Computational Topology

seminar

Alpha shapes
1. Intuitive definition and applications

2. Formal definition

3. Construction of alpha-shapes (Edelsbrunner’s algorithm)

4. Dual definition, union of balls and homotopy equivalence

5. Limitations of classical alpha-shapes

6. Extensions
 - Conformal Alpha-Shapes
 - Weighted-Alpha Shapes
What are α-shapes?

Originally introduced by: H. Edelsbrunner, D. G. Kirckpatrick and R. Seidel. *On the shape of a set of points in the plane*

Approach to formalize the intuitive notion of "shape" for spatial point sets

Generalization of the convex hull of a point set

Family of shapes derived from the Delaunay triangulation
parametrized by α

Dual shape* of the union of balls ...
Intuitive definition

Assume a finite set of points in the plane.
We have an intuitive notion of the shape formed by these points.
Intuitive definition

\[\alpha \to \infty \]

\[\alpha \to 0 \]
Applications

- Surface reconstruction and geometric modeling (later more)
Applications

- Modeling molecular structures (later more)

HIV-1 Protease
Applications

• Classification and visualization
Applications

• Grid generation

• Medical image analysis

• Visualizing the structure of earthquake data …
Formal definition – boundary of alpha-shape

Let the points in S be in **general position**

def. In k-1 dimensional hyperplane lie at most k points …

$T \subset S$ with $|T| = k + 1 \leq d + 1$, the **polytope** $\Delta_T = \text{conv}T$ has dimension k

Then Δ_T is a **k-simplex**

Definition. α–ball : Open ball with radius α, where ∂b is the surface of the sphere

Definition. k-simplex Δ_T is α-exposed if there exists an empty α–ball with $T = \partial b \cap S$

...analogy with the ice-cream “scenario”?
Formal definition – boundary of alpha-shape

Let S_α be our alpha-shape

Then the boundary ∂S_α consists of all k-simplices of S, which are α-exposed

$$\partial S_\alpha = \{ \Delta_T \mid T \subseteq S, |T| \leq d \text{ and } \Delta_T \text{ is } \alpha \text{-exposed} \}$$

But what exactly is our alpha-shape?
Does it have a structure in space?

Or more formally...

Is there any polytope P such that $\partial S_\alpha = \partial P$?

These simplices do not form a boundary.

later …
Formal definition – Convex Hull and Delaunay Triangulation

Observation.

\[
\lim_{\alpha \to 0} S_\alpha = S \quad \lim_{\alpha \to \infty} S_\alpha = \text{conv}S
\]

Definition. The **Delaunay triangulation** of \(S \subset \mathbb{R}^d \) is the **simplicial complex** \(DT(S) \) consisting of:

(i) All \(d \)-simplices such that their circumsphere does not contain any other points

(ii) All \(k \)-simplices which are faces of other simplices in \(DT(S) \)

Delaunay triangulation is the **dual shape** of the Voronoi diagram
Observation.

If Δ_T is an α-exposed simplex of S, then $\Delta_T \in DT(S)$

Proof. (black-board)

Observation.

For any $0 \leq \alpha \leq \infty$, $S_\alpha \subset DT(S)$

This results allows us to construct simple algorithm for computing the alpha-shape

for each $(d-1)$-simplex Δ_T in $DT(S)$

 if one of its circumspheres with radius α is empty

 then Δ_T is α-exposed

...but what about lower dimensional simplices?

infinitely many α-balls touching it
Definition. The α-complex $C_\alpha(S)$ is a simplicial subcomplex of $DT(S)$. A simplex $\Delta_T \in DT(S)$ is in $C_\alpha(S)$ if

1. its circumsphere is empty and has radius smaller than α, or
2. Δ_T is a face of another simplex in $C_\alpha(S)$

We found a simplicial complex with boundary ∂S_α ...

Result. The boundary of the α-complex is the boundary of the α-shape

There exist a polytope P, such that $\partial S_\alpha = \partial P$, for all $\infty \geq \alpha \geq 0$
One can prove:

\[\Delta_T \in \partial S_{\alpha}(S) \Rightarrow \Delta_T \in C_{\alpha}(S) \]

\[\Delta_T \in \partial S_{\alpha}(S) \Rightarrow \Delta_T \in \partial C_{\alpha}(S) \]

\[\Delta_T \in \partial C_{\alpha}(S) \Rightarrow \Delta_T \in \partial S_{\alpha}(S) \]

Finally:

\[\partial C_{\alpha}(S) = \partial S_{\alpha}(S) \]

\[S_{\alpha}(S) \leftarrow C_{\alpha}(S) \]

The \(\alpha \)-shape is the \(\alpha \)-complex
How to find the interior of an alpha-shape?

