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ABSTRACT

This paper presents a new lightweight approach for real-time
performance-driven facial animation from monocular videos.
We transfer facial expressions from 2D images to a 3D vir-
tual character by estimating the rigid head pose and non-rigid
face deformations from detected and tracked 2D facial land-
marks. We map the input face into the facial expression space
of the 3D head model using blendshape model and formu-
late a lightweight energy-based optimization problem which
is solved by non-linear least squares at 18 frames per sec-
ond on a single CPU. Our method robustly handles varying
head poses and different facial expressions, including mod-
erately asymmetric ones. Compared to related methods, our
approach does not require training data, specialized camera
setups or graphics cards, and is suitable for embedded sys-
tems. We support our claims with several experiments.

Index Terms— Performance-driven animation, face
tracking, head pose estimation, blendshape model

1. INTRODUCTION

Real-time performance-driven facial animation refers to the
problem of capturing a live video stream of a person and an-
imating a virtual avatar upon the observed facial expressions.
Although this problem was first investigated in the context of
virtual avatar generation for films and computer games, such
a system can also help in developing affective user interfaces
in real world contexts. For example, facial movements of a
user can be used to assess his psychological state, intent in
reaching for a specific tool or response to an interactive com-
puter system. Some applications of such interfaces could be:
driver monitoring in automobiles, service kiosks for patients
in hospitals or installations in theme parks. To facilitate real-
time interaction, the system has to have very low hardware
and data requirements while being robust to a diverse range
of human users.

Depending on the target application, there is always a
trade-off between the quality of the input data and the com-
plexity of the acquisition setup [1]. On one side, there are
high-end systems used in the movie and gaming industries
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Fig. 1: Overview of the proposed pipeline for 2D-3D facial expres-
sion transfer: facial landmarks are detected in every incoming image
and used to find the head pose and an optimal blendshape combi-
nation resembling the observed appearance. It supports moderately
asymmetric expressions and runs on a CPU at real-time rates.

(e.g., active 3D scanners or marker-based motion capture sys-
tems). Even though they provide realistic animations, they are
intrusive and require substantial manual intervention. On the
other side, there are simple, inexpensive and non-intrusive
passive-scanning devices such as conventional monocular
RGB cameras. Even though RGB or intensity-based facial-
tracking methods have limited operational performance (e.g.,
under varying illumination), monocular cameras are ubiqui-
tous and flexible in installation and usage. Recently, several
approaches based on commodity RGB-D sensors have been
proposed [2, 1, 3]. Nevertheless, the most common visual
data acquisition technology in every-day life constitutes RGB
cameras as those embedded in mobile devices.

We aim at a lightweight method for real-time 3D facial
character animation from monocular RGB or intensity im-
ages, which can be used in consumer-centric applications. In
order to meet these requirements, the 2D facial tracking has
to be robust, accurate and lightweight. Moreover, the setup
should not rely on specialised hardware or markers. Fig. 1
provides an overview of the proposed pipeline. To summarise,
the primary contributions of this paper are:
• A new real-time approach for performance-driven facial

animation from a monocular setup. We formulate 3D char-
acter animation as a lightweight energy-based optimiza-
tion problem solved with non-linear least-squares (Sec. 4).

• To fulfill real-time constraints, our energy functional relies



only on a sparse set of 2D facial landmarks, which are used
to update the head pose and facial expressions (Sec. 4).
• A novel differentiable energy term for specifying the range

of the blendshape target weights (Sec. 4).
• A set of experiments for the validation of different aspects

of the proposed method (Sec. 5).

2. RELATED WORK

In this section, we summarise state-of-the-art methods in
monocular facial performance capture. For an extensive
overview on this topic, we refer the reader to [4].

Several works propose approaches for non-rigid tracking
and character animation which require either specialised se-
tups, physical markers, RGB-D cameras or manual interven-
tion [5, 1, 2, 6, 7, 8, 9]. Cao et al. [10] introduced a real-
time facial animation approach from 2D data which requires
a user-specific shape regressor trained in a preprocessing step
with manual adjustments. In the follow-up [11], they use
public image datasets to train the regressor. [12] describes
a bilinear face model for identity and facial expression repre-
sentation based on 2D or RGB-D data which can be used to
generate a blendshape model of an actor or animate a 3D face.

