
Decision Procedures

for Logical Theories

Harald Ganzinger

Winter Term 2002/2003

1 Introduction

• decidable logics (fragments) and theories and their relation
to verification tasks

• treating concrete and abstract data structures simultane-
ously

The State Explosion Problem 2

Question: What is the difference between MC and TP?

Answer: The size of the models.

Number of states: BDDs: 2100, SAT: 2107

, in practice (conceptually): ∞

Needed: good (computable) abstract descriptions of ∞

Approach: exploit the structure of the data structures and try to achieve

decidability

Practical experience: PVS, STeP, SVC, CVC

Example 3

Theory 1: N = (N ,+, <,≤)

Theory 2: L = (X∗, nil, cons, car, cdr)

Theory 3: B = (B , t, f)

Enrichment S additional “free” symbols

ΠS = ∅, ΩS = {sorted/1}

with axioms (implicitly universally quantified)

sorted(nil)≈ t

sorted(cons(x, nil))≈ t

x ≤ y → sorted(cons(x, cons(y, l)))≈ sorted(cons(y, l))

Sample problem: ∀l (sorted(l)≈ t → sorted(cdr(l))≈ t ∨ l≈ nil)

That means prove or refute

(N+L+B)sorted |= ∀S → ∀l (sorted(l)≈ t → sorted(cdr(l))≈ t ∨ l≈ nil)

The Setting 4

• Inference problems: check validity, find solution, find

counterexample

• Which theories have decidable inference problems? Which class of

problems is decidable?

• Having theories with decidable inference problems, consider their

combination and extensions by free functions, possibly with

additional axioms.

Which inference problems remain decidable?

• Design of good (non-naive, complete) inference system if

undecidable

• Black box vs. glass box approach

Complications 5

primitive theories: undecidable or too complex

combinations: sharing of sorts and/or functions between theories

extensions: the enrichment alone can be undecidable

extreme cases: the combination might not even be recursively

enumerable

conclusion: we must be modest and consider restricted cases:

sharing, fragments such as ∀ or ∃

Contents 6

first-order logic: syntax, semantics, entailment, theories

basic decision methods: automata theory, model theory, universal calculi

(tableau, resolution, superposition), complexity analysis

theories: congruence closure, syntactic unification, AC-unification,

Presburger arithmetic, linear rational arithmetic, first-order theory

of the real numbers with, lists, arrays

combination methods: Nelson/Oppen, Shostak

Literature 7

General: Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving,

Springer

Huth, Ryan: Logic in Computer Science: Modelling and reasoning

about systems, Cambridge University Press

Baader, Nipkow: Term rewriting and all that. Cambridge U. Press,

1998, Chapter 2.

Specific: various journal and conference papers, cf. below

2 First-Order Logic with Equality

• formalizes fundamental mathematical concepts

• expressive (Turing-complete)

• not too expressive (not axiomatizable: natural numbers,
uncountable sets)

• rich structure of decidable fragments

• rich model and proof theory

First-order logic is also called (first-order) predicate logic.

2.1 Syntax 8

• a signature Σ defines the non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• fixed are the logical symbols (domain-independent):

equality (≈), Boolean combinations (¬, ∨, ∧, →, ↔), quantifiers

(∀, ∃)

Example: Peano Arithmetic 9

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Exampes of formulas over this signature are:

∀x, y(x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y(x + y ≈ y)

∀x, y(x ∗ s(y) ≈ x ∗ y + x)

∀x, y(s(x) ≈ s(y) → x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

Signature 10

Usage: fixing the alphabet of non-logical symbols

Σ = (Ω,Π),

where

• Ω a set of function symbols f with arity n ≥ 0, written f/n,

• Π a set of predicate symbols p with arity m ≥ 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is

also called a propositional variable. We use letters P , Q, R, S, to

denote propositional variables.

Refined concept for practical applications: many-sorted signatures

(corresponds to simple type systems in programming languages); not so

interesting from a logical point of view

Variables 11

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the

denotation of) variables.

Terms 12

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

s, t, u, v ::= x , x ∈ X (variable)

| f(s1, ..., sn) , f/n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not

containing any variable is called a ground term. By TΣ we denote the

set of Σ-ground terms.

In other words, terms are formal expressions with well-balanced brackets

which we may also view as marked, ordered trees. The markings are

function symbols or variables. The nodes correspond to the subterms of

the term. A node v that is marked with a function symbol f of arity n

has exactly n subtrees representing the n immediate subterms of v.

Atoms 13

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(s1, ..., sm) , p/m ∈ Π

| (s ≈ t) (equation)

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really

increase the expressiveness of first-order logic, (cf. exercises). But

deductive systems where equality is treated specifically can be much

more efficient.