The straight-forward way:
Inspect the α-complex structure and check whether there is a d-simplex containing the facet.

Another (better) way:
A facet Δ_T bounds the interior iff exactly one of the two α-balls with $T = \partial b \cap S$ is empty.

Proof. (black-board)
Formal definition

Observation.

\[\alpha_1 \leq \alpha_2 \Rightarrow C_{\alpha_1}(S) \subseteq C_{\alpha_2}(S) \Rightarrow S_{\alpha_1}(S) \subseteq S_{\alpha_2}(S) \]

Proof.

According (i) \(\alpha_1 \leq \alpha_2 \) implies \(C_{\alpha_1}(S) \subseteq C_{\alpha_2}(S) \)

\(\alpha \)-complex:

(i) it’s circumsphere is empty and has radius smaller than \(\alpha \), or

(ii) \(\Delta_T \) is a face of another simplex in \(C_\alpha(S) \)

Result.

This shows that for any simplex \(\Delta \in DT(S) \) there is an interval \(I = [a, \infty] \) and the simplex is in \(C_\alpha(S) \) iff \(\alpha \in I \)

Basis for Edelsbrunner’s Algorithm … (next)
Edelsbrunner’s Algorithm - Intuitive

1. Compute the Delaunay triangulation of S knowing that it contains our α-shape

2. Compute C_{α} by inspecting all simplices Δ_T in $DT(S)$:

 $\text{if its circumsphere is empty with smaller radius than } \alpha$ then

 accept it (as well as all of its faces)

3. All d-simplices of C_{α} make up the interior of S_{α}. All simplices on the boundary ∂C_{α} form ∂S_{α}

We need certain “primitives” to make the algorithm work:

- Delaunay triangulation (easy)
- Test of “emptiness” (easy)
- Whether a simplex lies on the boundary or inside?
Edelsbrunner’s Algorithm

Whether a simplex lies on the boundary or inside?

1. If $\Delta_T \in \text{conv}S$ then it must lie on the boundary
2. If all d-simplices containing it lie in C_α, then its inside

Let’s increase α from 0 to infinity and let $\Delta_T \in DT(S)$,

\[
\Delta_T \text{ is } \begin{cases}
\text{not in } C_\alpha & (\text{for } \alpha < a) \\
\text{in } \partial C_\alpha & (\text{for } \alpha \in (a, b)) \\
\text{interior to } C_\alpha & (\text{for } \alpha \in (b, \infty))
\end{cases}
\]

for all $\Delta_T \in DT(S)$

The algorithm computes all possible α-shapes for S
Edelsbrunner’s Algorithm

Case 1: d-dimensional simplex (trivial)

Cannot be on the boundary: $a = b = \text{radius of its circumsphere}$

Case 2: k-dimensional simplex ($k < d$)

Idea: compute interval of k-simplex using already computed intervals for $(k+1)$-simplices.

α-complex:

(i) it’s circumsphere is empty and has radius smaller than α, or
(ii) Δ_r is a face of another simplex in $C_\alpha(S)$
Observation. Let $\Delta_T \in DT(S)$

$$a = \min \{ a_U \mid B_U = (a_U, b_u), \Delta_U (k+1)-Simplex, T \subset U \}$$

Then $\Delta_T \in C_\alpha$ if and only if $\alpha \in (a, \infty)$.

α-complex:

1. it's circumsphere is empty and has radius smaller than α, or
2. Δ_T is a face of another simplex in $C_\alpha(S)$
Observation. Let $\Delta_T \in C_S(\alpha)$

\[
b = \max \{ a_U \mid B_U = (a_U, b_u), B_U \text{ d-Simplex mit } T \subset U \}
\]

Then $\Delta_T \in \text{interior of } C_S(\alpha)$ iff $\alpha \in (b, \infty)$
Edelsbrunner’s Algorithm