Garrido et al. [13] introduced an offline approach for
automatic reconstruction and animation of user-specific 3D
face rigs from monocular videos. Their pipeline consists of
three layers, where a parametric shape model is defined to
encompass the subspace of facial identity, facial expression
and fine-scale details such as wrinkles. Thies et al. [14]
presented a real-time photo-realistic facial monocular reen-
actment approach. They track facial landmarks relying on
a dense photometric consistency measure and use GPU-
based iteratively reweighted least squares solver to achieve
real-time frame rates. Liu et al. [15] introduced a real-
time expression-transfer approach from 2D data which is
adaptable to user-specific data. Their setup requires a pre-
processing step for the acquisition of target-specific training
images. The approach of Saito et al. [16] for real-time 3D
facial performance capture from RGB data relies on accurate
deep neural network based facial region segmentation and is
robust to occlusions and significant head rotations. Recently,
some commercial facial performance capture software has
been released (e.g., Apple’s iPhone X app to animate a virtual
character with its depth camera [17]).

In this work, we use a monocular setup and a lightweight
energy-based minimization which can be used in affective
user interfaces. Our approach runs on a single CPU at real-
time rates while relying on robust facial landmark extraction.
We do not require specialised hardware, preprocessing steps,
manual intervention, large collections of training data or pre-
trained target-specific regressors. Thus, our method addresses
several limitations of existing 2D-to-3D facial expression
transfer approaches.

3. OVERVIEW OF THE PROPOSED PIPELINE

An overview of our approach is shown in Fig. 1. We track a
sparse set of facial landmarks in every incoming frame for the
recovery of rigid and non-rigid facial motion. Then, we de-
fine a linear parametric model with blendshapes and retrieve
parameters modeling the head pose and facial expressions by
solving an energy-based optimization problem. Finally, we
map the 2D facial expressions to a virtual 3D character which
can be an animatable avatar or a person-specific 3D recon-
struction obtained in a preprocessing step. Our method as-
sumes perspective projection model and known intrinsic cam-
era parameters.

Blendshape Model. Blendshape models provide a simple yet
robust technique for facial animation. They allow to parame-
terize facial expressions by building a linear weighted sum of
basis elements [18]. The set of D blendshape targets defines
the valid range of expressions and limits face movements to
a subspace of dimension D. Unlike PCA-based models, each
basis shape encodes a semantically meaningful expression.

The face model is given by a column vector f ∈ R3p

composed of p vertices with the coordinates vectorized as
[x0, y0, z0, x1, y1, z1, ..., xp, yp, zp]

T . Similarly, each blend-
shape target is denoted by a vector bk ∈ R3p. The absolute
blendshape model is then defined as:

f =

n∑
k=0

wkbk, (1)

where 0 ≤ wk ≤ 1 are the blendshape weights [18]. We ar-
range n blendshape targets into a matrix B = [b0, ...,bn] ∈
R3p×n defining the expression semantics transferable to the
avatar. b0 denotes a face with neutral expression and bi ∀i 6=
0 corresponds to different base expressions. After concate-
nating wk into a vector w ∈ Rn, Eq. (1) can be rewritten
as:

f = Bw. (2)

Similarly to commercial animation software such as
Maya [19] and state-of-the-art methods [2, 13, 14], we use the
delta form of the blendshape model, i.e., each column of B is
composed of offsets w.r.t b0: B = [b1 − b0, ...,bn − b0].
As a result, multiple rows of B are composed of zero or near
zero values. Then, Eqs. (1) and (2) read as follows:

f = b0 +

n∑
k=1

wk(bk − b0) = b0 + Bw. (3)

Alignment of Blendshape Targets. We selected 44 blend-
shape targets from [20] and modified versions of the scans
from [21] provided by [22]. These datasets provide targets
with consistent topology and vertex-wise correspondences,
with 5023 vertices and 9976 faces. Although the resulting
variety of facial expressions is not as high as in [12], the
low number of vertices makes them attractive for real-time



applications on a single CPU. To compensate for the slight
misalignment of facial expressions, we register the scans
from [22] by solving the following constrained orthogonal
Procrustes problem:

R = argmin
Ω

‖ΩA−B‖F , s. t. ΩTΩ = I, (4)

where A and B are the two blendshape targets to be reg-
istered, R is the orthogonal matrix that maps A to B and
‖·‖F denotes Frobenius norm. For every mesh M, we ex-
tract R = UΣ′VT, where UΣVT = svd(M), and Σ =
diag(1 1 det(VUT)). Note that only a subset of points on
the back side of the head is used for the alignment.

