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Abstract The hypervolume indicator is widely used to guide the search
and to evaluate the performance of evolutionary multi-objective opti-
mization algorithms. It measures the volume of the dominated portion
of the objective space which is considered to give a good approxima-
tion of the Pareto front. There is surprisingly little theoretically known
about the quality of this approximation. We examine the multiplicative
approximation ratio achieved by two-dimensional sets maximizing the
hypervolume indicator and prove that it deviates significantly from the
optimal approximation ratio. This provable gap is even exponential in
the ratio between the largest and the smallest value of the front. We also
examine the additive approximation ratio of the hypervolume indicator
and prove that it achieves the optimal additive approximation ratio apart
from a small factor < n/(n — 2), where n is the size of the population.
Hence the hypervolume indicator can be used to achieve a very good
additive but not a good multiplicative approximation of a Pareto front.

1 Introduction

Most real-world optimization problems have to deal with multiple objectives
(like time vs. cost) and cannot be easily described by a single objective function.
This implies that there is in general no unique optimum, but a possibly very
large set of incomparable solutions which forms a Pareto front. Many different
multi-objective evolutionary algorithms (MOEASs) have been developed to find
a Pareto set of (preferably small) size n which gives a good approzimation of
the Pareto front. A popular way to measure the quality the approximation is
the hypervolume indicator. It measures the volume of the dominated space [18].
For a small number of objective, MOEAs which directly use the hypervolume
indicator to guide the search are the methods of choice. These include for example
the generational MO-CMA-ES [8, 16], the SMS-EMOA [3, 6], and variants of
IBEA [17, 19].

One of the reasons why the hypervolume indicator is so popular is that it
matches very well with our intuition how a good approximation of a Pareto
front should look like. However, there is only little known whether maximizing
the hypervolume also gives a good approximation of the Pareto front in strictly
mathematical sense. Considering the wide use of the hypervolume indicator, the



question whether it achieves a good approximation appears to be fundamen-
tal. The distribution of the points maximizing the hypervolume indicator has
been examined by several authors. It was observed that “convex regions may be
preferred to concave regions” [13, 18] as well as that HYP is “biased towards
the boundary solutions” [5]. In contrast to this, such sets are empirically “well
distributed” according to [6, 9, 10] and it was also proven that for the number
of points n — oo the density of points only depends on the gradient [2].

However, the question whether sets maximizing the hypervolume give an ap-
proximation of the Pareto front in the mathematical sense remained open besides
two preliminary papers [4, 7]. We follow up on this and study the approxima-
tion quality of the hypervolume indicator by classic approximation theory. Which
concept from approximation theory is the right measure depends on the problem
at hand. As a general rule of thumb, for linear axes this is the additive approxi-
mation ratio while for exponential axes this is the multiplicative approximation
ratio.

To illustrate this with a small example, consider a knapsack problem (see
e.g. [18]) with linearly distributed weights and exponentially distributed profits.
In this case a good approximation of the front should be an additive approxi-
mation of the weights and a multiplicative approximation of the profits. Within
this example the result of this paper is that compared to the optimal set with
best possible approximation, sets maximizing the hypervolume only achieve the
first aim, not necessarily the latter.

In our previous paper [4], we proved that for all possible Pareto fronts the
multiplicative approximation factor achieved by a set of n solutions maximizing
the hypervolume indicator is 1+6(1/n) (cf. Theorem 3.6)3. As this was shown to
be asymptotically equivalent to the optimal multiplicative approximation factor
(cf. Corollary 3.4), we concluded that the hypervolume indicator is guiding the
search in the correct direction for sufficiently large n. However, the size n of a
population is usually not large. Also, the constant factors hidden by the © might
still be larger for the set maximizing hypervolume compared to the set with best
possible approximation factor.

Our results

We significantly extend the results of [4]. First, we are now able to give tight
bounds on the multiplicative approximation ratio depending on the ratio A/a
between the largest and smallest coordinate*. Using this notation, the precise
result of [4] is the computation of the optimal multiplicative approximation ratio
as 1 +log(A/a)/n (cf. Corollary 3.4). We are now able to show that the multi-
plicative approximation ratio for a set maximizing the hypervolume is strictly

3 The precise statements of this and the following results of this introduction are
slightly more technical. For details see the respective theorems.

4 The approximation ratio actually depends on the ratios in both dimensions. To
simplify the presentation in this introduction, we assume here that the ratio A/a in
the first dimension is equal to the ratio B/b in the second dimension.



larger, namely of the order of at least 1+ \/A/a /n (cf. Theorem 3.7). This im-
plies that the dependence of this multiplicative approximation ratio on the ratio
A/a can be exponentially worse than in the optimal case. Hence for numerically
very wide spread fronts (that is, large A/a) there are Pareto sets which give a
much better multiplicative approximation than the Pareto sets which maximize
the hypervolume.

