
Saarland University, Saarbrücken, Germany

Klee’s Measure Problem on Fat Boxes
in Time O(n(d+2)/3)

Karl Bringmann

s9kabrin@stud.uni-saarland.de

Abstract

The measure problem of Klee asks for the volume of the union of n axis-parallel boxes in
a fixed dimension d. We give an O(n(d+2)/3) time algorithm for the special case of all boxes
being cubes or, more generally, fat boxes. Previously, the fastest run-time was nd/2 2O(log∗ n),
achieved by the general case algorithm of Chan [SoCG 2008]. For the general problem our
run-time would imply a complexity theoretic breakthrough for the k-clique problem and can
thus be considered extremely unlikely.

1 INTRODUCTION 1

1 Introduction

We consider a natural geometric problem: Computing the volume of the union of n axis-parallel
boxes in Rd, where d is considered to be constant. This problem was first stated by Klee [10], who
gave an O(n log n) algorithm for the case of d = 1 and asked if this was optimal, while leaving the
question open how to extend this to arbitrary dimension d > 1. Bentley [2] gave an algorithm with
run-time O(nd−1 log n) for d ≥ 2, which is optimal for d = 2. As Chan [6] noted, this is better
than explicitly constructing the union of the given boxes, which has a worst-case combinatorial
complexity of Θ(nd). The next breakthrough was a paper by Overmars and Yap [12] giving an
algorithm with run-time O(nd/2 log n) for d ≥ 2, which was the fastest known until Chan [6] slightly
improved their approach to get a run-time of nd/2 2O(log∗ n). Interestingly, there is also an O

(
dn
ε2

)
Monte Carlo (1 + ε)-approximation algorithm for Klee’s measure problem (KMP) [4].

So far, the only known lower bound is Ω(n log n) for any d [8]. Additionally, there are a few
known hardness results for KMP: Suzuki and Ibaraki [13] showed that it is #P-hard for d → ∞,
i.e., if we do not consider d to be constant. Furthermore, Chan [6] showed W[1]-hardness of KMP,
meaning that no algorithm of run-time f(d)nO(1) is likely to exist for any function f depending
only on d. His proof relies on a reduction of KMP to the k-clique problem, i.e., checking whether
a graph with n vertices contains a clique of size k. Since the best-known algorithm for the latter
problem has a run-time of O(nωbk/3c+(kmod 3)) [11], where ω = 2.376.. is the exponent occuring
in fast matrix multiplication, he concludes that any O(n0.396d) algorithm for KMP, and even a
combinatorial O(n(1

2
−ε)d) algorithm, would require a breakthrough in the k-clique problem.

This raises the question whether there are easier special cases of KMP. To develop algorithms
for such special cases is also one of the open problems posed by Jeff Erickson [7] on his website.
The two special cases that got attention so far, are the case of all boxes being cubes (or fat boxes),
or unit cubes (fat boxes of roughly equal size), respectively:

Klee’s measure problem on cubes (C-KMP) can be solved in time O(n4/3 log n) for d = 3, using
an algorithm of Agarwal, Kaplan, and Sharir [1]. For higher dimensions, Chan’s KMP algorithm
is the fastest known. One may generalize the case of cubes to the one of α-fat boxes for some
constant α ≥ 1, where we say that a box is α-fat, if its maximal side length is at most a factor of α
larger than its minimal side length. A simple reduction shows that both problems can be solved
in the same asymptotic run-time: Represent a fat box by a union of possibly overlapping cubes.
You need at most dαed−1 cubes for such a representation. Then the volume of the union of the
cubes is the same as the volume of the union of the fat boxes, and we increased the number of
boxes only by a constant factor. Hence, all algorithms for C-KMP also solve the case of fat boxes.

We speak of Klee’s measure problem on unit cubes (UC-KMP) if all cubes have the same side
length. As the union of n unit cubes has combinatorial complexity Θ(nbd/2c) [3], this special case
can be solved in O(nbd/2cpolylog n) [9], which improves upon general KMP algorithms in odd

dimensions. Furthermore, an elaborate algorithm runs in O(ndd/2e−1+ 1
dd/2epolylog n) [5], which

improves in even dimensions. This case can be generalized to fat boxes of roughly equal size,
analogously to cubes and fat boxes. Note that all of these algorithms have run-time Ω(nd/2−1) in
the worst case.

The Result: In this paper we are improving upon the algorithms for both of these special cases
(in high dimensions) by giving a better algorithm for C-KMP. As customary, we assume d to be
constant.

