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ABSTRACT

Graphics Processing Units (GPU) are becoming the key
hardware accelerators in the emerging image processing ap-
plications such as self-driving cars and mobile augmented
reality systems. As GPUs execute launched workloads non-
preemptively, their usage in safety-critical systems with hard
real-time constraints is impeded. The existing solutions for
scheduling real-time tasks on a single GPU focus on soft
real-time systems. In this paper, we consider real-time sys-
tems with a single dedicated GPU handling sporadic tasks
with hard deadlines and propose a scheduling approach based
on time division multiplexing called the GPU-TDMh —
a lightweight middleware framework located between the
application and the GPU driver layers. We evaluate the pro-
posed approach on a matrix multiplication benchmark on a
heterogeneous platform. The experiments demonstrate the
effectiveness of our method as well as superiority over the
non-preemptive online scheduling policies.

Index Terms— Graphics Processing Units, Parallel Pro-
cessing, Real-time, Scheduling, Time Division Multiplexing

1. INTRODUCTION

Nowadays, Graphics Processing Units (GPU) are becoming
indispensable hardware accelerators extensively used in im-
age analysis applications with real-time constraints such as
tracking and mapping [1], 3D reconstruction [2], angiography
treatment [3], gesture recognition [4], advanced driver assis-
tance systems [5] and self-driving technologies [6, 7]. The
latter represent complex autonomous systems which track ob-
jects around a car and react towards potential dangers. All
processing steps must fulfil tight timing constraints since sys-
tem safety highly depends on the timeliness of the actions.

A GPU is managed by an operating system as an in-
put/output device. If a workload is dispatched to a GPU
device, the execution cannot be interrupted until the work-
load is finished [8] — GPUs of recent generations are mostly
non-preemptible devices. For instance, if a high priority task
with a short deadline cannot start execution on a GPU due
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to resource occupation by some low priority task, it may
miss the deadline [9]. Accordingly, scheduling of periodic
real-time tasks on a GPU is an inherently non-preemptive
scheduling problem, known to be strongly NP-hard [10].

Many image processing applications are well paralleliz-
able and support flexible split sizes [11]. The existing
widespread scheduling algorithms such as Earliest Dead-
line First (EDF) or Rate Monotonic (RM) preempt a job (an
instance of a task) as soon as a high priority job is released
in the system. Thus, if EDF or RM schedule jobs on a GPU,
they will cause execution segments of different lengths. Be-
sides, each job will be preempted a different number of times
which excludes the option of the compile-time splitting.
For the same reason, many other real-time scheduling algo-
rithms such as limited preemption EDF [12] or fixed-priority
scheduling with floating preemption model [13] cannot be
readily adopted to schedule tasks on a GPU.

In this paper, we propose a scheduling framework based
on the notion of Time Division Multiplexing (TDM) —
GPU-TDMh (”h” stands for hard real-time constraints). The
central component of our approach is a reservation server
which activates periodically. During each activation, it sched-
ules one execution segment from each task having a pending
job in the system. Thus, it provides timing isolation and
does not allow the tasks to affect schedulability of the other
tasks. In GPU-TDMh, hard deadlines are guaranteed in the
parameter assignment phase.

2. RELATED WORK

TimeGraph developed by Kato et al. [14] is a pioneering
driver level framework for scheduling soft real-time tasks on
GPUs. It maintains a priority queue and launches the tasks
non-preemptively based on priorities. A user-level scheduling
solution involving splitting of memory operations was pro-
posed in [15]. In the successor Preemptive Kernel Model [9],
it is possible to split memory copies and kernel executions.
Steinberger et al. [16] set the split size to the smallest possible
launchable segment on a GPU, i.e., a threads block. In [17],
a hardware level GPU extension with preemption support is
proposed. However, the abovementioned approaches cannot
guarantee hard deadlines. In contrast, GPU-TDMh considers
the problem of scheduling hard real-time tasks.



Several works consider systems with multiple GPUs [5,
16, 4]. Among them, GPUSync [5] is the most comprehen-
sive framework of this kind. It supports simultaneous data
transmission and kernel execution, deterministic task migra-
tion among GPUs and implements GPU interrupts through
exception handling. GPUSync can be set up to guarantee all
deadlines if the workload properties are known in advance.
Recently, Otterness et al. [18] indicated possible future ex-
tensions to GPUSync for improved schedulability of image
processing applications (co-schedulability). As GPUSync is
tightly integrated into the LITMUS-RT operating system, it
may not be easily portable to other target platforms. In con-
trast, our lightweight solution is based on time division mul-
tiplexing implemented using a reservation server. Since a sin-
gle server handles all tasks, our approach can also be seen as
a Periodic Resource Model (PRM) [19]. The only require-
ment to the operating system is the support of timer inter-
rupts. As the core contributions of this paper, GPU-TDMh
supports hard real-time constraints, is simple to implement
and designed with image processing applications in mind.