Literals 14

L ::= A (positive literal)

| ¬A (negative literal)

Clauses 15

C,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

General First-Order Formulas 16

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F,G,H ::= ⊥ (falsum)

| > (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀xF (universal quantification)

| ∃xF (existential quantification)

Notational Conventions 17

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔

(binding precedences)

– ∨ and ∧ are associative and commutative

– → is right-associative

• Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F .

• infix-, prefix-, postfix-, or mixfix-notation with the usual operator

precedences; examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

0 for 0()

The Concept of Substitution 18

Substitution is a fundamental operation on terms and formulas that

occurs in all inference systems for first-order logic. Substitution models

on the syntactical level the assignment of values to variables. Since we

are on the syntactical level, values are represented by terms.

In the presence of quantification it is surprisingly complex.

We need to make sure that the (free) variables in s are not captured

upon placing s into the scope of a quantifier, hence the renaming of the

bound variable y into a “fresh”, that is, previously unused, variable z.

Why this definition of substitution is well-defined will be discussed

below.

Substitutions Formally 19

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of

variables occurring in one of the terms σ(x), with x ∈ dom(σ), is

denoted by codom(σ).

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise

distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =

si, if y = xi

y, otherwise

We also write xσ for σ(x).

Modifying a Substitution 20

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

t, if y = x

σ(y), otherwise

Application of a Substitution 21

“Homomorphic” extension of σ to terms and formulas:

f(s1, . . . , sn)σ = f(s1σ, . . . , snσ)

⊥σ = ⊥

>σ = >

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(QxF)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

2.2. Semantics 22

To give semantics to a logical system means to define a notion of truth

for the formulas. The concept of truth that we will now define for

first-order logic goes back to Tarski.

In classical logic (dating back to Aristoteles) there are “only” two truth

values “true” and “false” which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Structures 23

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f/n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the algebra

and its universe.

By Σ-Alg we denote the class of all Σ-algebras.

Assignments 24

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment, also called a valuation (over a given Σ-algebra

A), is a map α : X → A.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with Respect to α 25

By structural induction we define

A(α) : TΣ(X) → A

as follows:

A(α)(x) = α(x), x ∈ X

A(α)(f(s1, . . . , sn)) = fA(A(α)(s1), . . . ,A(α)(sn)), f/n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to

modified assigments. To that end, let α[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

α[x 7→ a](y) :=

a if x = y

α(y) otherwise

Truth Value of a Formula in A with Respect to α 26

The set of truth values is given as {0, 1}.

A(α) : FΣ(X) → {0, 1} is defined inductively over the structure of F :

A(α)(⊥) = 0

A(α)(>) = 1

A(α)(p(s1, . . . , sn)) = 1 ⇔ (A(α)(s1), . . . ,A(α)(sn)) ∈ pA

A(α)(s ≈ t) = 1 ⇔ A(α)(s) = A(α)(t)

A(α)(¬F) = 1 ⇔ A(α)(F) = 0

A(α)(FρG) = Bρ(A(α)(F),A(α)(G))

with Bρ the Boolean function associated with ρ

A(α)(∀xF) = min
a∈A

{A(α[x 7→ a])(F)}

A(α)(∃xF) = max
a∈A

{A(α[x 7→ a])(F)}

Ex: “Standard” Interpretation N for Peano Arithmetic 27

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n + m

∗N : (n,m) 7→ n ∗ m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

Values over N for Sample Terms and Formulas 28

Under the assignment α : x 7→ 1, y 7→ 3 we obtain

N(α)(s(x) + s(0)) = 3

N(α)(x + y ≈ s(y)) = 1

N(α)(∀x, y(x + y ≈ y + x)) = 1

N(α)(∀z z ≤ y) = 0

N(α)(∀x∃y x < y) = 1

2.3 Models, Validity, and Satisfiability 29

F is valid in A ∈ Σ-alg under assigment α:

A, α |= F :⇔ A(α)(F) = 1

F is valid in A ∈ Σ-alg (A is a model of F):

A |= F :⇔ A, α |= F, for all α ∈ X → A

F is valid in a class of structures M ⊆ Σ-alg:

M |= F :⇔ A |= F, for all A ∈ M

F is (universally) valid (or is a tautology):

|= F :⇔ A |= F, for all A ∈ Σ-alg

F is called satisfiable [in M] iff there exist A [∈ M] and α such that

A, α |= F . Otherwise F is called unsatisfiable [in M].

Substitution Lemma 30

The following theorems, to be proved by structural induction, hold for

all Σ-algebras A, assignments α, and substitutions σ.

Theorem 2.1 For any Σ-term t,

A(α)(tσ) = A(α ◦ σ)(t),

where α ◦ σ : X → A is the assignment α ◦ σ(x) = A(α)(xσ).

