
6 Superposition-Based Methods

Superposition is a refutationally complete calculus for first-order
clauses with equality. It is an extension of both ordered resolu-
tion and Knuth/Bendix completion.

Literature (on the course web page):

Armando, Ranise, Rusinowitch: CSL 2001 paper
Lynch, Morawska: LICS 2002 paper
Bachmair, L. and Ganzinger, H.: Rewrite-based equational the-
orem proving with selection and simplification, Journal of Logic
and Computation 4(3), 1994, 217–247. (available from my per-
sonal web page)



Basic Notions 1

Reduction ordering: well-founded (partial) ordering � on TΣ (ground

terms!) compatible with function application. That is, if s � t then

also f(. . . , s, . . . ) � f(. . . , t, . . . ).

General assumption in the sequel: � is an arbitrary but fixed total

reduction ordering. In each application we will choose a specific

suitable �.

Extension of � to ground literals: (We have only equational atoms and

no predicate symbols.) If s≈ t is a positive ground equation, let

c(s≈ t) = (max�(s, t), 0,min�(s, t)). For negative literals s 6≈ t, let

c(s 6≈ t) = (max�(s, t), 1,min�(s, t)). Now, if L and L′ are two

ground literals, define L � L′ iff c(L) > c(L′), comparing these

triples lexicographically, using � for terms and 1 > 0 on “signs”.



Basic Notions 2

Extension of � to ground clauses: Define C � D iff C �ms D, with �ms

the multiset extension of � on ground literals. This gives us a total

and well-founded ordering on ground clauses.

Extension of � to non-ground expressions: Define E � E ′ iff Eσ � E′σ

for all grounding substitutions σ.

On non-ground expressions, � is only partial in general, and it

makes sense to use 6� and 6� for the complement of � and �,

respectively.



Superposition Calculus S 3

Let � be an atom ordering and S a selection function. A literal L is

called [strictly] maximal wrt. a clause C if there exists a ground

substitution σ such that for all L′ in C: Lσ � L′σ [Lσ � L′σ].

C ∨ u≈ v D ∨ s[u′]≈ t

(C ∨ D ∨ s[v]≈ t)σ
[positive superposition]

if σ = mgu(u, u′) and

(i) u′ is not a variable;

(ii) uσ 6� vσ;

(iii) (u≈ v)σ is strictly maximal wrt. Cσ;

(iv) sσ 6� tσ;

(v) (s≈ t)σ is strictly maximal wrt. Dσ;

(vi) nothing is selected in C and D by S.



Negative Superposition 4

C ∨ u≈ v D ∨ s[u′] 6≈ t

(C ∨ D ∨ s[v] 6≈ t)σ
[negative superposition]

if σ = mgu(u, u′) and

(i) u′ is not a variable;

(ii) uσ 6� vσ;

(iii) (u≈ v)σ is strictly maximal wrt. Cσ;

(iv) sσ 6� tσ;

(v) either s 6≈ t is selected, or else nothing is selected in D ∨ s 6≈ t and (s 6≈ t)σ

is maximal wrt. Dσ;

(vi) nothing is selected in C.



Reflexivity and Factoring 5

D ∨ s 6≈ t

Dσ
[reflexivity resolution]

if σ = mgu(s, t) and either s 6≈ t is selected,

or else nothing is selected in D ∨ s 6≈ t and (s 6≈ t)σ is maximal wrt. Dσ.

C ∨ u≈ v ∨ u′ ≈ t

(C ∨ D ∨ v 6≈ t ∨ u≈ t)σ
[Equality factoring]

if σ = mgu(u, u′) and

(i) uσ 6� vσ;

(ii) vσ 6≺ tσ;

(iii) (u≈ v)σ is maximal wrt. Cσ;

(iv) nothing is selected in C.



A Formal Notion of Redundancy 6

Ground case: Let N be a set of ground clauses and C a ground clause

(not necessarliy in N).

C is called redundant in N :⇔ there exists C1, . . . , Cn ∈ N, n ≥ 0 :

Ci ≺ C and C1, . . . , Cn |= C

Redundancy for general clauses:

C is called redundant in N :⇔ Cσ redundant in GΣ(N),

for all ground instances Cσ of C

Intuition: Redundant clauses are no minimal counterexamples for any

interpretation.

NB: The same ordering � is used both for ordering restrictions and for

redundancy. “|=” is validity in FOL with equality.



Examples of Redundancy 7

Proposition 6.1

• If C is a tautology (i.e., |= C) then C is redundant in any set N .

• If Cσ ⊂ D then D is redundant in N ∪ {C}

• C[sσ] is redundant in any N ∪ {C[tσ], s≈ t}, if sσ � tσ and

C[sσ] � (s≈ t)σ

• C is redundant in N ∪ {Cσ}, whenever the set of literals in Cσ is a

proper subset of the set of literals in C. In that case we call Cσ a

condensement of C.



Saturation up to Redundancy 8

N is called saturated up to redundancy (wrt. S) iff

S(N \ Red(N)) ⊆ N ∪ Red(N),

where Red(N) denotes the set of clauses that are redundant in N .

Theorem 6.2 (Bachmair, Ganzinger 1994) Let N be saturated up

to redundancy wrt. S. Then N |= ⊥ if, and only if, ⊥ ∈ N .



