

Sampling Analysis using Correlations for Monte Carlo Integration

Part 2: Error Analysis

Gurprit Singh gsingh@mpi-inf.mpg.de

 $f(\vec{x})$

 $l\vec{x}$ J_0

 $f(\vec{x})$

 $l\vec{x}$ Τ $\int_0^{J_0} J_0^{(n)}$

 $f(\vec{x})$

N $N \underset{k=1}{\overset{\frown}{\sum}} p(\vec{x}_k)$

Error as Noise during Monte Carlo Integration

Jitter

Poisson Disk

Jitter

Poisson Disk

Variance Convergence Rate of Samplers

Random

Number of Samples

Variance Convergence Rate of Samplers

Random 4D Jittered

Number of Samples

Variance Convergence Rate of Samplers

Random 4D Jittered Poisson Disk

Number of Samples

Overview

- Error Formulation in the Spatial Domain
- Error Formulation in the Fourier Domain
- Practical Results
- Conclusion: Design Principles

Overview

- Error Formulation in the Spatial Domain
- Error Formulation in the Fourier Domain
- Practical Results
- Conclusion: Design Principles

True Integral: $I = \int_{0}^{1} f(x) dx$

Monte Carlo Estimation: $\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k) = \frac{1}{N} \sum_{k=1}^{N} \frac{f(x_k)}{p(x_k)}$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$$

Over multiple realizations:

$Error = Bias^2 + Variance$

 $I = \int_0^1 f(x) dx$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$$

Over multiple realizations:

Bias:

 $I = \int_0^1 f(x) dx$

- $\text{Error} = \text{Bias}^2 + \text{Variance}$
- $\mathbb{E}[\Delta] = \mathbb{E}[\hat{I} I] = \mathbb{E}[\hat{I}] I$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$$

Over multiple realizations:

Bias: $\mathbb{E}[\Delta]$ $I = \int_0^1 f(x) dx$

 $Error = Bias^2 + Variance$

 $= \mathbb{E}[\hat{I}] - I$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$$

Over multiple realizations:

Bias: $\mathbb{E}[\Delta] = \mathbb{E}[\hat{I}] - I$

Variance: $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$

 $I = \int_0^1 f(x) dx$

- $Error = Bias^2 + Variance$

Error: Bias and Variance

 $\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$ k=1

Bias: $\mathbb{E}[\Delta] = \mathbb{E}[\hat{I}] - I$

 $\mathbb{E}[\hat{I}] = ?$

 $I = \int_0^1 f(x) dx$

Variance: $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$

Campbell's Theorem

 $\mathbb{E}\left[\sum_{k=1}^{N} f(x_k)\right] = \int_{\mathbb{R}^d} f(x)\lambda(x)dx$

Campbell's Theorem

 $\mathbb{E}\left[\sum_{k=1}^{N} f(x_k)\right] = \int_{\mathbb{R}^d} f(x)\lambda(x)dx$

$\lambda(x)$ First order product density

$$\mathbb{E}\left[\sum_{j,k} f(x_j, x_k)\right] = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(x) f(y) \varrho(x, y) dx$$

Campbell's Theorem

 $\mathbb{E}\left[\sum_{k=1}^{N} f(x_k)\right] = \int_{\mathbb{R}^d} f(x)\lambda(x)dx$

$\lambda(x)$ First order product density

$$\mathbb{E}\left[\sum_{j,k} f(x_j, x_k)\right] = \int_{\mathbb{R}^d \times \mathbb{R}^d} f(x) f(y) \varrho(x, y) dx$$

$$\varrho(x,y)$$

Second order product density

Expected number of points around x & y

Measures the joint probability p(x, y)

Error: Bias and Variance Bias: $\mathbb{E}[\Delta] = \mathbb{E}[\hat{I}] - I$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$$

Variance: $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$

Error: Bias Term Bias: $\mathbb{E}[\Delta] = \mathbb{E}[\hat{I}] - I$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$$

$$\mathbb{E}[\hat{I}] = \mathbb{E}\left[\sum_{k=1}^{N} w_k(x_k) f(x_k)\right] = \int_{V} w(x).$$