Second, we now also analyze the additive approximation ratio of the hyper-
volume indicator. While the multiplicative approximation factor is determined
by the ratio A/a, the additive approximation factor is determined by the width
of the domain A — a. We prove that the optimal additive approximation ratio is
(A —a)/n (cf. Theorem 4.3) and upper bound the additive approximation ratio
achieved by a set maximizing the hypervolume by (A — a)/(n — 2) (cf. Theo-
rem 4.5). This is a very strong statement, as apart from the small factor n/(n—2)
the additive approximation ratio achieved when maximizing the hypervolume is
optimal! This shows that the hypervolume indicator yields a much better additive
than multiplicative approximation.

2 Preliminaries

We only consider the case of two objectives where there is a mapping from an
arbitrary search space to an objective space which is a subset of R2. Throughout
this paper, we will only work on the objective space. For points from the objective
space we define the following dominance relation:

(r1,y1) 2 (22,92) iff 21 <29 and y1 < g2,
(‘Tlvyl) = (I27y2) iff (xlvyl) j (zQayQ) and (xlvyl) 7& ($27y2)'

We restrict ourselves to Pareto fronts that can be written as {(z, f(z)) | © €
[a, A]} where f: [a, A] — [b, B] is a (not necessarily strictly) monotonically de-
creasing, upper semi-continuous® function with f(a) = B, f(A) = b for a < A,
b < B. We write F = F4 a1, for the set of all such functions f. We will
use the term front for both, the set of points {(z, f(z)) | = € [a, A]}, and the
function f.

The condition of f being upper semi-continuous cannot be relaxed further
as without it the f lacks symmetry in the two objectives in the following sense:
Being upper semi-continuous is necessary and sufficient for the existence of the
inverse function f~': [b, B] — [a, A] defined by setting f~!(y) := max{z €
[a, A] | f(x) > y}. Without upper semi-continuity this maximum does not exist
in general. Furthermore, this condition implies that there is a set maximizing
the hypervolume indicator.

5 Semi-continuity is a weaker property than normal continuity. A function f is said to
be upper semi-continuous if for all points x of its domain, limsup,_,, f(y) < f(z).
Intuitively speaking this means that for all points x the function values for arguments
near x are either close to f(z) or less than f(z). For more details see e.g. Rudin [15].



Note that the set F of fronts we consider is a very general one. Most papers
that theoretically examine the hypervolume indicator assume that the front is
continuous and differentiable (e.g. [1, 2, 7]), and are thus not able to give results
about discrete fronts, which we can.

Let n € N. For fixed [a, 4],[b,B] C R we call a set P = {p1,...,pn} C
[a, A] x [b, B] a solution set (of size n) and write P = P,, for the set of all such
solution sets. A solution set P is said to be feasible for a front f € F, if y < f(x)
for all p = (x,y) € P. We write Pf C P for the set of all solution sets that are
feasible for f.

We are now ready to formally define the hypervolume indicator. It was first
introduced for performance assessment in multiobjective optimization by Zitzler
and Thiele [18], but since then also has become a very popular way to guide the
search in multi-objective evolutionary optimizers. On a two-dimensional objec-
tive space it is defined as follows.

Definition 2.1 The hypervolume indicator HYP(P) of a solution set P € P
relative to a reference point R = (Ry, Ry) is

HYP(P) ::vm( U [Rmm]x[Ry,y]).

(z,y)EP

with VOL( - ) being the usual Lebesgue measure.

3 Multiplicative Approximation

The standard measure of approximation quality in approximation theory is the
multiplicative approximation ratio. We use the multi-objective definition for the
multiplicative approximation ratio by Papadimitriou and Yannakakis [14] which
was also used in [4, 7, 11, 12]. Note that here and in the rest of the paper when
talking about multiplicative approximation we require a,b > 0 as this ratio only
makes sense for positive values.

Definition 3.1 Let f € F and P € Pf. The solution set P is a multiplicative
a-approximation of f if for each & € [a, A] there is a point p = (x,y) € P with

< ax and f(2) <ay

where a € R, o > 1. The multiplicative approximation ratio of P with respect
to f is then defined as

a*(f, P) ;= inf{a € R | P is a multiplicative a-approzimation of f}.
The quality of an algorithm which calculates a solution set of size n for each

Pareto front in F has to be compared with the respective optimal approximation
ratio defined as follows.



Definition 3.2 For fized [a, A], [b, B], and n, let

af ;= sup inf o*(f,P).
OPT feg Py (f,P)
The value af,pp is chosen such that every front in F can be approximated by n
points to a ratio of af,ps, and there is a front which cannot be approximated
better. In [4] the authors showed the following two results.