Superposition Derivations 9

�S is this relation on sets (modulo variable renaming) of equational

clauses, modelling both deduction and simplification:

Tautology elimination: N ∪ {C} �S N,

if C is a tautology

Subsumption: N ∪ {C,D} �S N ∪ {C},

if C strictly subsumes D

Reduction: N ∪ {C[sσ], s≈ t} �S N ∪ {C[tσ], s≈ t}

if sσ � tσ and C[sσ] � (s≈ t)σ

Condensement: N ∪ {C} �S N ∪ {D}

if D is a condensement of C

Deduction: N �S N ∪ {C}

if C is conclusion of an inference in S from N



Soundness and Completeness 10

Theorem 6.3 (Bachmair, Ganzinger 1994) Let N0 �S N1 �S . . .

be a fair superposition derivation, meaning that all conclusions of

inferences in S from “persistent” clauses are contained in N ∪ Red(N),

where N =
⋃

i Ni. Then N0 is unsatisfiable if, and only if, ⊥ ∈ Ni for

some i.



Application to Lists 11

We analyse the clauses that can be derived from any set N containing the list

equations L, together with finitely many flat (cf. Section 3.3) equations in car,

cdr, cons, and constants, and with disequations a 6≈ b between constants.

Choose � such that subterms are smaller than superterms and such that

constants are smaller than any non-constant term. We observe:

• L is saturated.

• Disequations a 6≈ b can only be reduced with equations between constants,

and by reflexivity resolution.

• Every positive superposition inference produces an equation of depth ≤ 2,

and containing at most one cons. Example (a and b are constants):

car(a)≈ b cons(car(x), cdr(x))≈x

cons(b, cdr(a))≈ a



Decidability of List Constraints 12

Theorem 6.4 Clausal validity in L can be decided in quadratic time.

Proof. Only a quadratic number (in the number of constants in the

negated and flattened problem clause) of different consequences can be

derived, each in time O(1) 2

NB: It takes some work (dynamic programming, hash-cons) to make

inferences computable in O(1) each.



Application to Arrays 13

Axioms AR: (again implicitly universally quantified; sorted variables)

read(write(a, i, v), j)≈ read(a, j) ∨ i≈ j

read(write(a, i, v), i)≈ v

Extensionality Ext:

∀a, a′(∀i(read(a, i)≈ read(a′, i)) → a≈ a′)

Problem: Decide clausal validity in AR[+Ext].

Preprocessing: Negate and skolemize the problem clause. Flatten the

resulting set of equations and disequations so that all equations

become flat and only disequations between constants remain.



Specializing Superposition to AR 14

Choose � such that terms properly embedded into a term are smaller

than the embedding term.a Then, read(write(a, i, v), j) � read(a, j), for

any subterms a, i, j and v, as the second term is properly embedded in

the first. (Delete write, i, and v in the first term.) Also, subterms are

then smaller in � than proper superterms.

As in the list example, selection is void, as there are no negative literals

in AR and as all the other clauses, resulting from negating the problem

clause, are unit literals.

We observe, that AR is saturated up to redundancy. In fact, the only

inference possible is

read(write(a, i, v), i)≈ v read(write(a′, i′, v′), j′)≈ read(a′, j′) ∨ i′ ≈ j′

v≈ read(a, i) ∨ i≈ j

yielding a tautology.
aAn embedded term is obtained by deleting any number of nodes, thereby moving

the subtrees of a deleted node v (in any order) below the parent node of v.



Consequences from AR and Flat Equations 15

Adding any number of flat equations, the only consequences that can be

derived are either (i) again flat equations; or else are (ii) clauses of the

form

read(b, j0)≈ t ∨ i1 ≈ j1 ∨ . . . ∨ im ≈ jm,

where t is either a constant or a term of the form read(b, j), with j a

constant, and with all other names denoting constants; or else are (iii)

clauses of the form

read(a, J)≈ read(a′, J) ∨ i1 ≈ j1 ∨ . . . ∨ im ≈ jm,

with a and the il constants, with J a variable, and the jl either

constants or the variable J .

If, in (ii) or (iii), m > n2 + n, where n is the number of (index)

constants appearing in the initial flat equations, the clause is either a

tautology or can be condensed into a smaller clause. (One equation

between indexes must be trivial or occur at least twice.)



Decidability of Array Constraints 16

Theorem 6.5 Clausal validity in AR can be decided using �S in

exponential time.

Proof. Only an exponential number (in the number of constants in the

negated and flattened problem clause C) of different consequences can

be derived from AR ∪ flatten(¬C), each in time O(1). 2

As was shown in [Stump et al, LICS2001], the problem is NP-hard, so

that this superposition-based decision procedure is probably optimal.



Eta Expansion 17

To extend the method to arrays with extensionality we first eliminate

array disequations using the extensionality axiom:

Iteratively replace any disequality a 6≈ b between array constants a and b

by the 3 literals

read(a, k)≈ v, read(b, k)≈w, v 6≈w

with fresh constants k, v and w.

This terminates as the dimenionality of the constants v and w in the

new disequation becomes smaller. That is, if a and b are of sort

array[n], then v and w are of sort array[n − 1], with array[0] the sort

of primitive (non-array) elements.

One might call this transformation η-expansion.



Decidability of Array Constraints with Extensionality 18

Theorem 6.6 Let E be any set of ground equations and disequations

over read, write and constants. Let Eη be the result of η-expanding E.