$f(x)\lambda(x)dx$

Using Campbell's Theorem

 $\mathbb{E}[\hat{I}] = \int_{V} w(x) f(x) \lambda(x) dx$

Error: Bias Term

Bias:
$$\mathbb{E}[\Delta] = \int_{V} w(x) f(x) \lambda(x) dx - w(x) = 1/\lambda(x) \longrightarrow \mathbb{E}[\Delta] = 0$$

Bias goes to zero

34

Ι

Error: Bias Term

Bias:
$$\mathbb{E}[\Delta] = \int_{V} w(x) f(x) \lambda(x) dx - w(x) = 1/\lambda(x) \longrightarrow \mathbb{E}[\Delta] = 0$$

Bias goes to zero

For fixed sample count N

$$\lambda(x) = Np(x)$$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k) = \frac{1}{N} \sum_{k=1}^{N} \frac{f(x_k)}{p(x_k)}$$

Ι

Error: Bias Term

Bias:
$$\mathbb{E}[\Delta] = \int_{V} w(x) f(x) \lambda(x) dx - w(x) = 1/\lambda(x) \longrightarrow \mathbb{E}[\Delta] = 0$$

Bias goes to zero

For fixed sample count N

$$\lambda(x) = Np(x)$$

$$\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k) = \frac{1}{N} \sum_{k=1}^{N} \frac{f(x_k)}{p(x_k)}$$

Ι

Error: Bias Term

Bias:
$$\mathbb{E}[\Delta] = \int_{V} w(x) f(x) \lambda(x) dx - w(x) = 1/\lambda(x) \longrightarrow \mathbb{E}[\Delta] = 0$$

Bias goes to zero

For fixed sample count N

$$\lambda(x) = Np(x)$$

$$\hat{I} = \frac{1}{N} \sum_{k=1}^{N} \frac{f(x_k)}{p(x_k)}$$

Monte Carlo estimator is unbiased

Ι

 $Var[\hat{I}] =$

 $\mathbb{E}[\hat{I}] = \int_{V}$

$$\int_{V} \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$$

 $\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$

$$Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$$
$$\mathbb{E}[\hat{I}]^2 = \left(\int_V w(x)f(x)\lambda(x)dx\right)^2$$
$$\mathbb{E}[\hat{I}^2] = \mathbb{E}\left[\sum_{j \neq k} w(x_j)f(x_j)w(x_k)f(x_k) + \sum_k (w(x_k)f(x_k))^2\right]$$

 $\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$

$$Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$$
$$\mathbb{E}[\hat{I}]^2 = \left(\int_V w(x)f(x)\lambda(x)dx\right)^2$$
$$\mathbb{E}[\hat{I}^2] = \mathbb{E}\left[\sum_{j \neq k} w(x_j)f(x_j)w(x_k)f(x_k) + \sum_k (w(x_k)f(x_k))^2\right]$$

 $\hat{I} = \sum_{k=1}^{N} w_k(x_k) f(x_k)$

 $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] -$

 $\mathbb{E}[\hat{I}^2] = \int_{V \times V} w(x) f(x) w(y) f(y)$ Using Campbell's Theorem

$$Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$$
$$\mathbb{E}[\hat{I}]^2 = \left(\int_V w(x)f(x)\lambda(x)dx\right)^2$$
$$w(x_j)f(x_j)w(x_k)f(x_k) = \mathbb{E}\left[\sum_k (w(x_k)f(x_k))^2\right]$$
$$f(x)w(y)f(y)\varrho(x,y)dxdy + \int_V (w(x)f(x))^2\lambda(x)dx$$

 $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] -$

 $\mathbb{E}[\hat{I}^2] = \int_{V \times V} w(x) f(x) w(y) f(y)$

$$\mathbb{E}[\hat{I}^{2}] - \mathbb{E}[\hat{I}]^{2}$$

$$\int_{V} w(x)f(x)\lambda(x)dx \right)^{2}$$

$$\Phi)\varrho(x,y)dxdy + \int_{V} (w(x)f(x))^{2}\lambda(x)dx$$

 $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] -$

 $\mathbb{E}[\hat{I}^2] = \int_{V \times V} w(x) f(x) w(y) f(y)$

$$\mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$$

$$\int_V w(x)f(x)\lambda(x)dx \Big)^2$$

$$\Phi)\varrho(x,y)dxdy + \int_V (w(x)f(x))^2\lambda(x)dx$$

 $Var[\hat{I}] = \int_{V \times V} w(x)f(x)w(y)f(y)\varrho(x,y)dxdy + \int_{V} (w(x)f(x))^2\lambda(x)dx$

