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Abstract. We consider the computation of the volume of the union of
high-dimensional geometric objects. While showing that this problem
is #P-hard already for very simple bodies (i.e., axis-parallel boxes), we
give a fast FPRAS for all objects where one can: (1) test whether a given
point lies inside the object, (2) sample a point uniformly, (3) calculate the
volume of the object in polynomial time. All three oracles can be weak,
that is, just approximate. This implies that Klee’s measure problem and
the hypervolume indicator can be approximated efficiently even though
they are #P-hard and hence cannot be solved exactly in time polynomial
in the number of dimensions unless P = NP. Our algorithm also allows
to approximate efficiently the volume of the union of convex bodies given
by weak membership oracles.

For the analogous problem of the intersection of high-dimensional ge-
ometric objects we prove #P-hardness for boxes and show that there

is no multiplicative polynomial-time 2d
1−ε

-approximation for certain
boxes unless NP = BPP, but give a simple additive polynomial-time
ε-approximation.

1 Introduction

Given n bodies in the d-dimensional space, how efficiently can we compute the
volume of the union and the intersection? We consider this basic geometric prob-
lem for different kinds of bodies. The tractability of this problem highly depends
on the representation and the complexity of the given objects. For many classes
of objects already computing the volume of one body can be hard. For example,
calculating the volume of a polyhedron given either as a list of vertices or as a list
of facets is #P-hard [6, 14]. For convex bodies given by a membership oracle one
can also show that even though there can be no deterministic (O(1)d/ log d)d-
approximation for d ≥ 2 [2], one can still approximate the volume by an FPRAS
(fully polynomial-time randomized approximation scheme). In a seminal paper
Dyer, Frieze, and Kannan [7] gave an O∗(d23) algorithm, which was subsequently
improved in a series of papers to O∗(d4) [16] (where the asterisk hides powers of
the approximation ratio and log d).
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Volume computation of unions can be hard not only for bodies whose vol-
ume is hard to calculate. One famous example for this is Klee’s Measure Problem
(KMP). Given n axis-parallel boxes in the d-dimensional space, it asks for the
measure of their union. In 1977, Victor Klee showed that it can be solved in time
O(n log n) for d = 1 [15]. This was generalized to d > 1 dimensions by Bentley
who presented an algorithm which runs in O(nd−1 log n), which was later im-
proved by van Leeuwen and Wood [20] to O(nd−1). In FOCS ’88, Overmars and
Yap [17] obtained an O(nd/2 log n) algorithm. This was the fastest algorithm for
d ≥ 3 until, on this years SoCG, Chan [5] presented a slightly improved version
of Overmars and Yap’s algorithm that runs in time nd/22O(log∗ n), where log∗

denotes the iterated logarithm. So far, the only known lower bound is Ω(n log n)
for any d [8]. Note that the worst-case combinatorial complexity (i.e., the number
of faces of all dimensions on the boundary of the union) of Θ(nd) does not imply
any bounds on the computational complexity. There are various algorithms for
special cases, e.g., for hypercubes [1, 11] and unit hypercubes [4]. In this paper
we explore the opposite direction and examine the problem of the union of more
general geometric objects.

An important special case of KMP is the hypervolume indicator (HYP) [21]
where all boxes are required to share a common vertex. It is also known as the
“Lebesgue measure”, the “S-metric” and “hyperarea metric” and is a popular
measure of fitness of Pareto sets in multi-objective optimization. There, it mea-
sures the number of solutions dominated by a Pareto set. More details can be
found in Section 4.

Our results

It is not hard to see that HYP and KMP are #P-hard (see Theorem 1). Hence
they cannot be solved in time polynomial in the number of dimensions unless P

= NP. This shows that exact volume computation of unions is intractable for
all classes of bodies that contain axis-parallel boxes.

This motivates the development of approximation algorithms for the volume
computation of unions. This question was untackled until now – approaches
exist only for discrete sets (see, e.g., Karp, Luby, and Madras [13] for an FPRAS
for #DNF which is similar to our algorithm). We give an efficient FPRAS for a
huge class of bodies including boxes, spheres, polytopes, schlicht domains, convex
bodies determined by an oracle and all affine transformations of those objects
mentioned before. The underlying bodies B just have to support the following
oracle queries in polynomial time:

• PointQuery(x, B): Is point x ∈ Rd an element of body B (approximately)?
• VolumeQuery(B): What is the volume of body B (approximately)?
• SampleQuery(B): Return a random (almost) uniformly distributed point

x ∈ B.