Then E is satisfiable in a AR + Ext-model if, and only if, Eη is

satisfiable in a AR-model.

Proof. Exercise 2

Theorem 6.7 Clausal validity in AR + Ext can be decided using �S in

exponential time.

Theorem 6.8 (Stump et al, LICS 2001) The full first-order theory

of AR + Ext is undecidable
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Reminder: Theories 19

In the syntactic or axiomatic view, a (first-order) theory is given by a set F of

(closed) first-order Σ-formulas, and then one is interested in the models

Mod(F) of F , that is, the set of Σ-algebras satisfying F :

Mod(F) = {A ∈ Σ-alg | A |= G, for all G in F}

Dually, in the semantic view, when given a class T ⊆ Σ-alg of structures closed

under isomorphism, one is interested in the (first-order) theory Th(T ) of T

Th(T ) = {G ∈ FΣ(X) closed | T |= G}

which is the set of Σ-formulas that are satisfied in all structures A in T .

In the sequel we will assume the semantic view where a theory T is a class of

structures over a given signature Σ, closed under isomorphism, and not

containing the the trivial one-element algebra. That is, from now on we

assume that algebras have at least 2 elements.

Example: The free theory of a signature Φ of functions symbols (called free)

is defined as FΦ = Φ-alg, the entire class of (non-trivial) Φ-structures.



Combination of Theories and Models 20

Forgetting symbols. Suppose Σ ⊆ Σ′, that is, Ω ⊆ Ω′ and Π ⊆ Π′.

For A ∈ Σ′-alg, by A|Σ we denote the Σ-structure for which

UA|Σ = UA

fA|Σ = fA, for f in Ω

pA|Σ = pA, for p in Π

That is, we simply ignore the functions and predicates associated

with symbols in Σ′ \ Σ. A|Σ is called the restriction of A to Σ.

Amalgamating algebras. Let Σ = Σ1 + Σ2 (formed by uniting the

respective symbol sets). A Σ-Algebra A is called an amalgamation

of Σi-algebras Ai iff, for i = 1, 2, we have that A|Σi
= Ai.

On theories: Let Σ ⊆ Σ′, T ⊆ Σ′-alg, Ti ⊆ Σi-alg. We define:

T |Σ = {A|Σ | A ∈ T }

T1 + T2 = {A ∈ (Σ1+Σ2)-alg | A|Σi
∈ Ti, for i = 1, 2}

T Φ = T + FΦ



The Nelson/Oppen Method: Scenario 21

The problem: We assume theories T1 and T2, respectively, and want to

test whether E is satisfiable in T1 + T2 (that is, T1 + T2 6|= ∀¬E)

where the E are constraints (multisets/conjunctions of equations

and disequations, hence ¬E a clause) over the combined theory

T1 + T2.

Example: T1 = L, T2 = (Q,+),

E = {car(cons(x + 3, l))≈ y + 1, y 6≈x + 2}

Preprocessing: A constraint E1, E2 over T1 + T2 is called pure whenever

the conjuncts Ej are Tj-constraints, j = 1, 2. Purifying constraints

is a matter of linear-time preprocessing. Example:

E = {car(cons(x′, l))≈ y′}, {x′ ≈x + 3, y′ ≈ y + 1, y 6≈x + 2}

Assumptions: Satisfiability of constraints decidable for the Ti; signatures

Σi of the theories disjoint



The Nelson/Oppen Method: Inference Rules 22

Sat[T1] × Sat[T2]

E1, E2 �NO ⊥ if Ti |= Ei → ⊥, for one i

Branch[T1, T2]

E1, E2 �NO E1 ∪{x≈ y}, E2 ∪{x≈ y} | E1 ∪{x 6≈ y}, E2 ∪{x 6≈ y}

whenever x and y are two different variables appearing in E1 ∪ E2

such that E1 ∩ E2 contains neither x≈ y nor x 6≈ y.

We will be investigating soundness and completeness of several more or

less restricted versions of this system. The restrictions will mainly

concern the Branch rule which generates an exponential search space.



Explanations 23

The inference rules �NO are to be applied don’t-care

non-deterministically (no backtracking) until termination.

“|” means non-deterministic (backtracking!) branching of the derivation

into two subderivations. Derivations are, therefore, trees. All branches

need to be reduced until termination.

Clearly, all derivation paths are finite since there are only finitely many

shared variables in E1 and E2, therefore the procedure represented by

the rules is terminating.

We call a constraint configuration to which no rule applies irreducible.



Soundness 24

Theorem 7.1 (Soundness I) If all path in a derivation tree from

E1, E2 end in ⊥, then E1, E2 is unsatifiable in T1 + T2.

Proof. Exercise. 2

Theorem 7.2 (Soundness II) Let E ′
1, E

′
2 (different from ⊥) be a

configuration on a branch in a derivation from E1, E2 If E′
1, E

′
2 is

satisfiable in T1 + T2, so is E1, E2.

Proof. Exercise. 2



Completeness 25

For completeness we need to show that if one branch in a derivation

terminates with an irreducible configuration E1, E2 (different from ⊥),

then E1, E2 (and, thus, the initial constraint of the derivation) is

satisfiable in the combined theory.

As E1, E2 is irreducible by Sat, the two constraints are satisfiable in

their respective component theories, that is, we have two models Ij ∈Tj

satisfying Ej . We are left with combining the models into a single one

that is both a model of the combined theory and of the combined

constraint. These constructions are called amalgamations.