 $Var[\hat{I}] = \mathbb{E}[\hat{I}^2] - \mathbb{E}[\hat{I}]^2$

$$-\left(\int_{V} w(x)f(x)\lambda(x)dx\right)^2$$

$$w(x) = 1/\lambda(x)$$

$$-\left(\int_{V} w(x)f(x)\lambda(x)dx\right)^2$$

 $w(x) = 1/\lambda(x)$

 $-\left(\int_{V} w(x)f(x)\lambda(x)dx\right)^{2}$

For an unbiased Monte Carlo Estimator

 $w(x) = 1/\lambda(x)$

$Var[\hat{I}] = \int_{V \times V} w(x)f(x)w(y)f(y)\varrho(x,y)dxdy + \int_{V} (w(x)f(x))^2\lambda(x)dx$

 $- \left(\int_V f(x) dx \right)$

For an unbiased Monte Carlo Estimator

 $w(x) = 1/\lambda(x)$

 I^2

For an unbiased Monte Carlo Estimator

 $w(x) = 1/\lambda(x)$

$Var[\hat{I}] = \int_{V \times V} w(x)f(x)w(y)f(y)\varrho(x,y)dxdy + \int_{V} (w(x)f(x))^2\lambda(x)dx - I^2$

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y)\frac{\varrho(x,y)}{\lambda(x)\lambda(y)}dx$

$$w(x) = 1/\lambda(x)$$

 $\frac{\partial y}{\partial (y)} dxdy + \int_V (w(x)f(x))^2\lambda(x)dx - I^2$

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y)\frac{\varrho(x,y)}{\lambda(x)\lambda(y)}dx$

$$w(x) = 1/\lambda(x)$$

$$\frac{y}{\lambda(y)}dxdy + \int_{V} (w(x)f(x))^{2}\lambda(x)dx - I^{2}$$

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y)\frac{\varrho(x,y)}{\lambda(x)\lambda(y)}dx$

$$dxdy \qquad + \int_V \frac{f(x)^2}{\lambda(x)} dx \qquad - I^2$$

For an unbiased Monte Carlo Estimator

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y) \frac{\varrho(x,y)}{\lambda(x)\lambda(y)} dx$

Second order correlation

$$dxdy + \int_{V} \frac{f(x)^{2}}{\lambda(x)} dx - I^{2}$$
Ins First order correlations

Variance only depends on the first and the second order correlations

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y)\frac{\varrho(x,y)}{\lambda(x)\lambda(y)}dxdy + \int_{V} \frac{f(x)^2}{\lambda(x)}dx = I^2$

Stationary Point Processes

Stationary (translation invariant)

$$\lambda(x) = \lambda$$
 is a constant $\varrho(x,y) = \lambda^2 g(x-y)$

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y)\frac{\varrho(x,y)}{\lambda(x)\lambda(y)}dxdy + \int_{V} \frac{f(x)^2}{\lambda(x)}dx = I^2$

$\lambda(x) = \lambda$

 $Var[\hat{I}] = \int_{V \times V} f(x)f(y)\frac{\varrho(x,y)}{\lambda^2}dxdy + \int_{V} \frac{f(x)^2}{\lambda}dx = I^2$

$\lambda(x) = \lambda$

 $Var[\hat{I}] = \frac{1}{\lambda^2} \int_{V \times V} f(x)f(y)\varrho(x,y)dxdy + \frac{1}{\lambda} \int_{V} f(x)^2 dx - I^2$

 $\varrho(x,y) = \lambda^2 q(x-y)$

 $Var[\hat{I}] = \frac{1}{\lambda^2} \int_{V \times V} f(x)f(y)\lambda^2 g(x-y)dxdy + \frac{1}{\lambda} \int_{V} f(x)^2 dx - I^2$

 $\rho(x, y) = \lambda^2 g(x - y)$

Arrangements

Poisson Processes

Clusters

 $\rho(x, y) = \lambda^2 q(x - y)$

Density $Var[\hat{I}] = \frac{1}{\lambda^2} \int_{V \times V} f(x)f(y)\lambda^2 g(x-y)dxdy + \frac{1}{\lambda} \int_{V} f(x)^2 dx - I^2$