Theorem 2.2 For any Σ-formula F ,

A(α)(Fσ) = A(α ◦ σ)(F).

Corollary 2.3 A, α |= Fσ ⇔ A, α ◦ σ |= F

These theorems basically express that the syntactic concept of

substitution corresponds to the semantic concept of an assignment.

Entailment and Equivalence 31

In this course we will use the notion of entailment only for closed

formulas. Let F and G be closed formulas.

F entails (implies) G (or G is entailed by F), written F |= G

:⇔ for all A ∈ Σ-alg, whenever A |= F then A |= G.

F and G are called equivalent

:⇔ for all A ∈ Σ-alg we have A |= F ⇔ A |= G.

Convention: Whenever we write F |= G, where F or G are not

necessarily closed, we consider this as shorthand notation for ∀F |= ∀G.

Proposition 2.4 F entails G iff (F → G) is valid

Proposition 2.5 F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of closed formulas F in the “natural way”, e.g., F |= G

:⇔ for all A ∈ Σ-alg: if A |= F , for all F ∈ F , then A |= G.

Validity vs. Unsatisfiability 32

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 2.6

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is

sufficient to design a checker for unsatisfiability.

Q: In a similar way, entailment F |= F can be reduced to

unsatisfiability. How?

2.4 Theories 33

Theories have a syntactic and a semantic aspect.

In the syntactic or axiomatic view, a (first-order) theory is given by a

set F of (closed) first-order Σ-formulas, and then one is interested in the

models Mod(F) of F , that is, the set of Σ-algebras satisfying F :

Mod(F) = {A ∈ Σ-alg | A |= G, for all G in F}

Dually, in the semantic view, when given a class M ⊆ Σ-alg of

structures, one is interested in the (first-order) theory Th(M) of M

Th(M) = {G ∈ FΣ(X) closed | M |= G}

which is the set of Σ-formulas that are satisfied in all structures A in M.

Th(Mod(F)) is the set of formulas true in all models of F . It represents

exactly the set of consequences of F . Clearly, F ⊆ Th(Mod(F)), and

also M ⊆ Mod(Th(M)). Typically these inclusions are strict.

Two Interesting Theories 34

Let ΣPres = ({0/0, s/1,+/2}, ∅) and Z+ = (Z, 0, s,+) its standard

interpretation on the integers.a Th(Z+) is called Presburger

arithmetic.b Presburger arithmetic is decidable in 3EXPTIMEc (and

there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22cn

)) and in

2EXPSPACE; usage of automata-theoretic methods, cf. below.

However, N∗ = (N, 0, s,+, ∗), the standard interpretation of

ΣPA = ({0/0, s/1,+/2, ∗/2}, ∅), has as theory the so-called Peano

arithmetic which is undedidable, not even recursively enumerable.

Note: The choice of signature can make a big difference with regard to

the compational complexity of theories.
aThere is no essential difference when one, instead of Z, considers the natural

numbers N as standard interpretation.
bM. Presburger (1929)

cD. Oppen: A 22
2

n

upper bound on the complexity of Presburger arithmetic.

Journal of Computer and System Sciences, 16(3):323–332, July 1978

Example: Lists 35

Lists (binary trees, rather) are an equational theory, axiomatized by

these (implicitly universally quantified) equations:

car(cons(x, y))≈x

cdr(cons(x, y))≈ y

cons(car(x), cdr(x))≈x

over the signature Σlist with Πlist = ∅ and Ωlist = {cons/2, car/1, cdr/1}.

To explain how typical models of these axioms look like, viewing the

equations as rewrite rules (from left to right) is useful. We need to

explain the fundamental concepts of term rewriting.

Combination of Theories and Models 36

Forgetting symbols. Suppose Σ ⊆ Σ′, that is, Ω ⊆ Ω′ and Π ⊆ Π′.

For A ∈ Σ′-alg, by A|Σ we denote the Σ-structure for which

UA|Σ = UA

fA|Σ = fA, for f in Ω

pA|Σ = pA, for p in Π

That is, we simply ignore the functions and predicates associated

with symbols in Σ′ \ Σ. A|Σ is called the restriction of A to Σ.

Amalgamating algebras. Let Σ = Σ1 + Σ2 (formed by uniting the

respective symbol sets). A Σ-Algebra A is called an amalgamation

of Σi-algebras Ai iff, for i = 1, 2, we have that A|Σi
= Ai.

On model classes: Let Σ ⊆ Σ′, M ⊆ Σ′-alg, Mi ⊆ Σi-alg.