PointQuery is a very natural condition which is fulfilled in almost all practical
cases. The VolumeQuery condition is important as it could be the case that
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no efficient approximation of the volume of one of the bodies itself is possible.
This, of course, prevents an efficient approximation of the union of such bodies.
The SampleQuery is crucial for our FPRAS. In Section 2.3 we will show that
it is efficiently computable for a wide range of bodies.

Note that it suffices that all three oracles are weak. More precisely, we allow
the following relaxation for every body B (vol(B) denotes the volume of a
body B in the standard Lebesgue measure on Rd, more details are given in
Section 2):

• PointQuery(x, B) answers true iff x ∈ B′ for a fixed B′ ⊂ Rd with
vol((B′ \ B) ∪ (B \ B′)) ≤ εPvol(B).

• VolumeQuery(B) returns a value V ′ with (1 − εV)vol(B) ≤ V ′ ≤ (1 +
εV)vol(B).

• SampleQuery(B) returns only an almost uniformly distributed random
point [10], that is, it suffices to get a random point x ∈ B′ (with B′ as
above) such that for the probability density f we have for every point x:
|f(x) − 1/vol(B′)| < εS.

Let P (d) be the worst PointQuery runtime of any of our bodies, analogously
V (d) for VolumeQuery, and S(d) for SampleQuery. Then our FPRAS has a
runtime of O(nV (d)+ n

ε2 (S(d)+P (d))) for producing an ε-approximation⋆ with
probability ≥ 3

4 if the errors of the underlying oracles are small, i.e., εS, εP, εV ≤
ε2

47n . For example for boxes, that is, for KMP and HYP, this reduces to O(dn
ε2 )

and is the first FPRAS for both problems. In Section 2.3 we also show that our
algorithm is an FPRAS for the volume of the union of convex bodies.

The canonic next question is the computation of the volume of the intersec-
tion of bodies in Rd. It is clear that most of the problems from above apply to
this question, too. #P-hardness for general, i.e., not necessarily axis-parallel,
boxes follows directly from the hardness of computing the volume of a poly-
tope [6, 14]. This leaves open whether there are efficient approximation algo-
rithms for the volume of intersection. In Section 3 we show that there cannot
be a (deterministic or randomized) multiplicative 2d1−ε

-approximation in gen-
eral, unless NP = BPP by identifying a hard subproblem. Instead we give an
additive ε-approximation, which is therefore the best we can hope for. It has a
runtime of O(nV (d) + ε−2S(d) + n

ε2 P (d)), which gives O(dn
ε2 ) for boxes.

2 Volume computation of unions

In this section we show that the volume computation of unions is #P-hard
already for axis-parallel boxes that have one vertex at the origin, i.e., for HYP.
After that we give an FPRAS for approximating the volume of the union of
bodies which satisfy the three aforementioned oracles and describe several large
classes of objects for which the oracles can be answered efficiently.

⋆ We will always assume that ε is small, that is, 0 < ε < 1.
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2.1 Computational complexity of union calculations

Consider the following problem: Let S be a set of n axis-parallel boxes in Rd

of the form B = [a1, b1] × · · · × [ad, bd] with ai, bi ∈ R, ai < bi. The volume of

one such box is vol(B) =
∏d

i=1(bi − ai). To compute the volume of the union
of these boxes is known as Klee’s Measure Problem (KMP), while we call the
problem HYP (for hypervolume) if we have ai = 0 for all i ∈ [d].

The following Theorem 1 proves #P-hardness of HYP and KMP. This is
the first hardness result for HYP. To the best of our knowledge there is also no
published result that explicitly states that KMP is #P-hard. However, with-
out mentioning this implication, Suzuki and Ibaraki [19] sketch a reduction from
#SAT to KMP. In the following theorem we reduce #MON-CNF to HYP, which
counts the number of satisfying assignments of a Boolean formula in conjunctive
normal form in which all variables are unnegated. While the problem of deciding
satisfiability of such formula is trivial, counting the number of satisfying assign-
ments is #P-hard and even approximating it in polynomial time by a factor of
2d1−ε

for any ε > 0 is NP-hard, where d is the number of variables (see Roth
[18] for a proof).