Well distributed

h = x - y

 $Var[\hat{I}] = \frac{1}{\lambda^2} \int_{V \times V} f(x)f(y)\lambda^2 g(x-y)dxdy + \frac{1}{\lambda} \int_{V} f(x)^2 dx - I^2$

h = x - y

 $Var[\hat{I}] = \frac{1}{\lambda^2} \int_{V \times V} f(x) f(x-h) \lambda^2$

$$\Lambda^2 g(h) dx dh + \frac{1}{\lambda} \int_V f(x)^2 dx - I^2$$

h = x - y

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx + \frac{1}{\lambda^2} \int_{V \times V} f(x)f(x-h)\lambda^2 g(h) dx dh - I^2$

h = x - y

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^{2} dx + \int_{V} \int_{V} f(x)f(x-h)g(h) dx dh - I^{2}$

Autocorrelation: $a_f(h) = \int f(x)f(x-h)dh$

h = x - y

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^{2} dx + \frac{1}{\lambda^{2}} \int_{V} a_{f}(h)g(h) dh$

 $- I^2$

$Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx + \frac{1}{\lambda^2} \int_{V} a_f(h)g(h)dh - I^2$

f(x, y)

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx + \frac{1}{\lambda^2} \int_{V} a_f(h)g(h)dh - I^2$

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx + \frac{1}{\lambda^2} \int_{V} a_f(h)g(h)dh - I^2$

Autocorrelation

f(x,y)

 $a_f(h)$

Autocorrelation

f(x,y)

 $a_f(h)$

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx + \frac{1}{\lambda^2} \int_{V} a_f(h)g(h)dh - I^2$

g(h)

Autocorrelation

f(x,y)

 $a_f(h)$

 $Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx + \frac{1}{\lambda^2} \int_{V} a_f(h)g(h)dh - I^2$

g(h)

 $a_f(h)g(h)$ Oztireli [2016]

Uniform and Isotropic Jittered Samples

Regular grid

Uniform and Isotropic Jittered Samples

Circle light

Circle light

(a) Uniform jitter (b) Random jitter (c) Uniform jitter (d) Random jitter (RMS 6.59%) (RMS 8.32%) (RMS 13.4%) (RMS 10.4%)

Square light

Square light

Rammamoorthi et al.[2012]

Uniform and Isotropic Jittered Samples

Reference

Random Jitter Uniform Jitter

(RMS 11.21%)

(RMS 10.92%)

Isotropic Jitter

(RMS 10.79%)

(RMS 11.77%)

(RMS 8.77%)

• Error Formulation in the Spatial Domain

- Error Formulation in the Fourier Domain
- Practical Results
- Conclusion: Design Principles

Variance for Stationary Point Processes

$$Var[\hat{I}] = \frac{1}{\lambda} \int_{V} f(x)^2 dx -$$

 $\mathbb{E}\langle \mathcal{P}_{S_N}(\nu) \rangle$

$$\frac{1}{\lambda^2} \int_V a_f(h)g(h)dh - I^2$$

- **Relation between the Spatial and Fourier Statistics**
 - $\mathcal{F}(a_f)(\nu) = \mathcal{P}_f(\nu)$
 - Power spectrum

$$\rangle \rangle = \lambda G(\nu) + 1$$

Variance for Stationary Point Processes

$$\begin{array}{ll} \mbox{Spatial} \\ \mbox{Formulation} \end{array} & Var[\hat{I}] = \frac{1}{\lambda} \int_V f(x)^2 dx \ - \end{array}$$

Fourier Formulation

$$\operatorname{Var}[\hat{I}] = \int_{\Omega} \mathbb{E} \langle \mathcal{P}_{S_N}(\nu) \rangle \mathcal{P}_f$$

 $-\frac{1}{\lambda^2}\int_{V}a_f(h)g(h)dh - I^2$

 $(\nu)d\nu - \mathcal{P}_f(0)$

 $\mathcal{F}(a_f)(\nu) = \mathcal{P}_f(\nu)$ Power spectrum

 $\mathbb{E}\langle \mathcal{P}_{S_N}(\nu)\rangle = \lambda G(\nu) + 1$

Samples and function in Fourier Domain

▼ € ⊑

Sampling in Primal Domain is Convolution in **Fourier Domain**

 $f(x) \mathbf{S}(x)$

Fredo Durand [2011]