Amalgamation is not Always Possible 26

Amalgamation may fail because of cardinality reasons.

Suppose T1 are the Booleans, and T2 is the first-order theory of a

three-element domain. In this case T1 + T2 is empty so that no

constraint E can be satisfiable. On the other hand, the empty

constraint E is trivially satisfiable both in T1 and T2.

In the two amalgamation lemmas to follow, amalgamation will be

possible because either one theory component has models of all

cardinalities, or the two components have models of the same

cardinality.



The Case of One Arbitrary and One Free Theory 27

The first case we shall treat is special in that one of the theories is free. That

is, we have T1 = T arbitrary and T1 = FΦ the free theory over a signature Φ

of free function symbols.

We call a constraint flat if it contains only equations and disequations

between variables, and equations of the form f(x1, . . . , xn)≈x, with variables

xi as arguments of the function symbol f . The latter equations we call

(function) definitions or (function) rules (for f).

A flat constraint D is called unambiguous if whenever f(x1, . . . , xn)≈x and

f(x′
1, . . . , x′

n)≈x′ are two different rules in D for the same function symbol f

then either there exists an i such that xi 6≈x′
i is in D, or else either x = x′ or

x≈x′ is in D.

A pair E, D of constraints is called compatible if any equation or disequation

between two variables that appears in E also appears in D, and vice versa.



Amalgamation Lemma I 28

Lemma 7.3 (Amalgamation Lemma I) Let E be a constraint over a

theory T and D a constraint over the extension T Φ of T with free

function symbols Φ disjoint from the signature Σ of T . Moreover assume

that D is flat and unambiguous and that E,D is compatible. Then

E ∧ D is satisfiable in T Φ = T + FΦ if and only if E is satisfiable in T .



Proof of the Amalgamation Lemma 29

Let I be a model in T and α an assignment of the variables in E such that

I, α |= E. We will extend the interpretation to the functions in Φ and the

additional variables in D such that the interpretation also satisfies D. Since

the pair E, D is compatible, I, α already satisfies the equations and

disequations in D between variables. First we extend α to the additional

variables in D in an arbitrary manner. Then we extend I by interpretations

for the free function symbols as follows: If f is a free function symbol and

f(x1, . . . , xn)≈x is a function definition in D, evaluate the xi as well as x in

I, α, yielding values ai and c, respectively, and define fI(a1, . . . , an) to be c.

Define fI arbitrarily at all other argument tuples of the domain of I. We have

to show that fI is well-defined. A potential ambiguity may arise from the

presence of another definition f(x′
1, . . . , x′

n)≈x′ for f in D. In that case, as

D in unambiguous, either there exists an index j such that xj 6≈x′
j is in D, or

else either x = x′ or x≈x′ ∈ D. By compatibility of E and D these equations

or disequations must be satisfied in I, α, so that no ambiguity can arise.
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Sat

E, D �NO ⊥ if T |= E → ⊥

Compose

E,D ∪ {f(x1, . . . , xn)≈x, f(y1, . . . , yn)≈ y} �NO

E ∪ {x≈ y}, D ∪ {x≈ y, f(x1, . . . , xn)≈x}

if E ∩ D contains neither x≈ y nor x 6≈ y, and if for each 1 ≤ i ≤ n either

xi = yi or else xi ≈ yi ∈ D.

Branch−D

E, D �NO E ∪ {x≈ y}, D ∪ {x≈ y} | E ∪ {x 6≈ y}, D ∪ {x 6≈ y}

if there are two rules f(x1, . . . , xn)≈ z and f(x′
1, . . . , x′

n)≈ z′ in D such

that

(i) x = xi 6= x′
i = y, for some 1 ≤ i ≤ n

(ii) for no index 1 ≤ k ≤ n the disequation xk 6≈x′

k is in D, and

(iii) z 6= z′ and z ≈ z′ 6∈ D.



Completeness 31

Theorem 7.4 NOD[T ,Φ] is sound and complete for deciding

satisfiability of constraints E ∧ D over T Φ, provided E is a constraint

over T , D is a flat constraint over F Φ and the pair E,D is compatible.

Proof. Both Compose and Branch−D preserve flatness of the D-part

and the compatibility of the constraint pairs. Now suppose that E,D is

irreducible by NOD[T ,Φ]. That means that in particular E is

T -satisfiable. Irreducibility by Compose and Branch−D implies that D

is unambiguous. We may now apply the amalgamation lemma 7.3 to

infer that E ∧ D is satisfiable in T Φ. 2

Observe that this result gives us another method for deciding the

congruence closure problem, that is, the UWP in Φ-alg. Take T to be

∅-alg, the theory of the empty signature.

Question: What would a constraint solver for ∅-alg look like? How

efficient can it be implemented?



The Case of Stably Infinite Theories 32

A theory T is called stably infinite if for any constraint E over T

whenever E is satisfiable in T there exists a model I ∈ T of cardinality

ω such that I |= ∃E.

Let E be a constraint over T and let S be a set of variables of E. E is

called compatible with an equivalence ∼ on S if the constraint

E ∧
∧

x∼y

x≈ y ∧
∧

x, y ∈ S, x 6∼ y

x 6≈ y (1)

is T -satisfiable whenever E is T -satisfiable. This expresses that E does

not contradict equalities between the variables in S as given by ∼.