Theorem 3.3 (from [4]) a}pp = min{A/a, B/b}'/".
Corollary 3.4 (from [4]) For all n > log(min{A/a, B/b})/e and € € (0,1),
n log(min{A/a, B/b})

n

1 in{A/a, B/b
OZ*OPT<1+(1+€) Og(mln{n/a7 /})

appr =1

We further want to measure the approximation of the solution set of size n
maximizing HYP. As there might be several solution sets maximizing HYP, we
consider the worst case and use the following definition.

Definition 3.5 For fized [a, A], [b, B], and n, let
Plyp = {PeP! | HYP(P) = max HYP(Q)} for f € F, and
€

oyyp = sup sup a’(f,P).

feF pepf,.

The set P{IYP is the set of all feasible solution sets that maximize HYP on f.
The value a};yp is chosen such that for every front f in F every solution set
maximizing HYP approximates f by a ratio of at most aj;yp. Note that this
assumes that there is at least one solution set which maximizes the indicator,
i.e., the set PIJ_;YP is non-empty. That this is indeed the case was proven in [4].

In [4] the authors also examined aj;yp and showed an upper bound that has
the same asymptotic behavior as af)pp, but a much larger constant factor.

Theorem 3.6 (from [4]) Let f € F, n > 4, and let R = (R;, R,) < (0,0) be
the reference point. If we have

e n>2+max{\/A/a,\/B/b} or
e R, < —VAa/n, R, < —/Bb'/n,

then
VAfa ++/B/b
n—

apyp < 1+—4-

The previous paper [4] left open whether (i) the upper bound of Theorem 3.6
is not tight and aJ;yp is actually much closer to the bounds for af,p, given in
Corollary 3.4 or (ii) aj;yp is indeed significantly larger than of,pp. By giving a
lower bound for a};yp we can now prove the latter. In the following theorem we
restrict ourselves to the case of A/a = B/b. We show that in this situation the
bound of Theorem 3.6 is tight except for a small constant factor.



Theorem 3.7 Letn > 4, A/a = B/b > 13, and R = (R;,R,) =< (0,0) be the

reference point. Then
2y/AJa—1

QEYP>1+ 3(71—1)

The proof of this theorem will be provided in the full version of the paper.

4 Additive Approximation

After the previous section showed that sets maximizing the hypervolume have
sub-optimal multiplicative approximation ratio we now analyze their additive
approximation properties. Analogous to Definition 3.1 we use the following def-
inition.

Definition 4.1 Let f € F and P € P’. The solution set P is an additive
a-approximation of f if for each & € [a, A] there is a point p = (x,y) € P with

i<r+a and f(2)<y+a

where o € R, a > 0. The additive approximation ratio of P with respect to f is
defined as

at(f, P) :=inf{a € R | P is an additive a-approzimation of f}.

Again, we are interested in the optimal approximation ratio for Pareto fronts
in F. Analogous to Definition 3.2 we give the following definition.

Definition 4.2 For fized [a, A], [b, B], and n, let

+ - +
« = sup inf o (f,P).
OPT feg paps (f. P)

Analogously to the precise bound %, p, = min{A/a, B/b}!/™ of Theorem 3.3
for the optimal multiplicative approximation ratio, we can prove the following
for the optimal additive approximation ratio ofg pT-

min{A —a, B — b}

+
Theorem 4.3 aj,pp = -

The proof of Theorem 4.3 will be provided in the full version of the paper.

In order to compare the optimal additive approximation ratio with the ap-
proximation ratio achieved by the hypervolume, we give the following definition
analogously to the definition of a%;yp in Definition 3.5.

Definition 4.4 For fized [a, A, [b, B],n, and f € F let

afyp = sup sup ot (f,P).

Jer Pep}gyp



We can now state the main result of this paper that oﬁl;yp is very close to a—(BPT'
Similar to the proof of the upper bound for aj;yp of Theorem 3.6 we can prove
the following upper bound for oﬁf}yp.

Theorem 4.5 For alln > 2 and (n — 2)min{a — R;,b — Ry} >

VA= B0,
, A B

« < .
HYP n—9

Let us briefly discuss the result before the theorem will be proven in the remain-
der of this section. First note that the precondition is fulfilled if n is large enough
or if the reference point is sufficiently far away from (a, b). Hence this is no real
restriction. Moreover, compare this result to the bound for the optimal additive
approximation ratio of Theorem 4.3. This shows that for A—a ~ B —b and mod-
erately sized n, a}rlyp is very close to aJ(SPT. More precisely, for A—a < B —b
(or A—a > B —b) the constant in Theorem 4.5 is the geometric mean of A —a
and B — b while in Theorem 4.3 it is instead the minimum of both. As there is a
provable gap of log vs. square root of A/a for the multiplicative approximation
ratio, this proves that HYP yields a much better additive approximation than
a multiplicative one.