Sampling in Primal Domain is Convolution in **Fourier Domain**

Aliasing in Reconstruction

▼ € ⊡

Aliasing in Reconstruction

▼ € ⊡

Error in Monte Carlo Integration

Aliasing (Reconstruction) vs. Error (Integration)

Monte Carlo Estimator

Fredo Durand [2011]

Samples Power Spectrum

$$S_N(\vec{x}) = \frac{1}{N} \sum_{k=1}^N \delta(\vec{x} - \vec{x}_k)$$

$\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Spectrum

$$\mathcal{P}_{S_N}(\nu) = \left| \frac{1}{N} \sum_{k=1}^N e^{-i2\pi\nu \cdot \vec{x}_k} \right|^2$$

85

Samples Power Spectrum

$$S_N(\vec{x}) = \frac{1}{N} \sum_{k=1}^N \delta(\vec{x} - \vec{x_k})$$

$\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Samples Power Spectrum

$$S_N(\vec{x}) = \frac{1}{N} \sum_{k=1}^N \delta(\vec{x} - \vec{x}_k)$$

$\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Expected Sampling Power Spectra

 $\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Spectrum

$$\mathcal{P}_{S_N}(\nu) = \left| \frac{1}{N} \sum_{k=1}^N e^{-i2\pi\nu \cdot \vec{x}_k} \right|^2$$

Expected Sampling Power Spectra

 $\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Expected Sampling Power Spectra

 $\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) \, d\vec{x}$

Expected Spectrum

$$\mathbb{E}\left[\mathcal{P}_{S_N}(\nu)\right] = \left[\left|\frac{1}{N}\sum_{k=1}^N e^{-i2\pi\nu\cdot\vec{x}_k}\right|^2\right]$$

 $\hat{I} = \int_0^1 S_N(\vec{x}) f(\vec{x}) d\vec{x} = \int_\Omega \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu$

Using Convolution theorem

 $\hat{I} = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu$

 $\hat{I} = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu$

 $I = \int_{V} f(x) dx = \mathcal{F}_f(0)$

 $\hat{I} = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu$

 $I = \int_{V} f(x) dx = \mathcal{F}_f(0)$

Error: $\Delta = \hat{I} - I$

Error: Bias Term

Error:
$$\Delta = \int_{\Omega} \mathcal{F}_{S_N}(\mathbf{r})$$

Bias: $\mathbb{E}[\Delta] = \int_{\Omega} \mathbb{E}[\mathcal{F}_{S_N}]$

 $(\nu)\mathcal{F}_f^*(\nu)d\nu - \mathcal{F}_f(0)$

 $\mathcal{F}_{N}(\nu)]\mathcal{F}_{f}^{*}(\nu)d\nu - \mathcal{F}_{f}(0)$

$$\mathbb{E}[Xa] = \mathbb{E}[X] a$$
$$\mathbb{E}[a] = a$$

Error: Bias Term

Error:
$$\Delta = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu - \mathcal{F}_f(0)$$

Bias: $\mathbb{E}[\Delta] = \int_{\Omega} \mathbb{E}[\mathcal{F}_{S_N}(\nu)] \mathcal{F}_f^*(\nu) d\nu - \mathcal{F}_f(0)$

$$\mathbb{E}\left[\mathcal{F}_{S_N}(\nu)\right] = \delta(\nu) \qquad \text{Bias goes to zero}$$

w(x)

$$c) = 1/p(x)$$

Subr and Kautz [2013]

Error: $\Delta = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu - \mathcal{F}_f(0)$

Variance: $Var[\Delta]$

Error:
$$\Delta = \int_{\Omega} \mathcal{F}_{S_N}($$

Variance:
$$Var[\Delta] = Var[\hat{I} - I]$$

 $(\nu)\mathcal{F}_f^*(\nu)d\nu - \mathcal{F}_f(0)$

Error:
$$\Delta = \int_{\Omega} \mathcal{F}_{S_N}($$

Variance: $Var[\Delta] = Var[\hat{I} - I] = Var[\hat{I}] - Var[I]$

$(\nu)\mathcal{F}_f^*(\nu)d\nu - \mathcal{F}_f(0)$

Error:
$$\Delta = \int_{\Omega} \mathcal{F}_{S_N}($$

Variance: $Var[\Delta] = Var[\hat{I} - I] = Var[\hat{I}] - Var[I] = Var[\hat{I}]$