3. THE PROPOSED FRAMEWORK

In this section, we describe our solution and derive parameter
assignment method guaranteeing schedulability of a task set.
Although GPU is a non-preemptible device, it is possible to
split a kernel into smaller segments and execute them non-
preemptively on a GPU.

3.1. Background and System Model

We consider a system with one GPU and a fixed set of asso-
ciated real-time tasks denoted by τ = {τ1, τ2, . . . , τn}. The
tasks are independent and implemented to run on a GPU. Tim-
ing parameters of each task τi are described by the set of val-
ues (Ci, Ti, Di, δi), where Ci ∈ N is the Worst-Case Exe-
cution Time (WCET) of the task executing in isolation on a
GPU, Ti ∈ N is the minimum inter-arrival time (period), Di

is the relative deadline and δi ∈ N is the maximum segment-
ing overhead. We consider implicit deadlines, i.e., Di = Ti.
Besides, we assume that the tasks are indexed according to
their periods in ascending order, i.e., T1 ≤ T2 ≤ . . . ≤ Tn.
ui = Ci/Ti denotes utilization of τi and the system utilization
is U =

∑n
i=1 Ci/Ti. A task set is schedulable by a schedul-

ing algorithm A if each instance of a task (a.k.a. job) released
in the time interval 0 to ∞ finishes before its deadline. Liu
and Layland [20] showed that U ≤ 1 represents a necessary
condition for schedulability of periodic task sets with implicit
deadlines. In our system, each task is a CUDA kernel. A
kernel associated with a task τi executes in Bi blocks with
Ri threads each. The set of all blocks constitutes a grid Gi.
Bi and Ri define a kernel launch configuration. Using the
method introduced in [9], it is possible to partition Gi into
sub-grids and split a kernel into sub-kernels. In this case, the

size of a sub-kernel Si is determined by the number of blocks
in a sub-grid. If the number of sub-kernels is ki, we obtain
Si = Bi/ki. In the general case, the number of blocks in sub-
kernels may vary. Besides, we make the additional assump-
tion: δi is a known upper bound of the task splitting overhead
— if Ci is split into mi segments, the total execution time of
τi is limited to Ci + δimi.

3.2. Parameter Assignment

In this paper, we adopt a time division multiplexing scheme
to handle task execution and use a reservation server with the
period T and budget C. Each task receives Ci units of budget
before its deadline. Upon every activation, the server executes
a segment of length oi from τi (1 ≤ i ≤ n). As a result, a part
of each released task in the system is executed within every T
units of time. In the rest of this section, we derive T , C and
oi parameters so that task set schedulability is guaranteed.

We first derive a lower bound on the number of activations
of the reservation server mi(T ) as a function of T :

mi(T ) =
⌈Ti
T

⌉
− 2, (1)

namely, each job of τi will receive at least mi(T ) slots from
its release time until its deadline from the reservation server.
To guarantee Ci time units for execution of τi, there must be
at least

oi =
Ci

mi(T )
+ δi (2)

units of reservation time within each activation of the server.
Note that since the execution time of τi is broken into mi(T )
slots, at most δi · mi(T ) time units are wasted in each seg-
ment due to the splitting overhead. Taking the sum of oi from
Eq. (2), we obtain C as

∑n
i=1 oi. In a feasible parameter as-

signment, the server budget must not exceed its period:

C

T
≤ 1⇒ 1

T

n∑
i=1

oi ≤ 1⇒ 1

T

n∑
i=1

( Ci

mi(T )
+ δi

)
≤ 1. (3)

By replacing mi(T ) in Eq. (3), we obtain

1

T

n∑
i=1

( Ci⌈
Ti/T

⌉
− 2

+ δi

)
≤ 1. (4)