Altogether we get the following algorithm:

\begin{verbatim}
procedure AlphaShape(S,d);
 \{Given a point-set \(S \subseteq \mathbb{R}^d \), computes a list \(R \) of simplices \(\Delta_T \) and\}
 \{two lists \(B, I \) of intervals such that \(\Delta_T \in \partial S_\alpha \) if and only if \(\alpha \in B_T \)
 \{and \(\Delta_T \in \text{int}(S_\alpha) \) if and only if \(\alpha \in I_T \).\}
 \begin{algorithmic}
 \State \(R := \text{DT}(S) \);
 \For {each \(d \)-simplex \(\Delta_T \in R \)}
 \State \(B_T := \emptyset \); \(I_T := (\sigma_i, \infty) \);
 \EndFor;
 \For {\(k := d - 1 \) to 0 by \(-1 \)}
 \For {each \(k \)-simplex \(\Delta_T \in R \)}
 \If {\(b_T \) is empty}
 \State \(a := \sigma_T \);
 \Else
 \State \(a := \min \{ a_U \mid B_U = (a_U, b_u), \Delta_U (k + 1) \text{-Simplex}, T \subseteq U \} \)
 \EndIf
 \If {\(\Delta_T \in \partial \text{conv}(S) \)}
 \State \(b := \infty \);
 \Else
 \State \(b := \max \{ a_U \mid B_U = (a_U, b_u), B_U \text{-Simplex mit } T \subseteq U \} \);
 \EndIf
 \State \(B_T := (a, b) \); \(I_T := (b, \infty) \);
 \EndFor;
 \EndFor;
 \State \Return \((R, B, I) \);
 \end{algorithmic}
end AlphaShape;
\end{verbatim}
Two dimensions.

Delaunay triangulation doable in $O(n \log n)$ time

The number of simplices (faces) is $O(n)$

d dimensions.

The number of simplices is $\Theta(n^{(d-1)/2})$.
α-shapes are tightly related to another type of shape: **The union of d-dimensional balls**

Connection to be established soon…

Let B be a set of n d-balls in \mathbb{R}^d

Union of balls important for modeling molecules in chemistry and biology
Union of balls – The three primal diagrams

\[p_b = \{ x \in \mathbb{R}^d : \| x - b \| \leq \| x - b' \|, b' \in B \} \] - vorontoi cell

\[q_b = p_b \cap b \] - intersection of the cell with its ball

\[p_T = \bigcap_{b \in T} p_b \]

\[q_T = \bigcap_{b \in T} q_b \]

\[P = P(B) = \{ p_T \mid \emptyset \neq T \subseteq B \} \] The power diagram of \(B \) (generalization of the Voronoi diagram)

\[D = D(B) = \{ q_T \mid \emptyset \neq T \subseteq B \} \] Intersection of \(P \) with \(U \)

\[U = U(B) = \bigcup_{b \in B} b \] The union of the balls
Union of balls – The three primal diagrams

\[P = P(B) = \{ p_T \mid \emptyset \neq T \subseteq B \} \]
\[|P| = \bigcup_{p_T \in P} p_T = R^d \]

\[D = D(B) = \{ q_T \mid \emptyset \neq T \subseteq B \} \]
\[|D| = U \]

\[U = U(B) = \bigcup_{b \in B} b \]
Definition. Nerve of a collection of sets A is $N(A) = \{ X \subseteq A | \bigcap_{a \in X} a \neq \emptyset \}$

All subsets of A with non-empty intersection (thus $N(A)$ is an abstract simplicial complex)

Example: The nerve of B is the collection of all subsets of d-balls with non-empty common intersection

![Geometric realization of the nerve of a set of balls](image)
Union of balls – The three dual diagrams

\[\sigma_T \equiv \text{Convex hull of the centers of the } d\text{-balls in } T \text{ (actually the corresponding simplex } \text{conv}T) \]

\[R = R(B) = \{ \sigma_T \mid \emptyset \neq p_T \in P \} \cup \{ \emptyset \} \quad \text{The regular triangulation of } B \text{ (Delaunay triangulation)} \]

\[K = K(B) = \{ \sigma_T \mid \emptyset \neq q_T \in D \} \cup \{ \emptyset \} \quad \text{The dual complex of } D \]

\[S = S(B) = \mid K \mid \quad \text{The dual shape of } U \]