M|Σ = {A|Σ | A ∈ M}

M1 + M2 = {A ∈ (Σ1+Σ2)-alg | A|Σi
∈ Mi, for i = 1, 2}

Canonical List Model 37

Let L be the set of list axioms oriented as rewrite rules from left to

right. (Below we will introduce the basics of term rewriting formally.)

We claim (w/o proof) that L is uniquely normalizing.

Define the Σlist-structure L as follows:

L = {t ∈ TΣlist
(X) | t is irreducible by L}

consL(l1, l2) = cons(l1, l2)↓L

carL(l) = car(l)↓L

cdrL(l) = cdr(l)↓L

Regard s↓L as the result of evaluating the “input” s with respect to the

“functional program” L.

E: convince yourself that L is uniquely normalizing.

E: show that L in fact satisfies the list axioms.

Q: why is this a canonical model of L?

3 Rewrite-Based Methods

3.1 Essentials of Term Rewriting 38

Subterm replacement: If p is a position in a term s, by s/p we denote the

subterm of s at position p. If also v is a term, s[v]p denotes the

term resulting from replacing the subterm of s at p by v.

Rewrite rule: pair of terms (over a given signature Σ), written s ⇒ t

Rewrite system: set R of rewrite rules

One-step rewrite relation: s ⇒R t iff there exists l ⇒ r in R, a position p

in s and a substitution σ such that s/p = lσ and t = s[rσ]p

(Ir-)reducibility: s is called reducible (by R) if s ⇒R t for some term t,

and is called irreducible (by R), otherwise.

Normal form: t is called a normal form of s (by R), if s ⇒∗
R t and t is

irreducible by R. R is called uniquely normalizing if every term has

exactly one normal form wrt. R. In that case by s↓R we denote that

unique normal form of s by R.

Term Rewriting: Basic Definitions II 39

Termination: A rewrite system R is called terminating if ⇒R has no

infinite chains.

Confluence: R is called confluent if whenever s ⇒∗
R t and s ⇒∗

R u, for

any three terms s, t, and u, then there exists a term v such that

t ⇒∗
R v and u ⇒∗

R v.

Local confluence: R is called locally confluent if whenever s ⇒R t and

s ⇒R u, for any three terms s, t, and u, then there exists a term v

such that t ⇒∗
R v and u ⇒∗

R v.

Joinability: Two terms s and t are called joinable by R, written s ⇓R t, if

there exists a term u such that s ⇒∗
R u ⇐∗

R t.

Bidirectional replacement: We define ⇔R to be the relation ⇒R ∪ ⇐R,

formalizing the notion of replacement via R where rewrite rules can

be applied both directions.

Term Rewriting: Basic Properties 40

Theorem 3.1 (Newman 1942) Let R be terminating. Then R is

confluent if, and only if, R is locally confluent.

Theorem 3.2 R is confluent if, and only if, the relations ⇔∗
R and ⇓R

coincide.

Word Problems 41

Word problems: Given a set E of Σ-equations, the word problem for E is

to decide, for any two Σ-terms s and t, whether or not E |= s≈ t.a

Uniform word problems: Given a set E of (implicitly) universally

quantified Σ-equations, the uniform word problem for E is to

decide, for any sequence of pairs of Σ-terms si and ti, 0 ≤ i ≤ n,

n ≥ 0, whether or not E |= (s1 ≈ t1 ∧ . . . ∧ sn ≈ tn → s0 ≈ t0).
b

Theory: In general WPs (hence UWPs, too) are undecidable. (Exercise)

There are theories E for which the WP is decidable but the UWP is

not.

Practice: For many theories WPs and UWPs are efficiently decidable.

aAccording to our definition of entailment on p. 31, what we mean is ∀E |= ∀(s≈ t).
bIn full notation ∀E |= ∀(s1 ≈ t1 ∧ . . . ∧ sn ≈ tn → s0 ≈ t0).

Equations vs. Rules 42

If E is a set of equations we may identify it with the set of rewrite rules

obtained by orienting the equations from left to right. Conversely, if R

is a set of rewrite rules we may identify R with the set of equations

obtained by forgetting the orientation of the rules.

In other words, for us rewrite rules and equations have the same logical

meaning (both are equations) and we freely convert one into the other.

When we convert equations into rules we need to give them an

orientation. Unless specified otherwise we assume an orientation from

left to right.

Birkhoff’s Theorem 43

Theorem 3.3 (Birkhoff) Let E be a set of Σ-equations. For any two

Σ-terms s and t the following two properties are equivalent:

1. E |= s≈ t 2. s ⇔∗
E t

Proof. Baader/Nipkow book, chapter 3 2

Corollary 3.4 If R is a confluent rewrite system then the following

two properties are equivalent:

1. R |= s≈ t 2. s ⇓R t

Theorem 3.5 If R is a finite terminating and confluent rewrite system

then the word problem for R is decidable.