Proof of Theorem 4.5. Let P be a solution set maximizing HYP on a front f €
F,ie., P € P{IYP. Assume that there are points p,q € P with p < ¢. Such
a “redundant” set can maximize HYP only on degenerate fronts: If there is a
point 7 = (z, f(z)) on the front which is not dominated by any point in P,
then® P’ := P +r — p would have HYP(P’) > HYP(P), as it dominates all the
space P dominates united with the space r dominates. Thus, there is no such
point 7 and P dominates already the whole front. In this case the approximation
ratio a™(f, P) = 1 and the inequality we want to show holds trivially. This can
only happen for f being a step function with less than n steps.

Hence, for the rest of the proof we can assume that there are no points
p,q € P with p < ¢. Then we can write P = {p1,...,pn}, i = (25, v;) with
a<r1 < ...<zp <Aand B > y; > ... > y, > b. Furthermore, we can
assume that y; = f(x;) as otherwise P — p; + p, with p; = (z;, f(x;)) would
have a larger hypervolume than P (this uses that the points in P are mutually
non-dominating).

We want to argue about the contribution of a point p to the hypervolume of
a solution set P, namely CONp(p) := HYP(P) — HYP(P — p). In particular
we need the minimal contribution of any of the points ps,...,pn_1:

MINCON(P) := min CONp(p;)

1<i<n

= min (z; — xi—1) (f(2i) — f(@it1))-

1<i<n

5 To increase the readability, for a set P C R? and a point r € R? we define P +r :=
PU{r} and P —r:= P\ {r} here and in the remainder of this section.



This value has been (with slightly different notation) examined in [4]. In
particular, the authors showed that for n > 2

(n — 1) (f(21) = f(2n))
(n—2)? '

MINCON(P) <

This implies

A—a)(B-0
EeLILEL) "

Let r = (z, f(x)), € [a, A] be an arbitrary point and let a > 0 be such that r
it not additively approximated by a. We make a case distinction depending on
the position of r. Let us first assume that r is an “inner point”, i.e., there is an
ie{l,...,n—1} with ; < & < x;41. As r is not additively approximated by «,
we have

MINCON(P) <

x>z +a and f(x) > f(xig1) + a. (2)

As P maximizes the hypervolume indicator on f, replacing the point p € P
contributing MINCON(P) to P by the point  must not increase the hypervolume.
Therefore,

HYP(P) > HYP(P +r —p) = HYP(P) — CONp(p) + CONpi,_,(r)
> HYP(P) — CONp(p) + CONp,.(r),

which in turn implies

MINCON(P) = CONp(p) = CONp.(r) = (z — z;) (f(z) — f(Ti11)) (;) o?.

Using equation (1) and taking square roots on both sides gives the desired

o< vV(A—a)(B-0b)
n—2 '

It remains to study the case where r = (z, f(z)) is an “outer point” with x <
or x > x,. It suffices to examine z < x; as then the case x > =z, follows by
symmetry in the two objectives.

As r is not approximated by a ratio of & we have f(z) > f(z1) + . Addi-
tionally, replacing the point p € P contributing MINCON(P) to P by r must not
increase the hypervolume, so we have

MINCON(P) 2 CONpr—p(r) 2 CONpyr(r) = (a — Rq) (f(z) — f(21))

We use equation (1) again and get

e <A (B0 —2)

“S—Ry)(n—

where the second inequality follows from the precondition of the theorem. [




Multiplicative approximation Additive approximation
OPT 1+ log(min{A/a, B/b}) (Cor. 3.4) min{A —a, B — b} (Thm. 4.3)
n n
VA B/b A—a)(B-b
HYP 1+ Lﬂ (Thm. 3.6) L(Q) (Thm. 4.5)
n— n—

Table 1: Results for the optimal approximation ratio and upper bounds for the ap-
proximation ratios of HYP. See the cited theorems for the precise statements.

5 Conclusion

Many modern MOEA use the hypervolume indicator to guide the search pro-
cess. We presented a mathematically rigorous framework to analyze the ap-
proximation ratio achieved by sets maximizing the hypervolume. We prove that
sets maximizing HYP do not give a perfect multiplicative approximation. The
proven bounds can be found in Table 1. The multiplicative approximation ratio
of HYP is getting large for numerically wide spread fronts with large A/a. On
the other hand, we can prove that maximizing HYP gives a close-to-optimal
additive approximation.
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