Branching Implies Compatibility of Constraints 33

Proposition 7.5 If E1, E2 is a pair of constraints over T1 and T2,

respectively, that is irreducible by Branch[T1, T2] then both E1 and E2

are compatible with some equivalence ∼ on the shared variables S of E1

and E2.

Proof. Irreducible by the branching rule, for each pair of variables x

and y, both E1 and E2 entail either x≈ y or x 6≈ y. Choose ∼ to be

equivalence given by all (positive) variable equations between shared

variables that are entailed by E1. 2



Amalgamation Lemma II 34

Lemma 7.6 (Amalgamation Lemma II) Let T1 and T2 be two

signature-disjoint, stably infinite theories. Furthermore let E1, E2 be a

pair of constraints over T1 and T2, respectively, both compatible with

some equivalence ∼ on the shared variables of E1 and E2. Then E1 ∧E2

is satisfiable in T1 + T2 if, and only if, E1 and E2 are satisfiable in T1

and T2, respectively.



Proof of the Amalgamation Lemma (“if”-Direction) 35

Assume that each of the Ej is Tj-satisfiable, that is, there exist models Ij in

Tj and variable assigments αj such that Ij , αj |= Ej . As the Ei are compatible

with ∼, an equivalence on their shared variables, we may assume that the Ij

and αj are chosen to also satisfy the extended constraints in (1) with S the set

of shared variables. Since the theories are stably infinite we may additionally

assume that the Ij are of cardinality ω. Let ρj denote a bijection from N to

the domain of Ij . By construction whenever we have two shared variables x

and y, α1(x) = α1(y) if, and only if, α2(x) = α2(y). Hence we may assume

that whenever x is a variable occurring in both E1 and E2 that the bijections

have been chosen such that ρ−1

1 (α1(x)) = ρ−1

2 (α2(x)). Now define I to be the

structure having N as its domain and such that if f is a symbol in any of the

signatures Σj then fI(n1, . . . , nk) = ρ−1

j (fIj
(ρj(n1), . . . , ρj(nk))). Define

α(x) = ρ−1

j (αj(x)) if x is a variable occurring in Ej . By construction of the ρj

this definition is independent of the choice of j. Clearly I|Σj
, α |= Ej , for

j = 1, 2, hence I, α |= E1 ∧ E2. Moreover, the I|Σj
are isomorphic (via ρj) to

Ij , and thus are models in Tj , so that I is in T1 + T2 as required.



Branching on Shared Variables 36

Observe that for Proposition 7.5 and, hence, for the amalgamation

lemma to hold only branching on shared variables is required:

Branch−S[T1, T2]

E1, E2

E1 ∪ {x≈ y}, E2 ∪ {x≈ y} | E1 ∪ {x 6≈ y}, E2 ∪ {x 6≈ y}

whenever x and y are two different shared variables in E1, E2 such

that E1 ∩ E2 contains neither x≈ y nor x 6≈ y.

By

NOS [T1, T2] = (Sat[T1] × Sat[T2]) + Branch−S[T1, T2]

we denote the Nelson-Oppen inference system instantiated with T1 and

T2, and where branching is restricted to the S-type.
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Theorem 7.7 NOS [T1, T2] is terminating and complete for for deciding

satisfiability of pure constraints E1, E2 over T1 + T2 for

signature-disjoint, stably infinite theories T1 and T2.

Proof. Suppose that E1, E2 is irreducible by NOS [T1, T2]. Applying the

amalgamation lemma 7.6 in combination with the proposition 7.5 we

infer that E1, E2 is satisfiable in T1 + T2. 2
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A theory T is called compact if for each constraint E that is satisfiable in T ,

either E is satisfied in some infinite model of T , or else there exists a number

m (depending on E) such that if I ∈ T is a finite model of E then |I| ≤ m.

(Since we do not consider theories having trivial models, the smallest such m

will be always greater than 1.) Compactness means that if a constraint has

finite models of unbounded cardinalities then it must also have an infinite

model. First-order theories are compact, as are stably infinite theories.

A compact theory T is called convex if for any finite set Γ of Σ-equations and

for Σ-equations Ai, 1 ≤ i ≤ n, whenever T |= Γ → A1 ∨ . . . ∨ An, then there

exists an index j such that T |= Γ → Aj . For convex theories, any clausal

validity problem can be reduced to a linear number of validity problems for

Horn clauses. As we only consider theories without trivial models convexity

implies stable infiniteness.
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Theorem 7.8 If T is convex then T is stably infinite.

Proof. We shall prove the contrapositive of the statement. Suppose T is

compact but not stably infinite. Then there exists a satisfiable

constraint E that has only finite models in T . Let, respectively, E+ and

E− denote the subset of positive and negative equations in E. As T is

compact all models of E are bound in cardinality by some number m.

Now consider the clause C = E+ → ¬E− ∨
∨

i x≈xi, with pairwise

different fresh variables x and xi, 1 ≤ i ≤ m, not occurring in E.