Proof. If R is finite and terminating, the relation ⇓R is decidable. 2

This theorem represents one of the fundamental methods of obtaining

decision procedures for [uniform] word problems.

Term Rewriting: Basic Definitions III 44

Critical pairs: Let s ⇒ t and u ⇒ v be two rules do not share any

variables (possibly after suitable renaming). If s is unifiable (via a

most general unifier σ) with a non-variable subterm u/p of u then

we call the pair of terms

((u[t]p)σ, vσ)

a critical pair between these two rules. We often write critical pairs

as equations as they are equational consequences of the two rules.

The pair is called joinable (in R) if (u[t]p)σ ⇓R vσ.

Example: Consider the two rules

car(cons(x, y)) ⇒ x

cons(car(x′), cdr(x′)) ⇒ x′

Then (car(x′), car(x′)) and (cons(x, cdr(x′)), cons(x, cdr(cons(x, y))))

are the critical pairs between the two rules (both joinable).

Confluence Test 45

Theorem 3.6 Then R is locally confluent if, and only if, all critical

pairs between any two rules in R are joinable in R.

Proof. Baader/Nipkow, chapter 6.1 2

Corollary 3.7 If R is finite and terminating, confluence of R is

decidable.

Proof. For terminating systems, local confluence and confluence

coincide. Check the joinability of the (finitely many) critical pairs. 2

3.2 Knuth/Bendix Completion 46

Knuth/Bendix completion (1970) attempts at converting a given set of

equations E into a logically equivalent, canonical rewrite system R. We

compute with equations E (initially given) and rewrite rules R (initially

empty). If the process terminates, E is empty and R is canonical and

equivalent with the initial equations. For the KB inference rules below use

matching modulo the symmetry of ≈. This is relevant for Orient and

Reduce-E. In particular we may orient an equation in any direction that

preserves the termination of the rewrite rules.

The order in which the KB rules are applied is in principle irrelevant as long

as we apply them exhaustively. In practice, however, they should be tried in

the order as listed, so as to give preference to the simplification of the

equations and rewrite rules.

The procedure fails when an equation persists that cannot be oriented. Also,

the procedure might not be terminating. Moreover, there is an extra technical

condition to be placed on Reduce-R in order to avoid certain trivial cycles in

the procedure when applying the KB rules strictly with the given precedence.

KB Inference Rules 47

E ∪ {s≈ t}, R �KB E ∪ {s′ ≈ t}, R (Reduce-E)

if s ⇒+
R s′

E ∪ {s≈ s}, R �KB E,R (Triv)

E,R ∪ {s ⇒ t} �KB E ∪ {s′ ≈ t}, R (Reduce-R)

if s ⇒+
R s′

E ∪ {s≈ t}, R �KB E,R ∪ {s ⇒ t} (Orient)

if R ∪ {s ⇒ t} is terminating

E,R �KB E ∪ {s≈ t}, R (CP)

if s≈ t is a non-joinable c.p. between two rules in R

Knuth/Bendix Completion: Properties 48

Theorem 3.8 If E,R �KB E′, R′ then E ∪ R |= E′ ∪ R′ and

E′ ∪ R′ |= E ∪ R.

Theorem 3.9 If E, ∅ �KB
∗ ∅, R with no KB inference rule applicable to

∅, R then R is canonical.

Altogether, if the KB procedure terminates with an empty set of equations

the the final set R of rules is canonical and logically equivalent to the initial

set E of equations.

In that case the word problem for E is decidable by testing for R-joinability

of equations.

Practical problems:

How to prove termination of rewrite systems? (Requires the implementation

of so-called rewrite orderings.)

How to make the procedure non-failing? (Requires an extended concept of

rewriting with orientable instances of equations. Unfailing KB completion is a

semi-decision procedure for any kind of word problems.)

The Overall Picture 49

Goal: we want to decide the word problem for an equational theory E.

• Birkhoff’s theorem links entailment with equational proofs in ⇔∗
E .

• Confluence allows one to restrict proof search for ⇔∗
E to rewrite

proofs (relation ⇓E).

• Canonicity (confluence+termination) makes searching for rewrite

proofs in ⇓E don’t-care nondeterministic and terminating.

• KB-completion is targeted at transforming a given E into an

equivalent canonical E ′.

• An extended procedure can be used to check/achieve decidability of

the UWP for E. [C. Lynch, Proc. IEEE Conf. on Logic in

Computer Science, 2002]

3.3 Congruence Closure 50

Problem: Decide (universal) validity of equational Horn clauses

|=Σ ∀(s1 ≈ t1 ∧ . . . ∧ sn ≈ tn → s0 ≈ t0) (1)

over Σ. This is the UWP of the theory of all Σ-algebras.