R and K are geometric realizations of the nerves of P, D

\[P = P(B) = \{ p_T \mid \emptyset \neq T \subseteq B \} \]

\[D = D(B) = \{ q_T \mid \emptyset \neq T \subseteq B \} \]

\[U = U(B) = \bigcup_{b \in B} b \]
Union of balls – The three dual diagrams

\[P = P(B) = \{ p_T \mid \emptyset \neq T \subseteq B \} \]
\[D = D(B) = \{ q_T \mid \emptyset \neq T \subseteq B \} \]
\[U = U(B) = \bigcup_{b \in B} b \cdot |D| \]

\[p_T \in P \iff \sigma_T \in R \]

\[R = R(B) = \{ \sigma_T \mid \emptyset \neq p_T \in P \} \cup \{ \emptyset \} \]

\[K = K(B) = \{ \sigma_T \mid \emptyset \neq q_T \in D \} \cup \{ \emptyset \} \]

\[S = S(B) = |K| \]

Computational Topology

Alpha Shapes
Union of balls – Another definition of alpha-shapes

\[U = U(B) = \bigcup_{b \in B} b \cap D \]

\[S = S(B) = \partial K \]

Boundary of this complex is the boundary of an \(\alpha \)-shape*!

Alpha shape is the nerve of the union of balls intersected with their respective voronoi cells

Anybody noticing any difference with the previous definition? :-)
Union of balls – Another definition of alpha-shapes
Result. They are **homotopy equivalent**!

S captures the basic topology of the union (but independently of dimension)

Deformation retraction. S is a deformation retraction of U

Intuitively, continuous deformation of *the space* until becomes *the subspace* without moving…

Special case of homotopy (the requirement of subspace is relaxed here)
For a topological space Y, the k-th homology group $H_k = H_k(Y)$ is an abelian group that expresses the k-dimensional connectivity of Y.

Theorem. Two homotopy equivalent topological spaces have isomorphic homology groups.

Fact. There are very well known and efficient algorithms for computing homology groups of simplicial complexes.

Result. We have an efficient algorithm for computing the homology groups for the union of balls!
The Union of balls as a model for various molecules has

- Combinatorial
- Metric
- Topological properties
- Folding, Connectivity …

...directly computable from the α-shape which is computationally inexpensive

Examples:

- Counting faces of the union of balls
- Measuring the union of balls (ex. volume)
- Physical forces associated with the molecules etc.
Limitations of classical alpha shapes

Shape modeling.
Reconstruction of objects which have been sampled by points.

How to determine the “best” α?
Limitations of classical alpha shapes

There are sets of points for which no satisfying α exists

- Low density point-set will require large α in order to connect...
- Non-uniform distribution of points not appropriate
Extensions – weighted alpha shapes

Generalization of α-shapes (the dual of the union of balls)

Each point has a weight assigned, α-shapes: all weights set to 0

Intuitively weights corresponds to radii of the balls

Again weighted alpha shape (again) is a polytope whose boundary is the union of all α-exposed simplices spanned by S

Different definition of α-exposed simplex

Solves the problem of classical α-shapes for non-uniform density of sample points

Problem: How to assign the weights?
Extensions – conformal alpha shapes

Conformal α-shape. Use a local scale parameter $\tilde{\alpha}$ instead of the global scale parameter α

Used for reconstructing 3-dimensional smooth surfaces from a finite sampling…

At each point p in S we put a ball of radius α_p determined from its internal alpha scale:

$$\alpha_p(\tilde{\alpha}) = \alpha_p^+ \tilde{\alpha} + \alpha_p^-$$

$$\alpha_p^+ = \| p - p^* \|$$

$$\alpha_p^- = \alpha_p^1 = 0$$

Let $C_p^{\tilde{\alpha}}$ be the intersection of the voronoi cell and the ball at p, and let $C^{\tilde{\alpha}}$ be the interior of $\bigcup_{p \in P} C_p^{\tilde{\alpha}}$

Then **conformal alpha complex** is the Delaunay triangulation restricted to $C^{\tilde{\alpha}}$

Also a filtration of the Delaunay triangulation $DT(S)$
Fig. 5 Adapting the growth of the balls at the sample points as it is done for conformal α-shapes illustrates the superiority of conformal α-shapes (e) over uniform α-shapes (b,c) for curve and surface reconstruction from non-uniform samples (a). Uniform α-shapes would need uniform sampling as in (d). In (f) two scaled versions of a uniform sub-samples of the Stanford Bunny are shown in one scene to illustrate non-uniform sampling on a global scale. An α-shape for this sample is shown in (g) and a conformal α-shape is shown in (h).