Theorem 1. Given a set M of n axis-parallel cubes in Rd, d ≥ 2, we can compute the volume of
the union of these cubes, i.e, solve C-KMP, in time O(n(d+2)/3).

Note that this is faster than any known algorithm for C-KMP in dimensions d ≥ 4 (at least
by a factor of 2O(log∗(n))) and faster than any known algorithm for UC-KMP in dimensions d > 8.

2 STRUCTURAL OVERVIEW 2

More importantly, we reduce the exponent from d
2 +O(1) to d

3 +O(1). As this is notably faster than
the bound n0.396d, finding such a good algorithm for the general case would imply a breakthrough
in more classical areas (k-clique).

The space requirement of our algorithm, as we will present it in this paper, is also O(n(d+2)/3)
and cannot be bounded by an asymptotically smaller function. However, one may use the very
same trick as Overmars and Yap [12] who show in their Section 5 how to reduce the amount of
storage to O(n).

Our result uses some ideas from Overmars and Yap [12] as well as from Agarwal et al. [1].
However, it is no generalization of the latter, which works only for d = 3. Instead, we switch our
view to another base case. The contribution of this paper can be seen as the identification of the
this simpler base case, and the idea how to solve it. The differences to existing algorithms will be
highlighted again in Section 2.

In the following section we give a structural overview of our algorithm for C-KMP. Sections 3
to 5 give the details of the algorithm in 3 steps. In the last part we give concluding remarks.

2 Structural Overview

In this section we give a rough overview of the algorithm. We start by defining some notation and
the problem: In dimension d ∈ N we define a box to be a set [x1, y1]× . . .× [xd, yd] ⊆ Rd, xi ≤ yi
for all i. A cube is a box with yi − xi = yj − xj for all dimensions i, j, i.e., for 1 ≤ i, j ≤ d.
We refer to xi (yi) as the lower (upper) i-th coordinate of the box or cube. For a set U ⊆ Rd

we define Vol(U) as the Lebesgue measure of U . If we want to point out the dimension we are
working in, we use Vold instead of Vol. Moreover, for a box C we define VolC(U) := Vol

(
C ∩ U

)
,

the volume of U inside C. For a set of boxes M , we define U(M) :=
⋃
B∈M B. Then Vol(U(M))

is the volume of the union of the boxes in M .
The problem C-KMP now is to compute Vol(U(M)) for a given set M of n cubes. Using a

bounding box BB of all the boxes in M , this quantity is the same as VolBB(U(M)).

Representation of sets of boxes: Similar to a construction of Overmars and Yap [12], we
will represent a set of boxes M in the following way: We have sorted lists Li of reals, 1 ≤ i ≤ d,
containing the i-th (upper and lower) coordinates of the boxes in M . Thus, every box occurs 2d
times in the d lists. Furthermore, each occurence of a box will have a pointer to the next occurence,
such that all occurrences of a box are in a cyclic structure of 2d pointers.

Such a representation allows us to do several things in a fast way: For example, given a pointer
to one occurence of a box, we can delete this box from the set M in time O(1), as we can iterate
through all occurences of the box in constant time. Also, we may iterate through all boxes sorted
by lower i-th coordinate or sorted by upper i-th coordinate or similarly. More importantly, we
will at some points in this paper be in the position that we iterate through some Li and define a
subset M ′ of M by deciding during the iteration whether the current box belongs to M ′ or not.
Then a representation of M ′ can be computed in time O(|M |) by marking elements of M ′ in all
lists Li and computing L′i by iterating through Li and taking marked elements.

This representation will save us a logarithmic factor in run-time. Computing this representation
when given any standard representation of sets of boxes can be done in time O(n log n). This does
not increase the overall run-time for d ≥ 2.

2.1 Space partitioning

We compute the volume VolBB(U(M)) by splitting up the bounding box: We define a partitioning
of a box B to be a finite set P of boxes with

⋃
R∈P R = B and that for two different boxes R,R′ ∈ P

the intersection is a null set, i.e., Vol(R∩R′) = 0. We refer to the boxes in a partitioning as regions.

2 STRUCTURAL OVERVIEW 3

x2

x1

R

Q1

Q2

P1

P2

Figure 1: An example of piles and quasi-piles of a region R. P1 and P2 are 1-piles, Q1 and Q2

are (1, 2)-quasi-piles. Note that in 2D all cubes partially covering R are piles or quasi-piles. This
does not hold in higher dimensions.

Now, if we have a partitioning P of the bounding box BB, we can compute the quantity of
interest as Vol(U(M)) = VolBB(U(M)) =

∑
R∈P VolR(U(M)).