T |= C, as the clause exactly expresses that all E models have size less

than or equal to m. However, T 6|= E+ → e, for any e ∈ ¬E− (as

otherwise E would not be satisfiable), and also T 6|= E+ → x≈xi, for

each i, as otherwise T would have trivial models which we have

excluded. 2

[2] have proved this theorem for first-order theories.
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Example 7.9 Let Q be the rational numbers with linear arithmetic

and without the inequality predicates.a In the signature of Q we assume

to have all rational numbers as constants, the binary addition operator

+, and, for each rational number q, a unary operator q · multiplying its

argument by q. An infinite structure, Q is stably infinite. It is

well-known that this theory is convex. In fact, suppose that

Q |=
∑

i cixi = 0 ∨
∑

i dixi = 0 and, for the purpose of deriving a

contradiction, assume that there are tuples ai and bi of rational

numbers witnessing non-convexity of this disjunction, that is, we have

Q |= (
∑

i ciai = 0 ∧
∑

i diai 6= 0) and Q |= (
∑

i cibi 6= 0 ∧
∑

i dibi = 0).

But then Q |= (
∑

i ci(ai + bi) 6= 0 ∧
∑

i di(ai + bi) 6= 0), which is a

contradiction. The general case of disjunctions with more than 2 linear

equations is a bit more tricky. Allowing disequations is disjunctions in

an easy extension.
aWhen we have a specific structure such as Q, we identify it with the theory that

is the isomorphism class of this structure.
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Example 7.10 Let Φ be a signature. The class of all (non-trivial)

algebras satisfying the empty set of first-order axioms, F Φ (the free

theory over Φ) trivially is a first-order theory and closed under

products. Any such theory is convex (cf. below).

Hereby T is called closed under products, if whenever A and B are

models in T then also their product A × B is in T . A × B has as

domain the cartesian product of the domains of A and B, and functions

are defined component-wise as

fA×B((a1, b1), . . . , (an, bn)) = ( (fA(a1, . . . , an), fB(b1, . . . , bn) ).

Theorem 7.11 If T is closed under products, then T is convex.

Proof. Exercise 2
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Lemma 7.12 Suppose T is convex, E a T -constraint, and S a subset of

its variables. Let, for any pair of variables x and y in S, x ∼ y if, and

only if, T |= E → x≈ y. Then E is compatible with ∼.
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We show that with this choice of ∼ the constraint (1) is satisfiable in T

whenever E is. Suppose, to the contrary, that E is satisfiable but (1) is not,

that is,

T |= E →
∨

x∼y

x 6≈ y ∨
∨

x, y ∈ S, x 6∼ y

x≈ y

or, equivalently,

T |= E
+ ∧

∧

x∼y

x≈ y → ¬E
− ∨

∨

x, y ∈ S, x 6∼ y

x≈ y.

By convexity of T , the antecedent implies one of the equations of the

succedent. Since the equations x≈ y, with x ∼ y, are entailed by E and since

E is satisfiable this means that this equation must come from the last disjunct

and it must be implied already by E+. In other words, there exists a pair of

different variables x′ and y′ in S such that x′ 6∼ y′ and T |= E → x′ ≈ y′

which is impossible.
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Sat[T1] × Sat[T2]

E1, E2 �NO ⊥ if T1 |= E1 → ⊥ or T2 |= E2 → ⊥

Propagate[T1, T2]

E1, E2 �NO E1 ∪ {x≈ y}, E2 ∪ {x≈ y}

if x and y are two shared variables in E1, E2 such that

T1 |= E1 → x≈ y and T2 6|= E2 → x≈ y, or else T2 |= E2 → x≈ y

and T1 6|= E1 → x≈ y.
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Theorem 7.13 If T1, T2 are two convex, signature-disjoint theories, the

calculus NOP [T1, T2] is sound and complete for satisfiability of pure

configurations E1, E2 over T1 + T2.

Proof. We show that any unsatisfiable (in T1 + T2) configuration E1, E2

reducible by Branch−S in NOS and irreducible by Sat is reducible by

Propagate in NOP . Suppose E1 ∧ E2 is reducible by some

Branch−S-branching. As convexity implies stable infiniteness, since

irreducibility by Sat means that both projections Ej are satisfiable, we may

apply the (contra-positive of the) amalgamation lemma 7.6 to infer that

E1, E2 cannot be compatible with any partitioning of their shared variables S.

If Propagate were not applicable then E1 and E2 would entail the same set E

of equations between their shared variables. Therefore they would both be

compatible with E (considered as an equivalence relation), which is a

contradiction. 2
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Theorem 7.14 The Nelson/Oppen procedure NOP [T1, T2] for convex

theories requires O(n2) calls to the constraint solvers of the component

theories.

Proof. There are at most O(n2) pairs of shared variables for which

entailment in a component theory must be tested in order to check

whether an equality needs to be propagated. 2
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The combination procedures can be iterated to work with more than 2

component theories by virtue of the following observations where

signature disjointness is assumed:

Theorem 7.15 If T1 and T2 are stably infinite, so is T1 + T2.

Proof. NOS [T1, T2] is a complete constraint checker for T1 + T2, so that

if a constraint E over Σ1 + Σ2 is satisfiable, in any NOS derivation from

the purified form of E there exists a branch leading to some irreducible

constraint E1, E2 entailing E. The amalgamation lemma 7.6 constructs

a model of cardinality ω for E from the models of E1 and E2. 2

Theorem 7.16 If T1 and T2 are convex, so is T1 + T2.