Theorem 1. HYP and KMP are #P-hard.

Proof. To show the theorem, we reduce #MON-CNF to HYP. The hardness
of KMP follows immediately. Let f =

∧n
k=1

∨

i∈Ck
xi be a monotone Boolean

formula given in CNF with Ck ⊂ [d] := {1, . . . , d}, for k ∈ [n], d the number of
variables, n the number of clauses. Since the number of satisfying assignments
of f is equal to 2d minus the number of satisfying assignments of its negation,
we instead count the latter: Consider the negated formula f̄ =

∨n
k=1

∧

i∈Ck
¬xi.

First, we construct a box Ak = [0, ak
1 ] × · · · × [0, ak

d] in Rd for each clause Ck

with one vertex at the origin and the opposite vertex at (ak
1 , . . . , ak

d), where we
set

ak
i =

{

1, if i ∈ Ck

2, otherwise
, i ∈ [d].

Observe that the union of the boxes Ak can be written as a union of boxes
of the form Bx1,...,xd

= [x1, x1 + 1] × · · · × [xd, xd + 1] with xi ∈ {0, 1}, i ∈ [d].
Moreover, Bx1,...,xd

is a subset of the union
⋃n

k=1 Ak iff it is a subset of some Ak iff
we have ak

i ≥ xi+1 for i ∈ [d] iff ak
i = 2 for all i with xi = 1 iff i /∈ Ck for all i with

xi = 1 iff (x1, . . . , xd) satisfies
∧

i∈Ck
¬xi for some k iff (x1, . . . , xd) satisfies f̄ .

Hence, since vol(Bx1,...,xd
) = 1, we have vol(

⋃n
k=1 Ak) = |{(x1, . . . , xd) ∈

{0, 1}d | (x1, . . . , xd) satisfies f̄}|. Thus a polynomial time algorithm for HYP
would result in a polynomial time algorithm for #MON-CNF, which proves the
claim.

For integer coordinates it is easy to see that KMP ∈ #P and hence that in this
case KMP and HYP are even #P-complete.
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2.2 Approximation algorithm for the volume of unions

In this section we present an FPRAS for computing the volume of the union of
objects for which we can answer PointQuery, VolumeQuery, and Sample-

Query in polynomial time. The input of our algorithm ApproxUnion are the
approximation ratio ε and the bodies {B1, . . . , Bn} in Rd defined by the three
oracles. It computes a number Ũ ∈ R such that

Pr

[

(1 − ε)vol
(

n
⋃

i=1

Bi

)

≤ Ũ ≤ (1 + ε)vol
(

n
⋃

i=1

Bi

)

]

≥
3

4

in time polynomial in n, 1/ε and the query runtimes. The number 3
4 is arbitrary

and can be increased to every number 1 − δ, δ > 0 by a factor of log(1/δ)
in the runtime by running algorithm ApproxUnion log(1/δ) many times and
returning the median of the reported values for Ũ .

We are following the algorithm of Karp and Luby [12] which the authors used
for approximating #DNF and other counting problems on discrete sets. The two
main differences are that here we are handling continuous bodies in Rd and that
we allow erroneous oracles.

Algorithm 1 ApproxUnion (S, ε, εP, εV, εS) calculates an ε-approximation
of vol(

⋃n
i=1 Bi) for a set of bodies S = {B1, . . . , Bn} in Rd determined by

the oracles PointQuery, VolumeQuery and SampleQuery with error ratios
εP, εV, εS.

