. Over 100 iterations were made for a
cluster size of 5. The results proved that the mean EPW values were
not clustered equally around all the centroids, as shown in Table 2.

The Figure 9 shows the clustering diagram of the EPW values from
five different classes, where they are plotted along the x axis with
value of y as 0. The Figure 9 has no axis along y and the plot along
x axis has been shifted upwards for visibility. The experiment was
also conducted with four clusters, four classes and provided similar
clustering results.

Figure 9: K means clustering of the echo pulse width values from
five different classes.

4.2 K-Nearest Neighbors Algorithm
K-Nearest neighbors algorithm [4] is a classification algorithm. The
input parameter k is the number of data points to be considered for
deciding the class membership. The class membership is decided
based on the score from the k nearest neighboring data points. If
the value of k = 1, then the class membership is the same as that of
the data point [4].

Table 3: K-NN Classifier

Class Label Classification
Accuracy

Clean, Dirt 1, Salt 66.66%
Clean, Salt, Frost 66.66%

Clean, Dirt 1, Dirt 2 47.61%
Clean, Dirt 1, Frost 66.66%

Clean, Dirt 1, Salt, Frost 50%
Clean, Dirt 1, Dirt 2, Salt, Frost 40%

We trained a K-NN classifier with k=4 and distance metric as
euclidean distance. Here, the training and testing data are from
different traces5. The features used for training and testing are the
mean EPW6 values of a complete scan. The labels used for the ex-
periment were Clean, Dirt 1, Dirt 2, Salt and Frost. By plotting the
5Different trace are made by re-applying the contamination over the LIDAR sensor
front plate, after cleaning the sensor.
6Mean EPW is the average of the EPW values of each scan point in a scan.
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confusion matrix we infer that the K-NN Classifier gave a classifica-
tion accuracy of 40%, also shown in Table 3. The confusion matrix
from Figure 10 shows that the label Dirt 1 was misclassified with
Clean, the label Salt was misclassified as Frost and the label Dirt
2 was misclassified as Dirt 1. The experiment was also conducted
with labels Clean, Dirt 1, Salt and Frost, the classification accuracy
was obtained as 50%.
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Figure 10: Confusion matrix for the labels a. Clean, b. Dirt type 1,
c. Dirt type 2, d. Salt, e. Frost.

4.3 Deep Neural Network Approach
We started our experiment with the deep-learning approach of
transfer learning. Here we used the Inception V4 architecture which
was pre-trained on IMAGENET [22] dataset. We extract the features
from a layer and add an additional fully connected layer before
classification, so only the last layer is trained with the dataset from
our domain of experiment. Experiments were performed separately
for image formats A and B.

The Tables 4 and 5 summarize classification with transfer learn-
ing. The classification accuracy was high when we trained and
tested the network with the same trace7, but it declined drastically
when a different trace8 was used for testing. Hence, we combine
the image formats A and B in the multi-view architecture.

7Same trace are made by reusing the contamination over the LIDAR sensor front plate
(without re-applying the contamination).
8Different trace are made by re-applying the contamination over the LIDAR sensor
front plate, after cleaning the sensor.

Table 4: Transfer Learning with Front View

Class Label Classification Accuracy Comments

Clean, Dirt 1 100% Same trace
Clean, Dirt 1, Salt 90.44% Same trace
Clean, Dirt 1 80% Different trace

Table 5: Transfer Learning with Top View

Class Label Classification Accuracy Comments

Clean, Dirt 1 97.83% Same trace
Clean, Dirt 1, Salt 94.29% Same trace
Clean, Dirt 1 78.82% Different trace

From the Table 6, we can say that the multi-view deep-leaning
approach outperforms all other approaches in terms of classification
accuracy. Here we have used a different trace 80 for testing all the
cases, and we see that a higher accuracy is obtained in 4 out of 6
cases.

Compared to the evaluations made with the classical approaches,
we obtained a 35% higher classification accuracy. Figure 10 shows
the confusion matrix for the KNN-classifier which depicts the true
and false positives for each label. We infer that only Clean and Frost
are been classified correctly. Where as from the Table 6, we see that
for the multi-view deep-learning approach, we get a classification
accuracy of more that 95% while classifying Clean, Dirt 1, Salt and
Frost. It was also observed that the classification accuracy declined
while classifying two different types of dirt.

From the results, we also conclude that classifying the labels Dirt
(Dirt 1 or Dirt 2), Salt, Frost and Clean resulted in a better accuracy
compared to classifying different types of dirt.

Table 6: Multi View Architecture

Class Label Classification
Accuracy

Clean, Dirt 1, Salt 99.34%
Clean, Salt, Frost 95.41%

Clean, Dirt 1, Dirt 2 65.23%
Clean, Dirt 1, Frost 99.14%

Clean, Dirt 1, Salt, Frost 99.21%
Clean, Dirt 1, Dirt 2, Salt, Frost 77.98%

5 CONCLUSION
We have introduced a novel deep neural network approach for
classifying various contaminations over the LIDAR sensor front
plate. Classifying the contaminations are essential for the efficient
heating and cleaning mechanism of the LIDAR sensor and hence
its performance. We conclude that our approach with the deep
neural network with a multi-view architecture proved to outper-
form classical approaches for the problem of contamination type
classification in the performed experimental setting.
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The data recorded with the recording setup originated from the
same LIDAR sensor. We could bring more complexity to the dataset
by making the data recording with multiple LIDAR sensors, which
can be considered for the future works. Similarly, all the data record-
ing experiments were conducted by applying full contamination
over the LIDAR sensor, the application of partial contamination
can be considered for future works. We can also consider the sys-
tematic variation of light or temperature conditions as a factor for
data recording in the future works. In a real-world scenario where
there are a mixture of contaminations (mixture of dust,salt or ice),
the performance of the DNN approach has to be evaluated based
on the classification accuracy, which also has a great potential for
future work.
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