We want such a partitioning to have several nice properties and we need some definitions to
state them: We say that a box B partially covers a region R, if Vol(R) > VolR(B) > 0. A region is
said to be fully covered by a box B, if R ⊆ B. Furthermore, for a box B = [x1, y1]× . . .× [xd, yd] we
call Bi := [xi, yi] the i-interval and |Bi| = yi−xi the i-th side length of B. We call a box B an i-pile
for region R and a dimension i, if we have Rk ⊆ Bk for all dimensions k 6= i, and ∅ (Rk∩Bk (Rk
for k = i. We call B an (i, j)-quasi-pile, i 6= j, if we have Rk ⊆ Bk for all dimensions k 6= i, k 6= j,
and ∅ (Rk ∩Bk (Rk for k = i and k = j. We call it a pile, if it is an i-pile for some i, similarly
for quasi-pile. Note that any (quasi-)pile of a region R partially covers R. Intuitively, a box is
a pile (quasi-pile), if it covers the region R in all but one (two) dimensions, see Figure 1 for an
example.

Now, we can state the two properties we want from a partitioning P of the bounding box:

(P1) Every region R ∈ P is partially covered by O(n2/3) cubes in M , of which O(n1/3) are
quasi-piles for R and all other are piles for R.

(P2) The number of regions in P is O(nd/3).

Note that property (P1) does not state anything about the number of fully covering boxes of R,
as we explicitly defined piles and quasi-piles not to be fully covering.

In Section 3 we will give a construction for such a partitioning. It returns the set of regions
together with their sets of partially covering cubes and a fully covering box, if there exists one, in
time O(n(d+2)/3) for d ≥ 2. As it does not matter whether we have one or all fully covering boxes
for computing VolR(U(M)), we can assume that each region has at most one fully covering box in
the remainder.

The partitioning we build is very similar to the one of Overmars and Yap [12], just with a
different parameter, and the same as a generalized Agarwal et al. [1] would do. The only difference
is that we solve a static problem, while the mentioned algorithms do a sweep first and solve a
dynamic problem. This is why they need to handle a partition tree, where one can insert and
delete boxes, while we only need a partitioning, without any tree build on it. The reason for us
solving the static problem is that the dynamic problem seems too hard to be solved fast enough
to get a better algorithm, i.e., I do not know how to solve it.

2.2 Solving the base case

We are left with the following base case: Computing VolR(U(M)) for a region R and a set M of
cubes containing at most one fully covering box for R, O(n1/3) quasi-piles, and O(n2/3) piles. If M

3 CONSTRUCTION OF THE SPACE PARTITIONING 4

contains a fully covering box, computing this volume is trivial. Otherwise, we will split up this
base case into a few easier problems. For this, we refer to the points (z1, . . . , zd) with zi ∈ {xi, yi}
for all dimensions i as the vertices of a region R = [x1, y1] × . . . × [xd, yd]. We call a (quasi-)pile
of R vertex-containing, if it contains a vertex of R.

The motivation of splitting up the base case is that we found a way to solve the following reduced
base case efficiently: We are given a region R in Rd′ and a set M ′ of m boxes partially covering R,
which are all vertex-containing piles or vertex-containing quasi-piles. Compute Vold

′
R(U(M ′)).

First of all, we found a way to solve the base case (on O(n1/3) quasi-piles and O(n2/3) piles)
by solving O(n1/3) reduced base cases (on O(n1/3) boxes) using additional time O(n2/3). This
can be seen as a Turing reduction from the base case to the reduced base case. This reduction is
where we use the fact that we are facing cubes, not general boxes. In Section 4 this step will be
described in detail.

Secondly, we found a way to solve the reduced base case in time O(m). Here, we use the
standard technique of a space sweep to get a dynamic problem with dynamic piles and static
quasi-piles. Then we solve this dynamic problem by considering a few smaller dynamic problems.
The elaborate details of this step can be found in Section 5.

Note that this leaves us with an O(n(d+2)/3) algorithm for C-KMP.
For differentiating between our approach and [12] or [1], one has to point out that our base

case is a static problem, while the mentioned algorithms solve a dynamic one. Furthermore, the
identification and solution of our reduced base case is completely novel.

2.3 Subsumption

Summing up, we see that the algorithm consists of 3 steps:

• We construct a partitioning P of a bounding box BB with properties (P1) and (P2). Having
this, we compute the volume VolR(M) inside every region R ∈ P and sum up.

• We transform the base case of computing VolR(M) into easier reduced base cases.

• We solve the reduced base case.

These three steps will be described in the following 3 sections.