M := 0, C := 0, ε̃ := ε−εV

1+εV
, C̃ := (1+εS)(1+εV)(1+εP)

(1−εV)(1−εP) , T := 24 ln(2)(1+ε̃)n

ε̃2−8(C̃−1)n

for all Bi ∈ S do

compute V ′
i := VolumeQuery(Bi)

od

V ′ :=
∑n

i=1 V ′
i

while C ≤ T do

choose i ∈ [n] with probability V ′
i /V ′

x := SampleQuery(Bi)
repeat

if C > T then return T ·V ′

nM
choose random j ∈ [n] uniformly
C := C + 1

until PointQuery (x, Bj)
M := M + 1

od

return T ·V ′

nM

We assume that we are given upper bounds εP, εS and εV for the error ratios
of the oracles. In the algorithm we first compute the runtime T and then via
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VolumeQuery the volume V ′
i for every given body Bi and their sum V ′ =

∑n
i=1 V ′

i . Then, in a loop, we choose a random i ∈ [n], where we choose an i

with probability
V ′

i

V ′
and a random (almost) uniformly distributed point x ∈ Bi

via SampleQuery. Then we repeatedly choose a random j ∈ [n] uniformly and
check, whether x ∈ Bj : PointQuery(x, Bj) returns true iff x ∈ B′

j . If this is the
case, we leave the inner loop and increase the counter M . This random variable
is in the end used to calculate the result T ·V ′

nM .
In the full version of the paper [3] we show correctness of ApproxUnion,

that is, we show that it returns an ε-approximation with probability ≥ 3
4 and

T = O( n
ε2 ) if εS, εP, εV ≤ ε2

47n . The last inequality reflects the fact that we
cannot be arbitrarily accurate if the given oracles are inaccurate. If all oracles
can be calculated accurately, i.e., if εP = εS = εV = 0, the algorithm runs for

just T = 8 ln(8)(1+ε)n
ε2 many steps. The runtime of ApproxUnion is clearly

O(n · V (d) + M · S(d) + T · P (d)) = O(n · V (d) + T · (S(d) + P (d))),

where V (d) is the worst VolumeQuery time for any of the bodies, analogously
S(d) for SampleQuery and P (d) for PointQuery. This equals O(n · V (d) +
n
ε2 · (S(d) + P (d))) if εS, εP, εV ≤ ε2

47n .
For boxes all three oracles can be computed exactly in O(d). This implies

that our algorithm ApproxUnion gives an ε-approximation of KMP and HYP
with probability ≥ 3

4 in runtime O(nd
ε2 ).

2.3 Classes of objects supported by our FPRAS

To find an FPRAS for the union of a certain class of geometric objects now
reduces to calculating the respective PointQuery, VolumeQuery and Sam-

pleQuery in polynomial time. We assume that we can get a random real num-
ber in constant time. Then all three oracles can be calculated in time O(d) for
d-dimensional boxes. This already yields an FPRAS for the volume of the union
of arbitrary boxes, e.g., for KMP and HYP. Note that if we have a body for
which we can answer all those queries, all affine transformations of this body
fulfill these three oracles, too. We will now present three further classes of geo-
metric objects.

Generalized spheres and boxes: Let Bk be the class of boxes of dimension k,
i.e., Bk = {[a1, b1] × · · · × [ak, bk] | ai, bi ∈ R, ai < bi} and Sl the class of
spheres of dimension l. We can combine any box B ∈ Bk and sphere S ∈
Sd−k to get a d-dimensional object B × S. Furthermore, we can permute the
dimensions afterwards to get a generalized “box-sphere”. In R3 this corresponds
to boxes, spheres and cylinders. To calculate the respective VolumeQuery,
PointQuery and SampleQuery is a standard task of geometry.

Schlicht domains: Let ai, bi : Ri−1 → R be continuous functions with ai ≤
bi, where a1, b1 are constants. Let K ⊂ Rd be defined as the set of
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all points (x1, . . . , xd) ∈ Rd such that a1 ≤ x1 ≤ b1, a2(x1) ≤ x2 ≤
b2(x1), . . . , ad(x1, . . . , xd−1) ≤ xd ≤ bd(x1, . . . , xd−1). K is called a schlicht
domain in functional analysis. Fubini’s theorem for schlicht domains states
that we can integrate a function f : K → R by iteratively integrating first
over xd, then over xd−1, . . . , until we reach x1. This way, by integrating
f ≡ 1, we can compute the volume of a schlicht domain, as long as the in-
tegrals are computable in polynomial time, and thus answer a VolumeQuery.
Similarly, we can choose a random uniformly distributed point inside K: Let
K(y) = {(x1, . . . , xd) ∈ K | x1 = y}. Then K(y) is another schlicht domain for
every a1 ≤ y ≤ b1. Assume that we can determine the volume of every such K(y)
and the integral I(y) =