Skolemization: Consider the variables as constants and thus consider the

extended signature Σ(X) = Σ ∪ X. Then (1) holds if, and only if,

s1 ≈ t1 ∧ . . . ∧ sn ≈ tn |=Σ(X) s0 ≈ t0.

Prove this as an exercise.

With this we have reduced the congruence closure problem to a

word problem for the theory consisting of the antecedent (ground)

equations. (That theory, however, changes with each clause!)

Method: Apply a ground version of KB completion to the antecedent

such that it always terminates.

Congruence Closure: Preparations 51

Flattening: Make all (antecedent) equations flat, that is, bring them into

the form a≈ b or f(a1, . . . , ak)≈ b with constants a, ai, b, without

changing the given congruence closure problem. This can be

achieved in linear time via the use of auxiliary constants/variables

to name subterms of non-flat terms.

Example: The congruence closure problem

g(x)≈x, f(f(f(x)))≈ x, f(f(x))≈ x → f(x)≈ g(x)

has an equivalent flattened form

g(x)≈x, f(x)≈x1, f(x1)≈x2, f(x2)≈x, f(x1)≈x → f(x)≈ x.

Constant ordering: Choose some total ordering � on the constants.

Congruence Closure: Inference Rules 52

Given: CC problem E → u≈ v such that E is flat.

Orient E into rules R : Orient a≈ b into a ⇒ b iff a � b. Orient

f(a1, . . . , ak)≈ b from left to right. Then E becomes a terminating

rewrite system R.

Inferences on R: Let a, b, c denote constants, and s arbitrary flat terms:

R ∪ {s ⇒ b, s ⇒ c} �CC R ∪ {b ⇒ c, s ⇒ c} (CP-1)

if s � b � c

R ∪ {a ⇒ b, f(. . . , a, . . .) ⇒ c} �CC R ∪ {a ⇒ b, f(. . . , b, . . .) ⇒ c} (CP-2)

R ∪ {a≈ a} �CC R (Triv)

Example of a Run 53

Congruence Closure Procedure: Properties 54

Theorem 3.10 �CC is a terminating derivation relation.

Proof. At each step R becomes smaller in the two-fold multiset

extension of � (first to rules and then to sets of rules). 2

Theorem 3.11 If R �CC R′ then R and R′ are equivalent.

Theorem 3.12 Let R �CC
∗ R′ be such that R′ irreducible by �CC.

(i) R′ is canonical, called the congruence closure of R.

(ii) If u≈ v is a ground equation over Σ(X) then

|=Σ(X) R → u≈ v ⇔ u ⇓R′ v.

Proof. (i) Inferences (CP-1) and (CP-2) compute all critical pairs

between the rules. Termination is clear by construction.

(ii) R′ is canonical and equivalent to R. 2

Congruence Closure Procedure: Complexity 55

Theorem 3.13 Congruence closure is decidable in time O(n2).

Proof. Flattening can be done in linear time. We generate at most

quadratically many new rules (why?). Every rule can be generated in

constant time. 2

The upper bound can be improved to O(n log n) by using union-find for

the representation of congruence classes.

Literature:

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common

subexpressions problem. J. Association for Computing Machinery,

27(4):771–785, 1980.

Leo Bachmair and Ashish Tiwari. Abstract congruence closure and

specializations. LNCS, vol. 1831, 64–78, 2000.

H. Ganzinger, and D. McAllester. A new meta-complexity theorem for

bottom-up logic programs. LNCS, vol. 2083, 514—528, 2001.

Application: Compiler Validation 56

Problem: prove equivalence of source and target program

Example:

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers; index 0 = initial

values)

y1 ≈ 1 ∧ z0 ≈x0 ∗ x0 ∗ x0 ∧ y3 ≈x0 ∗ x0 + y1

y′
1 ≈ 1 ∧ R12 ≈x′

0 ∗ x′
0 ∧ R23 ≈R12 ∗ x′

0 ∧ z′0 ≈R23 ∧ y′
5 ≈R12 + 1

∧ x0 ≈x′
0 ∧ y0 ≈ y′

0 ∧ z0 ≈ z′0 |= y3 ≈ y′
5

Compiler Validation: Open Problems 57

• handle large programs

• exploit algebraic properties of operations

• compiler optimization depends on non-local program analysis; verify

its correctness

• loop/recursion structure source-target not isomorphic

Literature: various papers by Pnueli, Zuck et al (CAV conferences)

4 Automata-Theoretic Methods

Atomic constraints: solutions as regular sets (over tuples of char-
acters)

Boolean combinations: boolean combinations of automata

Quantifier(s): projection (and cylindrification)

Satisfiability: emptiness test

Literature:
Hubert Comon and Claude Kirchner: Constraint Solving on Terms,
LNCS 2002, 47–103, 2001.
The entire LNCS volume is recommended reading.