3 Construction of the space partitioning

In this section we describe how to compute a partitioning of the bounding box of M with properties
(P1) and (P2) in time O(n(d+2)/3). Our construction will, additionally, compute for each region R
the set of partially covering cubes of R in M and a fully covering cube, if there exists one.

The Construction: Say the bounding box of M is BB = [x1, y1] × . . . × [xd, yd]. We will
proceed in d levels, starting with BB on level 1: On a level 1 ≤ ` ≤ d we are given a box
B = [x′1, y

′
1] × . . . × [x′`−1, y

′
`−1] × [x`, y`] × . . . × [xd, yd] and the set MB,` ⊆ M of cubes partially

covering B. For a cube C in MB,` let v be the number of dimensions k, 1 ≤ k < ` such that C has
a k-th coordinate in the open interval (x′k, y

′
k). We split MB,` into three subsets: M i

B,` contains
all cubes with v = i for i ∈ {0, 1, 2}. We will show in a moment, that no cube has v > 2. Now,
we split the interval [x`, y`] into O(n1/3) intervals, each of whose interior contains at most n2/3

`-th coordinates of cubes in M0
B,`, at most n1/3 `-th coordinates of cubes in M1

B,` and no `-th
coordinate of a cube in M2

B,`. This splits the box B into O(n1/3) smaller boxes (children), on
which we recurse to level `+ 1 after computing their sets of partially covering cubes MB′,`+1.

All the boxes we end up with on level d + 1 will be the regions of our partitioning. For each
such region R, we are given MR,d+1, the set of partially covering cubes of R in M , and split it into
three subsets, M i

R,d+1, i ∈ {0, 1, 2}, just as we did on lower levels.

3 CONSTRUCTION OF THE SPACE PARTITIONING 5

Correctness: We need to prove two facts to show that this construction works: The first is that
no cube will ever have v > 2 (on any level 1 ≤ ` ≤ d+1). Any such cube would have v = 2 on some
lower level `′ < `, so it would be in M2

B,`′ on that level. But then we split so that no coordinate of
the cube is in the interior of a new interval, so its v-value cannot grow.

The second fact is that we need at most O(n1/3) splits to assure that each interior of a new
interval contains at most n2/3 `-th coordinates of cubes in M0

B,`, at most n1/3 `-th coordinates
of cubes in M1

B,` and no `-th coordinate of a cube in M2
B,`. To prove this, it suffices to show

the upper bounds |M1
B,`| = O(n2/3) and |M2

B,`| = O(n1/3) for 1 ≤ ` ≤ d + 1, as we can assure
that each interval includes |M i

B,`|/O(n1/3) coordinates of cubes in M i
B,` for each i by splitting at

O(n1/3) positions. These inequalities are trivially true on the first level, as those sets are empty
there. Also, they are maintained during the split at a level `: For each child B′ of the box B
(corresponding to an interval [x′`, y

′
`]) we have |M1

B′,`+1| ≤ |M1
B,`| + n2/3, as new such cubes may

only come from a box in M0
B,`, whose `-th coordinate is contained in (x′`, y

′
`), and this number is

bounded from above by n2/3 by our construction. As the number of levels is d, a constant, the
upper bound holds in all levels. We get the inequality for |M2

B,`| similarly.
It is now very easy to show the following lemma:

Lemma 2. The above construction yields a partitioning with properties (P1) and (P2).

Proof. Observe that the set of quasi-piles of R is exactly M2
R,d+1 and the set of piles of R is M1

R,d+1.
Moreover, the way we constructed M0

R,d+1 no cube in it can partially cover R, since every cube
in this set has no k-th coordinate contained in the interior of the interval Rk for any k, so this
set is empty. Since we proved |M2

R,d+1| = O(n1/3) and |M1
R,d+1| = O(n2/3), this shows that each

region is partially covered by O(n2/3) piles, O(n1/3) quasi-piles, and no other boxes in M , which
is property (P1).

For (P2) note that we split the box into O(n1/3) smaller boxes at each of the d levels. Hence,
we create O(nd/3) regions.

Implementation Details: Now we have a construction of a partitioning with the properties we
wanted. However, it is not so clear how to implement this with the aforementioned run-time of
O(n(d+2)/3), for the intuitive upper bound being O(n(d+3)/3 log n). We use here, that we represent
sets of cubes by sorted lists of coordinates in every dimension. Having these lists, we can split
the set MB,` into M i

B,` and find the split of the current interval in time O(n) (this would not be
possible without a sorted order). After we split the box into O(n1/3) children, we compute the set
of partially covering boxes for each child and build sorted lists of coordinates of these boxes from
the sorted lists we got for MB,`. This can be done in O(n) per child. For each level 1 ≤ ` < d,
this run-time is admissible, as we get a run-time of O(n · n(d−1)/3) = O(n(d+2)/3).