∫ y

a1
K(x)dx. Then the inverse function I−1 : [0, V ] → R,

where V =
∫ b1

a1

K(x)dx is the volume of K, allows us to choose a y in [a1, b1]

with probability proportional to vol(K(y)). By this we can iteratively choose a
value y for x1 and recurse to find a uniformly random point (y2, . . . , yd) in K(y),
plugging both together to get a uniformly distributed point (y1, . . . , yd) in K.
Hence, as long as we can compute the involved integrals and inverse functions
(or at least approximate them good enough), we can answer SampleQuery.
Since PointQuery is trivially computable – as long as we can evaluate ai and
bi efficiently – this gives an example showing that the classes of objects that ful-
fill our three conditions include not only convex bodies, but also certain schlicht
domains.

Convex bodies: As mentioned in the introduction, exact calculation of Volume-

Query for a polyhedron given as a list of vertices or facets is #P-hard [6, 14].
Since there are randomized approximation algorithms (see Dyer et al. [7] for
the first one) for the volume of a convex body determined by a membership
oracle, we can answer VolumeQuery approximately. The same holds for Sam-

pleQuery as these algorithms make use of an almost uniform sampling method
on convex bodies. See Lovász and Vempala [16] for a result showing that Vol-

umeQuery can be answered with O∗( d4

ε2

V

) questions to the membership oracle

and SampleQuery with O∗(d3

ε2

S

) queries, for arbitrary errors εV, εS > 0 (where

the asterisk hides factors of log(d) and log(1/εV) or log(1/εS)). PointQuery

can naturally be answered with a single question to the membership oracle. By

choosing εV = εS = ε2

47n , we can show [3] that ApproxUnion is an FPRAS for

the volume of the union of convex bodies which uses O∗(n3d3

ε4 (d + 1
ε2 )) member-

ship queries.
Note that all above mentioned classes of geometric objects contain boxes and

hence our hardness results still hold and hence an ε-approximation algorithm is
the best one can hope for.

3 Volume computation of intersections

In this section we are considering the complement to the union problem. We
show that surprisingly the volume of a intersection of a set of bodies is often
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much harder to calculate than its union. For many classes of geometric objects
there is even no randomized approximation possible.

As the problem of computing the volume of a polytope is #P-hard [6, 14],
so is the computation of the volume of the intersection of general (i.e., not
necessarily axis-parallel) boxes in Rd. This can be seen by describing a polytope
as an intersection of halfplanes and representing these as general boxes.

Now, let us consider the convex bodies again. Trivially, the intersection of
convex bodies is convex itself, and from the oracles defining the given bodies
B1, . . . , Bn one can simply construct an oracle, which answers PointQuery for
the intersection of those objects: Given a point x ∈ Rd it asks all n oracles and
returns true iff x lies in all the bodies. One could think now that we can apply
the result of Dyer et al. [7] and the subsequent improvements mentioned in the
introduction to approximate the volume of the intersection and get an FPRAS
for the problem at hand. The problem with that is that the intersection is not
“well-guaranteed”: There is no point known that lies in the intersection, not to
speak of a sphere inside it. However, the algorithm of Dyer et al. [7] relies vitally
on the assumption that the given body is well-guaranteed and hence cannot be
applied for approximating the volume of the intersection of convex bodies.

We will now present a hard subproblem which shows that the volume of the
intersection cannot be approximated (deterministic or randomized) in general.

Definition 1. Let p, q ∈ Rd
≥0. Then Bp := {x | 0 ≤ xi ≤ pi ∀i} is a p-box,

Bp,q := Bp \ Bq is a (p, q)-box, and {Bp,q1
, Bp,q2

, . . . , Bp,qn
} is a p-set.

A (p, q)-box is basically a box where we cut out another box at one corner. The
resulting object can itself be a box, too, but in general it is not even convex. It
can be seen as the inverse of a box Bp relative to a larger background box Bq.
Note that it is easy to calculate the union of a p-set as

⋃

Bp,qi
= Bp \

⋂

Bqi
.