$(\nu)\mathcal{F}_f^*(\nu)d\nu - \mathcal{F}_f(0)$

Error:
$$\Delta = \int_{\Omega} \mathcal{F}_{S_N}($$

Variance:

 $Var[\Delta] = Var[\hat{I}]$

 $(\nu)\mathcal{F}_f^*(\nu)d\nu - \mathcal{F}_f(0)$

$Var[\Delta] = Var[\hat{I}]$

Error: $\Delta = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu - \mathcal{F}_f(0)$

Variance:
$$Var[\Delta] = \int_{\Omega} Var[\mathcal{F}_{S_N}(\nu)]$$

$\mathcal{F}_{f}(\nu)\mathcal{F}_{f}(\nu)d\nu - Var[\mathcal{F}_{f}(0)]$

 $Var[Xa] = Var[X] a^*a$

$Var[\Delta] = Var[\hat{I}]$

Error: $\Delta = \int_{\Omega} \mathcal{F}_{S_N}(\nu) \mathcal{F}_f^*(\nu) d\nu - \mathcal{F}_f(0)$

Variance:
$$Var[\Delta] = \int_{\Omega} Var[\mathcal{F}_{S_N}(\nu)]$$

$\mathcal{F}_{f}(\nu)\mathcal{F}_{f}(\nu)d\nu - Var[\mathcal{F}_{f}(0)]$

 $Var[Xa] = Var[X] a^*a$

Variance: $Var[\hat{I}] = \int_{\Omega} Var[\mathcal{F}_{S_N}(\nu)] \mathcal{F}_f^*(\nu) \mathcal{F}_f(\nu) d\nu$

Variance: $Var[\hat{I}] = \int_{\Omega} Var[\mathcal{F}_{S_N}(\nu)] \mathcal{F}_f(\nu) \mathcal{F}_f(\nu) d\nu$ $= \int_{\Omega} Var[\mathcal{F}_{S_N}(\nu)] \mathcal{P}_f(\nu) d\nu$

Variance: $Var[\hat{I}] = \int_{\Omega} Var[\mathcal{F}_{S_N}(\nu)] \mathcal{P}_f(\nu) d\nu$

$$= \int_{\Omega/0} \mathbb{E} \left[\mathcal{P} \right]$$

 $\mathcal{P}_{S_N}(\nu)] \mathcal{P}_f(\nu) d\nu$

Variance of Monte Carlo Integration in Fourier Domain

Variance of Monte Carlo Estimator

 $\mathbb{E}ig[\mathcal{P}_{S_N}(
u)ig]$

 $Var[\hat{I}] = \int_{\Omega/0}$

 $\mathcal{P}_f(\nu)$

 $d\nu$

Fredo Durand [2011] Subr & Kautz [2013] Pilleboue et al. [2015]

X

$$Var[\hat{I}] = \int_0^\infty \rho^{d-1} \int_{\mathcal{S}^{d-1}}$$

 $\mathbb{E}\left[\tilde{\mathcal{P}}_{S_N}(
ho\mathbf{n})
ight]$

Х

 $\mathcal{P}_f(
ho \mathbf{n})$

$d\mathbf{n} d\rho$

 $ilde{\mathcal{P}}_{{S}_N}\!(
ho)$

 $\tilde{\mathcal{P}}_{S_N}(\rho)$

 $\tilde{\mathcal{P}}_{S_N}(\rho)$

 $ilde{\mathcal{P}}_{{S}_N}(
ho)$

$$Var[\hat{I}] = \int_{0}^{\infty} \rho^{d-1}$$

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Variance: Product of Power Spectra

Sampling Power Spectrum

Variance: Product of Power Spectra

Sampling Power Spectrum

Variance: Product of Power Spectra

Sampling Power Spectrum

Jitter vs Poisson Disk Radial Power Spectra

118

Jitter vs Poisson Disk Radial Power Spectra

 $ilde{\mathcal{P}}_{{S}_N}\!(
ho)$

$$Var[\hat{I}] = \int_{0}^{\infty} \rho^{d-1}$$

Samplers	Worst Case	Best Case
Random	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
Poisson Disk	$\mathcal{O}(N^{-1})$	$\mathcal{O}(N^{-1})$
CCVT	$\mathcal{O}(N^{-1.5})$	$\mathcal{O}(N^{-3})$