On the last level ` = d, finding the positions for splits can be done in O(n), too, which is
admissible, as there are O(n(d−1)/3) problem instances on level d. However, computing the sets
of partially covering cubes for the children has to be done in (amortized) time O(n2/3) per child.
This is easy for cubes that become i-piles or (i, j)-quasi-piles with i, j < d in the children: Any
such (quasi-)pile is partially covering one child if and only if it partially covers all children. Thus,
a list of these (quasi-)piles can be constructed in time O(n), i.e., O(n2/3) per child. For cubes that
become d-piles or (i, d)-quasi-piles, i < d, we use that any such (quasi-)pile is partially covering at
most 2 children, since each of its two d-th coordinates may lie in the interior of another child. If
we go through the children and the sorted list of d-th coordinates of these cubes “in parallel”, we
can also find the children a cube partially covers in (amortized) constant time. Hence, also these
(quasi-)piles can be computed in O(n2/3) per child. Since any partially covering cube of a child
is a pile or quasi-pile by property (P1), we are done with these two cases. After this, we have to
split the set MR,d+1 into the sets M i

R,d+1. Note that this can be done in O(n2/3) trivially, as we

4 SIMPLIFYING THE BASE CASE 6

proved above that |M0
R,d+1| = 0, |M1

R,d+1| = O(n2/3) and |M2
R,d+1| = O(n1/3), so that the overall

number of cubes in MR,d+1 is small enough to allow linear time procedures.
So far we lack the computation of a fully covering box for each fully covered region. We will

compute those boxes on level d, too. For this, we go through the sorted list of d-th coordinates
of all cubes in M . At the same time, we go through the children in the same sorted order. For
a cube we can tell in constant time, whether it fully covers the current child. If so, we save it as
a fully covering box for this child and go on in the list of children (and check the current cube
with the next child). If not, we go on in the list of cubes or of children, respectively. This way,
we compute a fully covering box for any child in time linear in the number of cubes in M and the
number of children, i.e., in O(n), which is O(n2/3) per child.

Thus, we have seen a construction of a partitioning with properties (P1) and (P2) that computes
for each region its set of partially covering boxes and one fully covering box, if there is one.

4 Simplifying the base case

In this section we show how to simplify the base case to the reduced base case. Recall that the
base case is the problem of computing VoldR(U(M)) for a region R and a set of cubes M containing
O(n1/3) quasi-piles and O(n2/3) piles (and no other boxes). The reduced base case is the problem
of computing Vold

′
R(U(M ′)) of a set of boxes M ′ consisting of vertex-containing piles and vertex-

containing quasi-piles (in some dimension 1 ≤ d′ ≤ d). We describe how to solve the base case by
solving O(n1/3) reduced base cases on O(n1/3) boxes using additional run-time of O(n2/3). This
is the point where we use that we are dealing with cubes rather than general boxes.

Dealing with most piles: Without loss of generality we may assume that the side lengths of
region R are in sorted order |R1| ≤ |R2| ≤ . . . ≤ |Rd|. An i-pile B of R is vertex-containing iff the
interval Bi contains an endpoint of the interval Ri. Thus, any i-pile B of R with i < d is already
vertex-containing, since otherwise we would have Bi (Ri, thus |Bi| < |Ri| ≤ |Rd|, so that we
cannot have Rd ⊆ Bd, as B is a cube, but this contradicts B being a pile.

Dealing with these vertex-containing i-piles, i < d, in the computation of VolR(U(M)) is
easy: Out of the i-piles B with Bi containing the lower i-th coordinate of R we take the pile P1

with largest interval Bi ∩ Ri. Similarly, out of the i-piles B with Bi containing the upper i-th
coordinate of R we take the pile P2 with the largest interval Bi ∩ Ri. Then we have for any
i-pile B: B ∩ R ⊆ (P1 ∪ P2) ∩ R. Thus, we can remove all i-piles other than P1, P2 from M and
still get the same volume VolR(U(M)). We reduced the number of i-piles, i < d, to a constant this
way.