On the other hand, the calculation of the intersection of a p-set is #P-hard as
⋃

Bqi
= Bp \

⋂

Bp,qi
by Theorem 1. The following theorem shows that it is not

even approximable.

Theorem 2. Let p, q1, . . . , qn ∈ Rd
≥0. Then the volume of

⋂n
i=1 Bp,qi

cannot be
approximated (deterministic or randomized) in polynomial time by a factor of

2d1−ε

for any ε > 0 unless NP = BPP.

Proof. Consider again the problem #MON-CNF already defined Section 2. We
use Roth’s result [18] that #MON-CNF cannot be approximated by a factor of

2d1−ε

unless NP = BPP and construct an approximation preserving reduction.
Let f =

∧n
k=1

∨

i∈Ck
xi be a monotone Boolean formula given in CNF with

Ck ⊂ [d], for k ∈ [n], d the number of variables, n the number of clauses.
For every clause Ck we construct a (p, qk)-box Ak with p = (2, . . . , 2) ∈ Rd,
qk = (qk,1, . . . , qk,d) and qk,i = 1 if i ∈ Ck, and qk,i = 2 otherwise.

Observe that each Ak can be written as a union of boxes of the form
Bx1,...,xd

= [x1, x1 + 1] × · · · × [xd, xd + 1] with xi ∈ {0, 1}. Hence, their in-



9

tersection can also be written as such a union as follows:

n
⋂

k=1

Ak =
⋃

(x1,...,xd)∈S

Bx1,...,xd

for some set S ⊂ {0, 1}d. Furthermore, we have (x1, . . . , xd) ∈ S iff Bx1,...,xd
⊂

Ak for all k iff Bx1,...,xd
∩{x ∈ Rd

≥0 | x ≺ qk} = ∅ for all k iff ∃i ∈ {1, . . . , d} : xi ≥
qk,i for all k. Since this inequality can only be satisfied if xi = 1 and qk,i = 1,
which holds iff i ∈ Ck, we have that the former term holds if and only if ∃i ∈
Ck : xi = 1 for all k iff

∨

j∈Ck
xj is satisfied for all k iff f is satisfied. Hence, we

have that the set S equals the set of satisfying assignments of f , so that

|{x ∈ {0, 1}d | f(x) = 1}| = |S|
(∗)
= vol

(

n
⋂

k=1

Ak

)

/vol
(

B(0,...,0)

)

= vol
(

n
⋂

k=1

Ak

)

where (∗) comes from the fact that
⋂n

k=1 Ak is composed of |S| many boxes of
equal volume and this volume is 1. Hence, we have a polynomial time reduction
and inapproximability of the volume of the intersection follows.

This shows that in general there does not exist a polynomial time multi-
plicative ε-approximation of the volume of the intersection of bodies in Rd. This
holds for all classes of objects which include p-sets, e.g. schlicht domains (cf. Sec-
tion 2.3). Though there is no multiplicative approximation, we can still give an
additive approximation algorithm, that is, we can efficiently find a number Ṽ
such that

Pr[V − ε · Vmin ≤ Ṽ ≤ V + ε · Vmin] ≥
3

4

where V is the correct volume of the intersection and Vmin is the minimal volume
of any of the given bodies B1, . . . , Bn. If we could replace Vmin by V in the
equation above, we would have an FPRAS. This is not possible in general as the
ratio of V and Vmin can be arbitrarily small. Hence, such an ε-approximation is
not relative to the exact result, but to the volume of some greater body. This is an
additive approximation since after rescaling, so that Vmin ≤ 1 we get an additive
error of ε. Clearly, we get the result from above quite easily by uniform sampling
in the body Bmin corresponding to the volume Vmin. From Bernstein’s inequality
we know that for N proportional to 1/ε2 and Ṽ = 1/N(Z1+. . .+ZN ), where Zi is
a random variable valued 1, if the i-th sample point xi = SampleQuery(Bmin)
lies in the intersection of B1, . . . , Bn, and 0 otherwise, Ṽ approximates V with
absolute error ε. This gives an approximation algorithm with runtime O(nV (d)+
1
ε2 S(d) + n

ε2 P (d)), yielding O(dn
ε2 ) for boxes.