Isotropic Spectrum Poisson Disk

Pilleboue et al. [

Slide after Wojciech Jarosz

Initialize

Shuffle rows

Shuffle columns

N-rooks / Latin Hypercube

N-rooks Spectrum

N-rooks / Latin Hypercube

Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

Jitter

Jitter Spectrum

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-Jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

N-rooks / Latin Hypercube

N-rooks Spectrum

Multi-jitter

Multi-Jitter Spectrum

Chiu et al. [1993]

Sampling in Higher Dimensions

4D Sampling

2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) (x_2, y_2) (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2)

4D Sampling

2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) (x_2, y_2) (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2)

4D Sampling

2D 2D (u_1, v_1) (x_1, y_1) (u_2, v_2) $[x_2, y_2]$ (u_3, v_3) (x_3, y_3) (u_4, v_4) (x_4, y_4) 4D (x_1, y_1, u_3, v_3) (x_2, y_2, u_1, v_1) (x_3, y_3, u_4, v_4) (x_4, y_4, u_2, v_2)

138

4D Sampling Spectra along Projections

4D Sampling Spectra along Projections

140

4D Sampling Spectra along Projections

How can we perform Convergence Analysis for Anisotropic Sampling Spectra ?

Variance Formulation for Anisotropic Sampling Spectra

 $\mathbb{E}ig[\mathcal{P}_{S_N}(
u)ig]$

N-rooks spectrum

N-rooks

 $\mathcal{P}_f(\nu)$

d
u

Integrand spectrum $f(\vec{x})$

X

Variance Formulation for Anisotropic Sampling Spectra

 $d\mathbf{n} d\rho$
$\mathbb{E}\left[ilde{\mathcal{P}}_{S_N}(
ho \mathbf{n})
ight]$ $Var[\hat{I}] = \int_{\mathcal{S}^{d-1}} \int_{0}^{\infty} \rho^{d-1}$

 $\mathbb{E}\left[\mathcal{P}_{S_N}(\rho_k \mathbf{n_k})\right]$ $Var[\hat{I}] = \int_{\mathcal{S}^{d-1}} \int_{0}^{\infty} \rho^{d-1} - \frac{1}{\rho} \int_{0}^{\infty} \rho^{d-1} - \frac{1}{\rho} \int_{0}^{\infty} \rho^{d-1} \rho^{d-1} \rho^{d-1} - \frac{1}{\rho} \int_{0}^{\infty} \rho^{d-1} \rho^{d-1} \rho^{d-1} - \frac{1}{\rho} \int_{0}^{\infty} \rho^{d-1} \rho^{d-1} \rho^{d-1} \rho^{d-1} - \frac{1}{\rho} \int_{0}^{\infty} \rho^{d-1} \rho^{d-1}$

 $Var[\hat{I}] = \int_{\mathcal{S}^{d-1}} \int_{0}^{\infty} d^{-1}$

 \times

 $d\rho d\mathbf{n}$

 \mathbf{n}_k

$$Var[\hat{I}] = \lim_{m \to \infty} \sum_{k=1}^{m} \int_{0}^{\infty} \rho^{d-1} \mathbb{E}\left[\mathcal{P}_{S_N}(\rho^{d-1})\right] \mathbb{E}$$

$(\rho_k \mathbf{n_k})$] × $\mathcal{P}_f(\rho_k \mathbf{n_k})$ $d\rho \Delta \mathbf{n_k}$

$$Var[\hat{I}] = \lim_{m \to \infty} \sum_{k=1}^{m} \int_{0}^{\infty} \rho^{d-1}$$

$-1 \mathbb{E}\left[\mathcal{P}_{S_N}(\rho_k \mathbf{n}_k)\right] \mathcal{P}_f(\rho_k \mathbf{n}_k) d\rho \Delta \mathbf{n}_k$