Sweep along dimension d: Now we sweep along dimension d. Let Rd = [y1, y2] and let z1 ≤
. . . ≤ zm be the d-th coordinates of boxes in M that lie in Rd. Let z0 := y1, zm+1 := y2. We sweep
a horizontal plane along dimension d from y1 to y2 stopping at each zi, 0 ≤ i ≤ m + 1. Let Π(t)
be the plane satisfying xd = t. For each 0 ≤ i ≤ m the cross-section Π(z) ∩R ∩ U(M) is the same
for all z ∈ (zi, zi+1). Let vi denote the (d − 1)-dimensional volume of this cross-section. Then
VolR(U(M)) =

∑m
i=0 vi(zi+1 − zi). In every interval (zi, zi+1) where a d-pile is active, i.e., where

there exists a d-pile B of R with (zi, zi+1) ⊆ Bd, the volume vi is trivially equal to
∏
j 6=d |Rj |. Not

looking at these trivial vi, the sequence of vi’s changes only if a box in M , which is no d-pile, is
inserted or deleted. The number of those boxes is bounded by O(n1/3), as we reduced the number
of i-piles, i < d, to a constant. Thus, we have to compute O(n1/3) vi’s, each with O(n1/3) partially
covering boxes and no fully covering ones. We spent time O(n2/3) so far, since all this can be
implemented in linear time with the coordinates already sorted. Note that we are not trying to
compute vi dynamically by updating vi−1, but consider them as static problems.

5 SOLVING THE REDUCED BASE CASE 7

x1

x2

R

Q1

Q2

P1 P2

z1 z2 z3 z4 z5z6

x1

x2

R′

Q′1

Q′2

Figure 2: We want to cut out the 2-piles P1 and P2. This is done by cutting out the intervals
(z2, z3) and (z4, z5). On the right hand side you see the result, where dashed lines denote that
we deleted an interval there.

Most boxes are vertex-containing: We are left with O(n1/3) (d− 1)-dimensional base cases,
but not in its full generality. In fact, every (quasi-)pile is vertex-containing in these instances,
except the (d− 1)-piles. We use the fact that we are facing cubes to prove this: As in the second
paragraph of this section we show that every i-pile, i < d − 1, is already vertex-containing. This
holds in general for the base case. A non-vertex-containing (i, j)-quasi-pile B, i < j, has side
length |Bi| < |Ri| ≤ |Rj | ≤ |Rd|. But then B cannot stem from a pile or quasi-pile of the original
region R, as Bk does not include Rk for k = i, j, d.

Cutting out (d−1)-piles: What do we do with the remaining (d−1)-piles that are non-vertex-
containing? We simply cut them out of dimension d − 1: Let Rd−1 = [y1, y2] and let y1 = z0 ≤
. . . ≤ z2m = y2 be a partitioning of Rd−1 such that each R1× . . .×Rd−2× (zi, zi+1) is fully covered
by some (d − 1)-pile for even i but neither fully nor partially covered by a (d − 1)-pile for odd i,
and m = O(n1/3). In this partitioning we want to cut out the intervals (z2i, z2i+1), as depicted
in Figure 2. Formally, one can write this using a compression function κ defined as follows: For
an x ∈ (y1, y2] we find the i with x ∈ (zi, zi+1]. If i is odd, i.e., we do not cut out (zi, zi+1), we
define κ(x) := x−

∑(i−1)/2
j=0 (z2j+1 − z2j), if i is even we define κ(x) := zi −

∑(i−2)/2
j=0 (z2j+1 − z2j).

Moreover, we set κ(x) := x for x ≤ y1, and κ(x) := x−Z for x > y2, where Z :=
∑m−1

j=0 (z2j+1−z2j)
is the total length of cut intervals. For a box B = [x1, x

′
1] × . . . × [xd−1, x

′
d−1] we define κ(B) :=

[x1, x
′
1] × . . . × [xd−2, x

′
d−2] × [κ(xd−1), κ(x′d−1)], for a set of boxes M we define κ(M) := {κ(B) |

B ∈M}. Computing Vold−1
κ(R)(U(κ(M))) is then the compressed problem on the right hand side in

Figure 2. We now have Vold−1
R (U(M)) = Vold−1

κ(R)(U(κ(M))) + Z ·
∏d−2
j=1 |Rj |. Observe that we can

compute κ(R), κ(M) and Z in time O(n1/3), as we have sorted lists of coordinates.
In the problem Vold−1

κ(R)(U(κ(M))) all partially covering boxes of κ(R) are vertex-containing
piles or vertex-containing quasi-piles, as we cut out the (d − 1)-piles and all other boxes where
vertex-containing before. Note that the function κ may destroy the property of being a cube,
but we did not require this for the reduced base case. It follows that the problem of computing
Vold−1

κ(R)(U(κ(M))) is a reduced base case. This finishes the reduction.