4 The hypervolume indicator

As an application of our results from Section 2 we now analyze the complex-
ity of the hypervolume indicator which is widely used in evolutionary multi-
objective optimization. In multi-objective optimization the aim is is to minimize
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(or maximize) d objective functions fi : S → R, 1 ≤ i ≤ d, over a search space
S ⊆ Rd. As these objectives are often conflicting, one does not generally search
for a single optimum, but rather for a set of good compromise solutions. In
order to compare different solutions, we impose an order � on the d-tuples
f(x) = (f1(x), . . . , fd(x)), x ∈ S, by letting x1 � x2 whenever fi(x1) ≤ fi(x2)
for each i, 1 ≤ i ≤ d. If M ⊂ S is such that x1, x2 ∈ M implies x1 � x2, then
we call M a “Pareto front” and f(M) a “Pareto set”. Pareto fronts correspond
to sets of maximal solutions to the optimization problem given by (S, f). The
functions fi are often assumed to be monotone with respect to some ordering
on S whence f is bijective and the optimization problem reduces to identifying
“good” Pareto sets.

How to compare Pareto sets lies at the heart of research in multi-objective
optimization. One measure that has been the subject of much recent study is
the so-called “hypervolume indicator” (HYP). It measures the space dominated
by the Pareto set relative to a reference point r ∈ Rd. For a Pareto set M , the
hypervolume indicator is

I(M) = vol(
{

x ∈ Rd
≥0 | ∃p ∈ M so that r � x � p

}

)

= vol(
⋃

p∈M

{

x ∈ Rd
≥0 | r � x � p

}

).

To simplify the presentation we assume r = (0, . . . , 0) which can be achieved by
setting f ′(x) := f(x) + r. Using the notation of Definition 1, we can reduce the
hypervolume to the well-understood union problem I(M) = vol(

⋃

p∈M Bp).
The hypervolume was first proposed and employed for multi-objective op-

timization by Zitzler and Thiele [21]. Several algorithms have been developed.
It was open so far whether a polynomial algorithm for HYP is possible. Our
#P-hardness result for HYP (Theorem 1) dashes the hope for a subexponential
algorithm (unless P = NP) and motivates to examine approximation algo-
rithms. Our algorithm ApproxUnion gives an ε-approximation of the hyper-
volume indicator with probability 1−δ in time O(log(1/δ)nd/ε2). As its runtime
is just linear in n and d, it is not only the first proven FPRAS for HYP, but also
a very practical algorithm.

5 Discussion and open problems

We have proven #P-hardness for the exact computation of the volume of the
union of bodies in Rd as long as the class of bodies includes axis-parallel boxes.
The same holds for the intersection if the class of bodies contains general boxes.
We have also presented an FPRAS for approximating the volume of the union
of bodies that allow three very natural oracles. Very recently, there appeared a
few deterministic polynomial-time approximations (FPTAS) for hard counting
problems (e.g. [9]). It seems to be a very interesting open question whether there
exists a deterministic approximation for the union of some non-trivial class of
bodies. Since the volume of convex bodies determined by oracles cannot be
approximated to within a factor that is exponential in d [2], the existence of
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geometric objects volume of the union volume of the intersection

axis-parallel boxes #P-hard + FPRAS easy
general boxes #P-hard + FPRAS #P-hard
p-sets easy #P-hard + APX-hard
schlicht domains #P-hard + FPRAS⋆ #P-hard + APX-hard
convex bodies #P-hard + FPRAS #P-hard

Table 1: Results for the computational complexity of the calculation of the volume of
union and intersection (asymptotic in the number of dimensions d).

such a deterministic approximation for the union seems implausible. It is also
open whether there is a constant C so that HYP or KMP can be efficiently
deterministically approximated within a factor of C?

For the intersection we proved that no multiplicative approximation (de-
terministic or randomized) is possible for p-sets (cf. Definition 1), but we also
presented a very simple additive approximation algorithm for the intersection
problem. It would be interesting to know if there is a hard class for multiplicative
approximation which contains only convex bodies.

Our results are summarized in Table 1. Note the correspondence between
axis-parallel boxes and p-sets. The discrete counterpart to their approximability
and inapproximability is the approximability of #DNF and the inapproximabil-
ity of #SAT. One implication of our results is the hardness and a practically
efficient approximation algorithm for computing HYP and KMP.
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