Power Spectrum

Power

Power

Power Spectrum

Power

Power

Variance due to N-rooks Sampler $f(\vec{x})$

 $\left< \mathcal{P}_{S_N}(\nu) \right>$

N-rooks spectrum

$$\mathcal{P}_f(\nu)$$

Variance due to N-rooks Sampler $f(\vec{x})$

Var

N-rooks spectrum

 $\mathcal{P}_f(
u)$

d u

Integrand spectrum

Integrand spectrum

 $d\nu$

155

Variance Convergence of Latin Hypercube (N-rooks)

Pixel B

Non-Axis Aligned Integrand Spectra

 $\mathcal{P}_f(
u)$

Non-Axis Aligned Integrand Spectra

Multi-jittered Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

 $\mathcal{P}_f(\nu)$

Sampling Spectrum

Shearing Multi-Jittered Samples

Sheared Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

 $\mathcal{P}_f(\nu)$

Sheared Spectrum

How can we determine the sample shearing parameters ?

Sheared Samples

 $\left\langle \mathcal{P}_{S_N}(\nu) \right\rangle$

Sheared Spectrum

Frequency Analysis of Light Transport

Related Work

- Frequency Analysis of Light Transport Durand et al. [2005]
- Depth of Field Soler et al. [2009]
- Motion Blur Egan et al. [2009]
- Ambient Occlusion Egan et al. [2011] and more...

Related Work

- Frequency Analysis of Light Transport Durand et al. [2005]
- Depth of Field Soler et al. [2009]
- Motion Blur Egan et al. [2009]
- Ambient Occlusion Egan et al. [2011] and more...

Related Work

- Frequency Analysis of Light Transport Durand et al. [2005]
- Depth of Field Soler et al. [2009]
- Motion Blur Egan et al. [2009]

Reconstruction

• Ambient Occlusion Egan et al. [2011] and more...

Integration

focal plane / virtual image plane

1D Aperture

U

focal plane / virtual image plane

XU Slices

Depth of Field Analysis Ray space

Spatial

Fourier

XU Slices

Depth of Field Analysis Ray space

Spatial

Fourier

XU Slices

X XU Slices

Light Field gets Sheared

$x = x + u \frac{F - d}{d}$, F: focal distance Shear increases with b febted by the feature of the

Spectra along Different Projections

Uncorrelated Multi-jittered

Integrand

Spectra along Different Projections

XU

Uncorrelated Multi-jittered

ntegrand

Spectra along Different Projections

Uncorrelated Multi-jittered

ntegrand

- Error Formulation in the Spatial Domain
- Error Formulation in the Fourier Domain
- Practical Results
- Conclusion: Design Principles

Variance Analysis of Jittered Strategies

Square Light Sources Circle sian Gaus

Reference

Samplers

Samplers

Samplers

Samplers

Uniform J **R-Uniform J** Isotropic J

Convergence Analysis of Jittered Strategies

Iog RMSE gol

Original Uncorrelated-MultiJittered Samples

XU Projection

186

Original Uncorrelated Multi-jittered Samples

XU Subspace

Variance Heatmap

With Original Samples

Uncorrelated Multi-jittered

Multiple images

Variance Heatmap

With Original Samples

Uncorrelated Multi-jittered

With Sheared Samples

- Error Formulation in the Spatial Domain
- Error Formulation in the Fourier Domain
- Practical Results
- Conclusion: Design Principles

Challenging Cases: XU & YV Projections

Hairline Anisotropy

Sampling XU Spectrum

Pixel A XU Spectrum

Oracle Accuracy

Pixel B Sampling XU Spectrum XU Spectrum

Double-wedge Spectrum

Design Principles for New Sampling Patterns Multi-Jittered Spectra Desired Sampling Spectra

Singh and Jarosz [2017]

Design Principles for New Sampling Patterns Multi-Jittered Spectra Desired Sampling Spectra

Correlated Multi-Jitter

Kensler [2013]

Design Principles for New Sampling Patterns

Integrand Spectrum

In both XU and YV Projections

Desired Sampling Spectra

Singh and Jarosz [2017]

196

Summary

Point processes to understand error in integration

 $\frac{1}{n^2} \sum_{i=1}^n n \int s_i^2(\mathbf{x}) d\mathbf{x}$

Closed-form formulas amenable to **analysis**

Only 1st & 2nd order statistics needed

Future Directions

General domains & **local** scene analysis

Anti-aliasing & reconstruction

Sampling patterns with adaptive density & correlations