Proof. By a similar argument exploiting the completeness of NOP . By

convexity of the Ti, the disequations in E1, E2 can be completely

ignored for the Propagate rule, whenever both Ei are satisfiable in Ti. 2
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Shostak’s procedure assumes the presence of a (unitary) unification

algorithm for any of the built-in theories T . More specifically it is

assumed that there exists an effectively computable function solve such

that, for any T -equation s≈ t:

(A) solve(s≈ t) = ⊥ if, and only if, T |= s 6≈ t;

(B) solve(s≈ t) = ∅ if, and only if, T |= s≈ t; and otherwise

(C) solve(s≈ t) = {x1 ⇒ u1, . . . , xn ⇒ un} is a finite set of rewrite

rules over Σ such that

(i) the xi are pairwise different variables occurring in s≈ t;

(ii) the xi do not occur in the uj ; and

(iii) T |= ∀X[(s≈ t) ↔ ∃Y (x1 ≈u1 ∧ . . . ∧ xn ≈un)], where Y is the

set of variables occurring in one of the uj but not in s≈ t, and

X ∩ Y = ∅.

If a function solve with these properties exists we call T solvable.
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solve(s≈ t), if different from ⊥, may be viewed as a substitution

σ = [u1/x1, . . . , un/xn] (possibly the identity), written as a set of

rewrite rules {x1 ⇒ u1, . . . , xn ⇒ un}, that solves the T -equation s≈ t.

In the terminology of unification theory, σ is a unifier of s≈ t. In fact,

by (iii), T |= sσ≈ tσ. Conversely, if τ is a unifier of s≈ t, (iii) implies

that T |= ∃Y (x1τ ≈u1τ ∧ . . . ∧ xnτ ≈unτ). In case T is an equational

(Horn-) theory, the existing Y can be expressed as a substitution ρ with

a domain included in Y . Then, T |= τ(x)≈ ρ(τ(σ(x))), for each variable

in s≈ t. In other words, σ is a most general unifier of s≈ t.

Solutions can be parameterized by new variables, those in Y . It is

assumed that in each calling context for solve, the variables in Y are

fresh. Where this needs to be formalized we shall write

solveZ(s≈ t) = S, assuming that then the extra variables appearing in S

are not in Z.
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Example 7.17 Consider again Q, the rational numbers with linear

arithmetic and without the inequality predicates. This theory is convex.

A solver is obtained by isolating one of the variables in an equation.

Example 7.18 Lists L are a solvable theory.

Example 7.19 Let Z/(3) be the theory of the three-element field

obtained by considering the remainders from division by 3. Let the

signature consist of the constants 0 and 1, and the binary addition +.

Clearly, Z/(3) is solvable. For example, a + a + 1 = b + b is solved by

a ⇒ 1 + b. However Z/(3) is not convex as witnessed by the disjunction

x≈ 0 ∨ x≈ 1 ∨ x≈ 1 + 1.
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Normally, and in particular in Shostak’s own paper Shostak-84, the

method is presented such that in addition to a solver also a canonizer is

required for the theory. Canonizers simplify terms by normalization and

one may decide the word problem for the theory simply by checking

identity of normal forms. Here, for methodological reasons we are only

dealing with the solver and will introduce canonizers only later when we

present more refined versions of the procedure. Therefore we also

require solvers to satisfy property (B) which otherwise the canonizer

takes care of. Note, however, that the “only if” part of (B) is implied by

(C) anyway.



Constraint Solving S[T ] à la Shostak 52

Contradiction

U ∪ {s≈ t}, R �S ⊥ if solve(s≈ t) = ⊥

U ∪ {s 6≈ t}, R �S ⊥ if solve(s≈ t) = ∅

Solve

U ∪ {s≈ t}, R �S U,R ∪ S

where

(i) S = solveX(s≈ t) 6= ⊥, with X the set of variables appearing in

the antecedent,

(ii) both s and t are irreducible by R.

Reduce

U [x], R ∪ {x ⇒ t} �S U [t], R ∪ {x ⇒ t}
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The inference system S models the main idea in Shostak’s procedure of

how to employ the given solver for constraint simplification. As we shall

prove in detail below, S[T ] refines Sat[T ]. The refinement involves the

representation of constraints over T by the pair of two constraints U

and R. Here U contains the disequations and the “unsolved” positive

equations, whereas R is a positive constraint in solved form, a

substitution derived from previous constraint solving steps. We assume

that R is empty initially so that all constraint equations are unsolved.

The Contradiction rule solves a single, previously unsolved constraint

equation. If the solver returns ⊥ for an equation or ∅ for a disequation,

the constraint is unsatisfiable. Those instances of Sat[T ] that are not

dealt with by Contradiction can be reduced by instances of Solve or

Reduce (cf. Theorem 7.25), so that S is in fact complete.
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Solve solves Σ-equations. Soundness of this rule is a consequence of the

soundness of the solver, cf. Proposition 7.21 below. More specifically, we only

solve normalized equations in which both sides are irreducible by R. The

reduce inferences are designed to compute those normal forms. The solved

equation is deleted from U and its solution S is added to the solved form R.

The rules added to R upon Solve are all of the form x ⇒ w, and are called

variable definitions. By Propositions 7.20 and 7.22, R always contains at most

one definition for a variable and is terminating. Sets of constraints R with

these properties we call solved forms.a Reduce expands variables in U by their

definitions. Reducing equations before solving them is essential for keeping

variable definitions in solved forms unique.
aIn the context of CLP when one speaks of solved forms one often requires that

variables occurring on the right side of the rules are themselves irreducible. This is not

the case for our notion of solved forms. Terminating, confluent rewrite systems, they

do represent substitutions but not necessarily idempotent ones. Without introducing

auxiliary variables for denoting (shared) subterms, we may get an exponential blow-up

of the terms at the right sides of the rules if we always keep them in normal form.
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Proposition 7.20 Any rule set R appearing in an S-derivation

contains at most one definition for any variable.