The only unknown parameter in the Eq. (4) is T , whileCi, Ti,
and δi are given. Thus, if there exists such T which satisfies
this inequality, schedulability of the task set is guaranteed.
However, since T appears inside the integer ceiling operator
in the denominator of the sum in Eq. (4), finding a direct so-
lution for T is not trivial. Through the following steps, we
introduce a way to calculate T . First, the ceiling operator in
Eq. (4) is replaced by Ti/T which makes the denominator
smaller and the right-hand side of the inequality larger:

n∑
i=1

Ci⌈
Ti/T

⌉
− 2
≤

n∑
i=1

Ci

Ti/T − 2
. (5)



Next, dTi/T e is replaced by Ti/T in Eq. (4), both denomi-
nator and numerator are divided by Ti and, finally, the part
containing δi is placed into a separate summation:

n∑
i=1

ui
1− (2T/Ti)

+

n∑
i=1

δi
T
≤ 1. (6)

Task utilization ui = Ci/Ti is a known value. Although the
ceiling function is eliminated, T still appears as a part of the
denominator in Eq. (6). The inequality can be solved through
approximation by geometric series, as follows:

1

1− z
= 1 + z + z2 + z3 + . . . , (7)

where z < 1. We approximate Eq. (7) by a polynomial of
degree 2 given in the general form by P (z) = a1z

2+a2z+a3.
For z < 0.7, the valid upper bound of the series follows

P (z) = 4.7z2 + 1.08 (8)

(see our supplementary material for a proof). Next, the sub-
stitution z = 2T/Ti in Eq. (8) is performed and applied in∑n

i=1 ui/(1− (2T/Ti)) as

n∑
i=1

ui

(
4.7×

(
2T

Ti

)2

+ 1.08

)
(9)

which simplifies to

18.8× T 2 ×
n∑

i=1

ui
T 2
i

+ 1.08

n∑
i=1

ui. (10)

Thus, Eq. (6) can be written as

18.8×T 2×
n∑

i=1

ui
T 2
i

+
1

T

n∑
i=1

δi+1.08

n∑
i=1

ui−1 ≤ 0. (11)

By multiplying T on both sides, we obtain

18.8×T 3×
n∑

i=1

ui
T 2
i

+
(
1.08

n∑
i=1

ui−1
)
T+

n∑
i=1

δi ≤ 0. (12)

Eq. (12) has a form of a depressed cubic equation denoted by

T 3 + pT + q = 0, where

p =
1.08

∑n
i=1 ui − 1

18.8
∑n

i=1(ui/T
2
i )
, q =

∑n
i=1 δi

18.8
∑n

i=1(ui/T
2
i )
.

(13)

Eq. (13) can be solved using Cardano’s or Vieta’s methods
in a closed form. Note that only the real roots which satisfy
T ≤ 0.35T1 are accepted. Finally, mi(T ) and oi are derived
using Eq. (1) and Eq. (2) given T . If none of the resulting T
values satisfies the conditions, our approach is unable to find
a feasible parameter assignment.

4. EXPERIMENTS

In GPU-TDMh, the server uses a parameter set (see Sec. 3.2)
computed at design time and stored in a configuration file,
whereby oi values determine the length of the segments.
Our test system consists of the application, middleware, GPU
driver and hardware layers (GPU-TDMh occupies the middle-
ware layer). Experiments are performed on a system with 32
GB RAM, Intel Xeon processor, the NVIDIA GK110-430-B1
GPU and Ubuntu 16.10 operating system. The performance
of our approach is evaluated on a widely used matrix mul-
tiplication benchmark for GPU systems [21, 22]. We use a
variant of matrix multiplication which involves the device’s
shared memory, similar to the one described in [23]. The
result is computed in tiles of 32× 32 elements each, whereby
each element is handled by a thread; a tile corresponds to
a thread block. Thus, our matrix multiplication kernel can
be conveniently split into sub-kernels at a granularity level
of a single matrix tile. Many widely-used image processing
operations (e.g., convolution, median filter, etc. for which it is
possible to obtain a safe upper execution bound and the split-
ting overhead) can be parallelized on a GPU following the
same principles. Hereafter, we describe how the task sets with
random timing requirements are generated for benchmarking.