5 Solving the reduced base case

In the last step we are left with solving the reduced base case: Compute VoldR(U(M)) of a set of
boxes M consisting of vertex-containing piles and vertex-containing quasi-piles for some d ∈ N. It
will be shown how to solve this problem in time O(m) for m = |M |, d constant. We may assume
without loss of generality that each box in M is contained in R. This simplifies the representation
of sets of piles and sets of quasi-piles.

5 SOLVING THE REDUCED BASE CASE 8

5.1 The static problem

We will call the reduced base case the static problem. The reason for this is that we solve it by
sweeping along dimension d, which leaves us with a dynamic problem. As described in more detail
in the previous section, we sweep a horizontal plane along dimension d from y1 to y2 for Rd =
[y1, y2], stopping at each d-th coordinate zi of a box in M . Between two such stops the (d −
1)-dimensional volume vi stays the same, so that we get VolR(U(M)) as

∑
i vi(zi+1 − zi). In

the dynamic problem of computing those vi all (j, k)-quasi-piles and j-piles of R, j, k < d, are
contributing to all vi, so they are static, and all (j, d)-quasi-piles become dynamic j-piles, that
may get inserted or deleted. Observe that each (j, d)-quasi-piles is either already present in the
initialization of the dynamic problem and may be deleted, or may be inserted but never deleted,
as we are facing vertex-covering (quasi-)piles. A d-pile of R becomes a fully covering box in the
(d−1)-dimensional problem. As computing vi is trivial if a d-pile B is active, i.e., if (zi, zi+1) ⊆ Bd,
we may assume that there are no fully covering boxes in the dynamic problem.

With this sweep approach we get

Tstat(m, d) ≤ Tdyn(m, d− 1) +O(m), (1)

where Tstat(m, d) denotes the run-time of our algorithm for solving the static problem on m boxes
in d dimensions, and Tdyn(m, d) denotes the run-time for solving the dynamic problem in d di-
mensions, where the number of boxes we initialize the problem with plus the number of updates
is bounded from above by m.

5.2 The dynamic problem

More precisely, the dynamic problem is the following: On initialization we get a region R ⊆
Rd′ , a set of vertex-containing quasi-piles Q and a set of vertex-containing piles P 0 and return
Vold

′
R(U(Q ∪ P 0)). There are two types of updates: Firstly, a vertex-containing pile may be

inserted, call the set of these inserted piles P 1. Secondly, a pile from P 0 may be deleted. After
each update we have to return the current volume Vold

′
R(U(Q ∪ P 0 ∪ P 1)).

In the remainder of this section we will describe how to solve the dynamic problem. We need
to define some notions first. Beside the dimensions 1, . . . , d′ we will speak of the 2d′ directions
+1,−1, . . . ,+d′,−d′. Intuitively, ±i points to ±∞ along dimension i. We define the opposite
direction r̄ as −i if r = +i and +i if r = −i. We say that two directions r, r′ are perpendicular,
r ⊥ r′, if r′ 6= r and r′ 6= r̄. We can canonically assign to each vertex-containing pile a direction:
An i-pile B gets assigned to direction +i, if the interval Bi contains the upper i-th coordinate of R,
and it gets assigned to −i, if Bi contains the lower i-th coordinate of R. It will be more convenient
to speak of r-piles in the remainder, for directions r, not i-piles, for dimensions i. We can do
the same for quasi-piles: An (i, j)-quasi-piles Q gets assigned the directions r = ±i, r′ = ±j,
depending on whether Qi contains the upper or lower i-th coordinate of R (and the same for j),
so that we can speak of an (r, r′)-quasi-pile. As shorthands we write P = P 1 ∪ P 0 and P 0

r for the
r-piles in P 0, similarly for P 1

r and Pr. We will store only the sets Q,P 0
r and P 1

r explicitly. Iterating
through all boxes can then be accomplished by iterating through these 4d′ + 1 sets “in parallel”.

For a direction r = +i we define the rim to be the plane Πr defined by the equation xi =
min{yi | (y1, . . . , yd′) ∈ U(Pr)}, or xi = ui, if the set Pr is empty and ui is the upper i-th
coordinate of R. For a direction r = −i we replace min by max and ui by `i, the lower i-th
coordinate of R. This is the plane that splits R into the part covered by r-piles and the part not
influenced by r-piles. We take any r-pile that has non-empty intersection with Πr (normally, this
pile will be uniquely determined) and call it the rim-defining pile of direction r. Figure 3(a) shows
an example with the rims indicated. The rim-defining piles of directions −1 and +2 are P1 and P3,
respectively, the other two directions do not have a rim-defining pile.