4. OUR TARGET ENERGY FUNCTIONAL

We propose to minimize a multi-objective energy function
E(γ) for γ = (R, t,w), where R and t are the rotation and
translation, i.e., the head pose, and w is the vector of blend-
shape weights for the facial expression recovery:

E(γ) = ωsparse Esparse(γ) + ωprior Eprior(γ). (5)

Esparse is the data term that measures the model’s head pose
and facial expression from the input 2D facial landmarks. It
consists of Epose and Efit:

Esparse(γ) = ωpose Epose(R, t) + ωfit Efit(w). (6)

Eprior comprises regularization term for the head pose Eτ as
well as constraints on the blendshape weights Eβ and Eσ:

Eprior(γ) = ωτ Eτ (R, t) + ωβ Eβ(w) + ωσ Eσ(w). (7)

The weights ω{·} in Eqs. (5)-(7) define the contribution of
each energy term to E(γ).
Non-rigid tracking. We detect 2D facial landmarks using the
off-the-shelf face alignment approach [23] which aligns an
ensemble of regression trees. We retrieve 68 facial landmarks
around the jawline, lips, nose, eyes and eyebrows. Optical
flow is then used to track the landmarks frame by frame. The
correspondences between the 2D facial landmarks and points
on 3D blendshape targets are known in advance per design.
Rigid head pose estimation. An initial estimate of the rigid
head pose is computed based on [24]. A set of robust facial
landmarks including eyes canthi, both lateral and medial, and
points around the nose, are used to minimize the reprojection
error of the 3D-2D correspondences. For the other frames,
we minimize the reprojection error of the η = 68 facial land-
marks using

Epose(R, t) =

η∑
i=1

‖π(RPi + t)− pi‖22 , (8)

where π(·) : R3 7→ R2 denotes the perspective projection
operator. [R|t] are the extrinsic camera parameters (camera

pose), P and p are the 3D and 2D corresponding facial land-
marks, respectively, and i is the feature point index. As the
calibration of the camera is known, Eq. (8) is minimized in
the least squares sense with respect to the pose parameters R
and t using Levenberg-Marquardt iteration.

Inspired by [2], we include an additional term Eτ to en-
force temporal smoothness on the head pose:

Eτ (R, t) =

η∑
i=1

‖[r|t]t−2 − 2[r|t]t−1 + [r|t]t‖22 , (9)

with the angle-axis representation of the rotation r = [rx, ry, rz]
around the x, y and z-axes and t being the timeframe.

2D-3D Transfer of Facial Expressions.. To recover the
facial expression, we minimize the reprojection error of the
facial landmarks using the blendshape model in Eq. (3), for n
blendshape targets:

Efit(w) =

n∑
k=1

‖π(b0 + Biw)− pi‖22 . (10)

Since the elements of the blendshape basis are not orthogonal,
i.e., not linearly independent, the same facial expression can
be recovered using different target combinations. Thus, we
include a sparsity prior based on [2] defined as a `1-norm:

Eσ(w) =

n∑
k=1

||w||1. (11)

To avoid compensation artifacts, the weights are usually set
in the range [0, 1]. This implies that we need a differentiable
function so that in the range [0,1] it generates a zero penalty,
and a large penalty otherwise. We define such function by
adding two smooth Heaviside function approximations [25]:

Eβ(w) =
π

4

(
tan−1

(w − a

b

)
− tan−1

(
w + a− 1

b

))
+ c,

(12)
with a = 1.002, b = 2 · 10−5 and c = 2.5 (see Fig. 2).