Example: Presburger (1929) Arithmetic 58

Primitive constraints: linear [in]equations b −
∑n

i=1 ai · xi = [≤] 0

representation of numbers: binary; we read them from right to left

representation of tuples (x1, . . . , xn) of numbers: words of bit tuples

t1 . . . tk where xi is given in binary by the bit string t1[j] . . . tk[j].

recursive characterization of solutions:

b −
n

∑

i=1

ai ·
m

∑

j=0

xij · 2
j = 0

iff

(b −
n

∑

i=1

aixi0) = 0 mod 2

and

(b −
∑n

i=1 aixi0)/2 −
n

∑

i=1

ai ·
m

∑

j=0

xi(j+1) · 2
j = 0

Solutions of 1 − x − 2y + 3z = 0 59

1

1
0
0

0
1
1

0
0
1

1
1
0

0
0,
0

1
1
1

1
1
0

0
1
0 0

1
1

1
0
1

1
0
0

0
0
1

0
0,
0

1
1
1

0
1
0

1
0
1

0
0,
0

1
1
1

−1

−2 20

Automata for Linear Equations 60

Given an equation of the form

b −
n

∑

i=1

ai · xi = 0

we assume that qb is the initial state, and we generate the following

additional states and transition rules (until no more can be added):

qc ∈ Q

qd ∈ Q, (qc, θ, qd) ∈ δ
if

a1θ1 + . . . + anθn = c mod 2

d = (c − a1θ1 − . . . − anθn)/2

θ ∈ {0, 1}n encodes (θ1 . . . θn)

q0 is the final state of the automaton.

Automata for Linear Inequations 61

Given an inequation of the form

b −
n

∑

i=1

ai · xi ≥ 0

we assume that qb is the initial state, and we generate the following

additional states and transition rules (until no more can be added):

qc ∈ Q

qd ∈ Q, (qc, θ, qd) ∈ δ
if

d = b(c − a1θ1 − . . . − anθn)/2c

θ ∈ {0, 1}n encodes (θ1 . . . θn)

The final states are Qf = {qc | c ≥ 0}.

Result 62

Theorem 4.1 Presburger arithmetic, that is, the first-order theory of

the integers with addition, subtraction, scalar multiplication, integer

constants, equality and inequality, is decidable.

Different methods show decidability in triple-exponential time, cf. p 34.

Other Decision Procedures based on Automata 63

• order-sorted term membership constraints — bottom-up tree

automata

• weak second-order monadic logic — Rabin automata

• set constraints — term set automata

5 Constraint Simplification Methods

Literature:
Hubert Comon and Claude Kirchner: Constraint Solving on Terms,
LNCS 2002, 47–103, 2001.

Unification 64

Let E = {s1 ≈ t1, . . . , sn ≈ tn} (si, ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E :⇔

∀1 ≤ i ≤ n : siσ = tiσ.

If a unifier exists, E is called unifiable. If a unifier of E is more general

than any other unifier of E, then we speak of a most general unifier

(mgu) of E. Hereby a substitution σ is called more general than a

substitution τ

σ ≤ τ :⇔ there exists a substitution % s.t. % ◦ σ = τ

where (% ◦ σ)(x) := (xσ)% is the composition of σ and % als mappings.

Proposition 5.1 (Exercise)

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ

are equal up to (bijective) variable renaming, for any x in X.

Unification after Martelli/Montanari 65

t≈ t, E �MM E

f(s1, . . . , sn)≈ f(t1, . . . , tn), E �MM s1 ≈ t1, . . . , sn ≈ tn, E

f(. . .)≈ g(. . .), E �MM ⊥

x≈ t, E �MM x≈ t, E[t/x]

if x ∈ var(E), x 6∈ var(t)

x≈ t, E �MM ⊥

if x 6= t, x ∈ var(t)

t≈x,E �MM x≈ t, E

if t 6∈ X

MM: Main Properties 66

A substutition σ is called idempotent, if σ ◦ σ = σ.

Proposition 5.2 σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

If E = x1 ≈u1, . . . , xk ≈uk, with xi pw. distinct, xi 6∈ var(uj), then E is

called an (equational problem in) solved form representing the solution

σE = [u1/x1, . . . , uk/xk].

Proposition 5.3 If E is a solved form then σE is am mgu of E.

Theorem 5.4 1. If E �MM E′ then σ unifier of E iff σ unfier of E ′

2. If E
∗

�MM ⊥ then E is not unifiable.