In the experiment with the benchmark application, we
generate random instances of the matrix multiplication sub-
kernel, each with a different WCET and period. Firstly,
we create a lookup table containing WCET for the different
number of tiles using the WCET function fM obtained with
[24]. To generate a task set, we select periods with uniform
distribution from the range Ti ∈ [100, 2000] milliseconds
randomly. Next, we apply the uUniFast algorithm [25] to
randomly generate utilization values U . Using Ti and ui we
generate the C ′

i values for each task (desired WCET values).
Finally, we find the closest value to C ′

i from the lookup table
(more formally, we find the set of parameters θ of the fM
function so that fM (θ) is close to C ′

i). In this sense, the
resulting task set utilization referred to as an expected uti-
lization is close to U . For simplicity, we use the U notation
for expected utilization. The parameter of our experiment is
U ∈ [0.35; 0.75]. Since the hyperperiod can be arbitrarily
large in our system, we limit the random task sets to the ones
with hyperperiods smaller than 106 milliseconds. For every
U value, we perform 100 experiments with different task sets.
The whole set of experiments runs roughly 50 hours.

We implemented two widely used real-time scheduling al-
gorithms — EDF and RM — and compared results of our ap-
proach with them. However, since GPUs are non-preemptible
devices, these algorithms represent non-preemptive EDF and
non-preemptive RM. The latter is conceptually close to Time-
Graph [14] and RGEM [15] frameworks. We do not consider
variants of EDF and RM that schedule single blocks if such
variants exist. Though they may resemble preemptive exe-
cution on the granularity level of a thread block, they would
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Fig. 1: Deadline miss ratio in the experiment with the real data sets.
Our approach is able to schedule all task sets by design.

utilize only a single streaming multiprocessor at any time.
For every expected GPU utilization value and every

scheduling algorithm, the miss ratio, i.e., the ratio of missed
jobs to the total number of jobs and actual GPU utilization are
measured (see Fig. 1). GPU utilization is defined as a portion
of time spent by a GPU for execution of one or several ker-
nels during a unit time interval. Each value on the diagram is
obtained by averaging results of 100 runs per each expected
utilization value. To measure the actual GPU utilization we
employ the nvidia-smi tool launched every 250 millisec-
onds. The latter value is determined empirically so that the
measurements do not harmfully affect task set execution and
provide the desired precision. As soon as a task set finishes,
the average GPU utilization is computed from the measure-
ments. In our approach, there are no deadline misses for the
task sets which are admitted by the parameter assignment
step. In average, the measured GPU utilization is 14% lower
than the expected one, because the real execution time of
the tasks is lower than the estimated WCET. EDF achieves
2.5% miss ratio and 55% schedulability ratio in average. For
RM, these values amount to 2.7% and 52% respectively. As
expected, EDF performs better than RM.

4.1. Experiments on Synthetic Task Sets

Apart from the experiment with the real task sets, we gener-
ate synthetic task sets and further evaluate the performance of
our approach. Specifically, we evaluate the schedulability ra-
tio of the proposed parameter assignment method (explained
in Sec. 3.2) according to different parameters such as the task
set utilization, the number of tasks and the splitting overhead
δ. To generate the task sets, random period values are selected
with uniform distribution from the range [102, 105] millisec-
onds. We use uUniFast algorithm to generate random utiliza-
tion values. Finally, Ci values are computed as ui × Ti.

In our experiments, we consider several values of δ where
∀i : 1 ≤ i ≤ n, δi ∈ [0, δ] with uniform chance. We vary
δ from 0 to 15 with step size 3. Moreover, we consider the
effect of the number of tasks in a task set n. To obtain each
data point, we generate 5000 random task sets. The result-
ing diagrams are shown in Fig. 2 and 3 where the horizontal
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utilization U and the total number of tasks n; δ = 6.
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Fig. 3: Experiments on synthetic task sets for different values of
GPU utilization U and splitting overhead δ; n = 10.

axis is the expected utilization U and the vertical axis is the
schedulability ratio. With the increase in the number of tasks,
schedulability ratio decreases because it becomes harder to
find a proper parameter set (see Fig. 2). The similar effect
occurs when δ increases (see Fig. 3). With the increase of
the splitting overhead, the reservation server wastes more re-
sources accordingly. Hence, it is not possible to find a feasible
parameter assignment for task sets with high utilization.

5. CONCLUSION

We proposed a lightweight scheduling middleware frame-
work for hard real-time sporadic tasks executed on a single
GPU — GPU-TDMh. We evaluated our approach on a GPU
matrix multiplication benchmark as well as on synthetic
task sets. If the parameters were successfully assigned, no
deadline misses occurred, while non-preemptive EDF and
non-preemptive RM could not schedule about 50% of those
task sets. We evaluated the effects of a different number of
tasks, splitting overhead and task set utilization. Our method
is sustainable towards release jitter and can handle sporadic
releases. Future work will address the case with dynamic
GPU global memory allocation in augmented reality systems.
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