Fig. 2: Our function — a sum of two Heaviside approximations —
for keeping the blendshape target weights w in the range [0,1].

In contrast to [1, 2], we do not use any temporal coherence
constraints on the blendshape weights.

Energy Minimization. We solve an energy-based optimiza-
tion problem for 50 parameters: 6 DoF for head pose and 44
parameters (the number of blendshape targets) for the facial
expression, with a total of 68× 2 residuals for Esparse, six for
Eτ and one for each Eβ and Eσ .
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Fig. 3: Results of our performance-driven facial animation approach. (top): Input images with detected facial landmarks, (bottom): Animated
3D characters. (a)-(i) demonstrate the variety of supported facial expressions; (j)-(l): results under occlusions and an extreme pose.

5. RESULTS

The pipeline is implemented in C++ using DLib [26] and
ceres solver [27]. We test it on a commodity computer with
an Intel Xeon(R) W3520 processor and 8GB of RAM. The
videos were captured with a Logitech C920 HD Pro webcam
at the resolution of 640 × 480 pixels. Representative results
are shown in Fig. 3 and in the supplemental material.
Runtime analysis. The average throughput for ∼1000 frames
amounts to 18 frames per second. Face alignment takes 23.7
ms while the energy minimization takes 31.6 ms per frame on
average. We also investigate how the internal number of iter-
ations in the energy function affects the output and runtime.
Fig. 4-(left) shows the resulting head poses and facial expres-
sions for one frame. To select a fixed set of parameters for
all experiments, we consider the trade-off between accuracy
and runtime. In Fig. 4-(right), head pose requires around 15
iterations to converge, while the estimation of the blendshape
target weights does not entirely converge during the first 50
iterations. Still, 15 iterations are sufficient to transfer similar
facial expressions to the target (see Fig. 3).
Head pose evaluation. We evaluate the head pose using the
Boston University (BU) head tracking database [28] which
contains 45 video sequences of individuals performing differ-
ent head movements. We use the mean absolute error (MAE)
to compare the rotation to other state of the art (see Table 1).
We report translation errors (in inches) of 2.27, 0.90 and 2.04
for the x, y and z-axes respectively. The errors of our ap-
proach are close to the other errors, although the compared
methods are intended for face alignment and head pose esti-
mation only, without any facial performance capture.
Discussion. Our pipeline can handle occlusions caused by
glasses, long hair and beard (Fig. 3: (a)-(f)). Although the
face alignment has limited performance for facial expressions
with strong asymmetry (Fig. 3: (b), (h) and (i)), our method
transfers such expressions adequately. The performance of
our approach is clearly affected by the accuracy of facial land-
mark detection and tracking, large head rotations and occlu-
sions (Fig. 3: (j)-(l)). Similarly to other methods using RGB

Input ρ = 10 ρ = 20 ρ = 50

ε = 10 ε = 15,
ρ = 15

ε = 20 ε = 50

Fig. 4: Left: Energy minimization results under different parame-
ters. ρ and ε are the number of iterations used to estimate the head
pose and facial expression, respectively. Top: Head pose for a fixed
ε = 15. Bottom: Facial expression for a fixed ρ = 15. Selected
parameters: ε = 15 and ρ = 15. Right: Runtime of the energy
minimization for varying ρ and ε, averaged over ∼1000 frames.

Method Roll Pitch Yaw Average

Jeni et al. [29] 2.41 2.66 3.93 3.0
Wu et al. [30] 3.1 5.3 4.9 4.43
Gou et al. [31] 3.3 4.8 5.1 4.4
Diaz Barros et al. [24] 2.32 3.41 3.90 3.21
Ours 2.35 3.62 4.38 3.45

Table 1: Comparison of rotational MAE on the BU dataset [28].

data, our method is sensitive to low illumination (Fig. 3-(g)).

6. CONCLUSIONS

We present a real-time pipeline for performance-driven fa-
cial animation for monocular systems. The head pose and
facial expression recovery are formulated as a lightweight op-
timization problem with blendshapes. Our pipeline runs at 18
frames per second on a single CPU and does not require train-
ing data nor special hardware which makes it suitable for em-
bedded systems, with potential for affective user interfaces.
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