3. If E
∗

�MM E′, with E′ a solved form, then σE′ is an mgu of E.

Proof. (1) We have to show this for each of the rules. Let’s treat the case for

the 4th rule here. Suppose σ is a unifier of x≈ t, that is, xσ = tσ. Thus,

σ ◦ [t/x] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ. Therefore, for any equation u≈ v in

E: uσ = vσ, iff u[t/x]σ = v[t/x]σ. (2) and (3) follow by induction from (1)

using Proposition 5.3. 2

Main Unification Theorem 67

Theorem 5.5 E unifiable ⇔ there exists a most general unifier σ of

E, such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Notation: σ = mgu(E)

Problem: exponential growth of terms possible

Proof of the Unification Theorem 68

• Systems E irreducible wrt. �MM are either ⊥ or a solved form.

• �MM is Noetherian. A suitable lexicographic ordering on the

multisets E (with ⊥ minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations

x≈ t with x 6∈ var(t)), which also occur outside their definition

elsewhere in E;

2. the multi-set ordering induced by (i) the size (number of

symbols) in an equation; (ii) if sizes are equal consider x≈ t

smaller than t≈x, if t 6∈ X.

• Therefore, reducing any E by MM with end (no matter what

reduction strategy we apply) in an irreducible E ′ having the same

unifiers as E, and we can read off the mgu (or non-unifiability) of E

from E′ (Theorem 5.4, Proposition 5.3).

• σ is idempotent because of the substitution in rule 4.

dom(σ) ∪ codom(σ) ⊆ var(E), as no new variables are generated.

Deciding Clausal Validity for Finite Trees 69

The Problem: Let Σ be a signature (w/o predicates) such that TΣ is

infinite. For any given Σ-clause C, decide whether or not TΣ |= ∀C

Convexity:

Theorem 5.6 TΣ is convex, that is, for any Σ-clause E ∨ D with

equations E and disequations D, whenever TΣ |= ∀C then there

exists an equation e in E such that TΣ |= ∀(D ∨ e)

With this, our problem reduces to the uniform word problem for TΣ.

Solution: Given C = E ∨ D partitioned as indicated into equations E

and disequations D, use MM to either show unsatisfiability of ¬D

(which is a conjunction of equations) or compute the mgu σ of ¬D.

Then check whether or not TΣ |= ∀eσ, for one of the equations e in

E. The latter is true if and only if eσ is of the form s≈ s, for some

term s.

Finite Lists 70

Validity Problem: Decide

L |= ∀C

for clauses C over cons, car, cdr, where L is the canonical model of

the axioms L as defined on page 37.

Unification Problem: Given a set E of equations between terms over

cons, car, cdr, find a complete set S of solutions σ of E, that is,

substitutions σ for which

L |= ∀Eσ.

S is called complete if for each solution σ of E there exists a solution

τ in S and a substitution ρ such that for each variable x in E

L |= xσ≈xτρ. (We say that τ is more general than σ modulo L.)

Unification for Lists 71

Apply these rules modulo symmetry of ≈, AC of “,”, and with priority

as given by the order. s, t, u, v denote arbitrary terms, x, y, z are

variables, N are non-variable terms. Variables z on the right side of

rules not occurring on the left are assumed to be fresh. L is the set of

rewrite rules for lists (p. 35). We assume that simplification starts with

given E and empty R.

t≈ t, E ;R �L E ;R

s≈ t, E ;R �L u≈ t, E ;R, if s ⇒L u or s ⇒R u

car(s)≈N,E ;R �L s≈ cons(N, z), E ;R

cdr(s)≈N,E ;R �L s≈ cons(z,N), E ;R

cons(s, t)≈ cons(u, v), E ;R �L s≈u, t≈ v,E ;R

Unification for Lists 73

x≈ t, E ;R �L E ;R, x≈ t, if x 6∈ var(t)

x≈ t, E ;R �L ⊥

if t 6= cons(u, v),

or if x occurs as an argument to a cons in t

x≈ cons(s1, s2), E ;R �L z1 = s′1, z2 = s′2, E ; R, x≈ cons(s′1, s
′
2)

if x occurs as an argument to car and/or cdr in

cons(s1, s2),

with s′i denoting the result of replacing

car(x) by z1 and cdr(x) by z2, respectively, in si

Properties 74

Soundness: Each rule preserves the set of solutions. If there are fresh

variables on the right side of a rule we mean that each solution of

the left side can be extended to a solution of the right side.

Completeness: Upon termination E will be empty and R is a

terminating rewrite system of rule of the form x≈ t with just a

single rule for each x. Such R represents a substitution and thus a

most general solution.

Termination: ???