Proof. The property is trivially true initially where R is empty. When

adding a rule set S to R in Solve, if R contains a definition x′ ⇒ t′, S

cannot contain a rule for x′. Otherwise x′ would have to occur in s≈ t,

and the equation being solved at this step would not be irreducible with

respect to R. 2
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Proposition 7.21 The inference system is sound. More specifically, (i)

whenever U,R `S U ′, R′ then T |= ∃X(U ∧ R) → ∃X,Y (U ′ ∧ R′) and

T |= ∀X,Y (U ′ ∧ R′ → U ∧ R), with Y the variables in U ′, R′ but not in

U,R; and (ii) if U,R `S ⊥ then U ∪ R is unsatisfiable in T .

Proof. The only slightly interesting case is Solve. By the soundness

properties of solve, we have that T |= ∀X[(s≈ t) ↔ ∃Y S], where Y are

the new variables in solveX(s≈ t). The two implications to be shown for

establishing (i) follow by simple logical calculations. 2
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In the rewrite systems R, variables are considered as constants which can not

be substituted by other terms. In this sense the systems R induce terminating

rewrite relations.

Proposition 7.22 If U, R `S U ′, R′ and if R is terminating so is R′.

Proof. Let us, for a configuration U, R with variables in X, define x �X y if,

and only if, y occurs on the right side of a definition for x in R. R is

terminating if, and only if, �X is a well-founded partial ordering on X. (For

the “if” part, use a lexicographic path ordering over some precedence >X for

which Φ >X X >X Σ, and which coincides with �X on X to show

termination of R.)

We now show that if �X is a well-founded partial ordering on X and if

U, R `S U ′, R′ then �X′

is a well-founded partial ordering on X ′, the set of

variables in the new configuration. The only non-trivial case is when the

derivation is by Solve where the new variable definitions S are added to R.

However only equations s≈ t irreducible by R are solved, so that no variable



appearing in s or t is reducible by R. Therefore any variable occurring on the

right side of a rule in S is irreducible by R. Also, according to the definition

of a solver, right sides of rules in S are irreducible by S. Consequently, �X′

is

well-founded. 2
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Proposition 7.23 The inference system S is terminating.

Proof. We need to describe a well-founded ordering � on configurations with

terminating rewrite systems R for which all inference rules are strictly

monotone. Define � such that ⊥ is minimal. Moreover if κ = U, R and

κ′ = U ′, R′ are two configurations with X and X ′, respectively, the set of

variables occurring in κ and κ′, let κ � κ′ whenever

(i) |U | > |U ′|; or else

(ii) |U | = |U ′|, R = R′, and U ⇒R U ′.

This ordering is well-founded. For if in a sequence κ0 � κ1 � . . . no equations

are deleted from U no new rules can be introduced, and therefore Ri = Ri+1.

As the rewrite relations in configurations are all terminating any such

sequence must be terminating. Clearly, the rules in S are strictly decreasing

with respect to �. 2

The proposition in particular shows that the number of new variables

introduced during a derivation must be finite, irrespective of the way a solver

introduces them.
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Proposition 7.24 Let R be a solved form.

(i) If F is a formula over T in which all variables are irreducible by R then

T |= R → F if, and only if, T |= F .

(ii) Let T be convex. If U is a set of Σ-disequations each of which is

satisfiable in T and irreducible by R, then U ∪ R is satisfiable in T .

Proof. For (i) we observe that since R is a solved form it is satisfiable and

logically equivalent to the substitution σ sending each variable x to its normal

form with respect to R. The domain of σ does not contain any of the

variables in F for otherwise F would not be irreducible. Therefore

T |= R → F iff T |= Fσ iff T |= F .

For (ii) first note that ∀X(U, R → ⊥) is equivalent to ∀X(R → ¬U), where

¬U is a disjunction of (positive) equations. Therefore, by convexity of T , if

T |= U, R → ⊥ then T |= R → u≈ v for some disequation u 6≈ v in U . Now use

(i) to infer that T |= u≈ v contradicting the satisfiability of u 6≈ v. 2
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Theorem 7.25 Let T be a convex, solvable theory. If U,R is a

terminal configuration of S then U ∪ R is satisfiable in T .

Proof. If no inference in S can be applied to U,R then (i) U contains

only negative equations, (ii) any of the disequations in U is satisfiable in

T , (iii) R is a solved form (cf. propositions 7.20 and 7.22), and (iv) any

term appearing in U is irreducible by R. Now apply (ii) in

Proposition 7.24. 2
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If we are only interested in deciding the UWP for a solvable T , T need

not be convex, as stated by this result:

Theorem 7.26 Let T be a solvable theory. If U,R is a terminal

configuration of S with |U | ≤ 1, then U ∪ R is satisfiable in T .

Proof. If no inference in S can be applied to U,R then (i) U contains at

most one negative equation s 6≈ t and T 6|= s≈ t; (ii) R is a solved form

(cf. propositions 7.20 and 7.22); and (iii) any term appearing in U is

irreducible by R. Now apply (i) in Proposition 7.24 to infer that

T |= (R → ¬U). 2