5 SOLVING THE REDUCED BASE CASE 9

Initialization: We are given the sets Q and P 0 and have to return Vold
′
R(U(Q ∪ P 0)), so we

simply solve this as a static problem. This costs time Tstat(m, d′) +O(m).
Moreover, we initialize dynamic problems Dr for each direction r = ±i with the (d′ − 1)-

dimensional region
∏
j 6=iRj and all boxes in Q ∪ P \ (Pr ∪ Pr̄) intersecting Πr, the rim in this

direction. During the algorithm the following invariant Ir will hold for all directions r after the
initialization and each update: The dynamic problem Dr contains exactly the boxes in Q ∪ P \
(Pr ∪Pr̄) that intersect Πr. We will show that initialization and updates of the instance Dr are of
the form we defined above for the dynamic problem, if we re-initialize Dr at the right point.

Insertions and Deletions: When we have to delete an r-pile B, we delete it from P 0
r (assuming

that we are given a pointer to B in P 0
r this can be done in O(1)). It may be that it was the rim-

defining pile in its direction. Then the volume Vold
′
R(Q ∪ P) changes. Figure 3(b) shows this

situation, where the old rim was at pold and the new will be at pnew. We may do a differential
volume update, as we already have computed Vold

′
R(Q ∪ P) before the deletion. For this we need

the volume v overlapped by boxes in Q ∪ P in the subregion from pold to pnew of R. This volume
can be computed by a sweep: We sweep a plane Π parallel to Πr from pold to pnew stopping at all
coordinates of boxes in Q. We need to compute the (d′−1)-dimensional volume of the cross-section
Π∩R∩U(Q∪P \ (Pr ∪Pr̄)). This is exactly what the dynamic problem Dr gives us, so we insert
or delete the boxes in Q we stop at into or from problem Dr. This way, we can do the sweep by
utilizing the lower dimensional dynamic problem Dr. At the end of this sweep the invariant Ir is
fulfilled again.

Additionally, we have to update the dynamic problems in the other directions: We delete the
r-pile B from Dr′ for any direction r′ ⊥ r. After this, invariant Ir′ holds again.

x2

x1

R
P1

P2

P3

Q1

Q2

Π−1 Π+1

Π−2

Π+2

(a) An example with rims indicated

x2

x1

R
P1

P2

P3

Q1

Q2

poldpnew
z2 z1

v

(b) The deletion of P1 demands a sweep

Figure 3: You see an example of the dynamic problem with piles P1, P2, P3 and quasi-piles Q1, Q2.
In part (b) pile P1 gets deleted, so that we have to compute the volume v for a differential volume
update. We do a sweep from pold to pnew stopping at z1 and z2 to delete Q1 and insert Q2

into D−1. We also have to delete P1 from D+2 and D−2.

An insertion of a pile works analogously. Here, we need that we only insert a pile B, if it is
not already contained in some other pile B′ in P 1, i.e., if B ∩R 6⊆ B′ ∩R. If we do this, then any
newly inserted r-pile is “the largest” in P 1

r , so that we can insert it in time O(1) into P 1
r .

Dr is really a dynamic problem: Note that the sequence of insertions and deletions of r-
piles that actually change the volume inside R has a very simple form: It may start with some
deletions. Eventually, an insertion changes the volume inside R, implying that the rim-defining
pile will be one of P 1

r . From this point on no box in P 0
r can be rim-defining anymore, so that no

deletions will change the volume in R. Hence, this sequence of insertions and deletions starts with
a row of deletions followed by a row of insertions. This also shows that the rim is monotonically
decreasing up to some point, and is monotonically increasing afterwards. Observe that during

6 CONCLUSION 10

each of these two phases the updates to the dynamic problem Dr are of the demanded form: Each
pile in P \ (Pr ∪ Pr̄) always intersects Πr, and they are either there at the initialization, so also
at the initialization of Dr, and may get deleted, or may get inserted but never deleted. Each
(r′, r′′)-quasi-pile in Q, r ⊥ r′, r′′, always intersects Πr, so always is in Dr. An (r′, r)-quasi-pile
with r′ ⊥ r may get inserted into Dr when sweeping Πr during the deletion of an r-pile. But
then it is never deleted from Dr in a deletion of an r-pile anymore. Similar statements hold for
insertions and (r′, r̄)-quasi-piles.

We use a trick now to make all dynamic problems of the demanded form: At the point we
switch to the second phase in direction r (which is easy to recognize) we re-initialize problem Dr.
Without this re-initialization Dr would not necessarily be of the demanded form, as a quasi-pile
might get inserted into Dr during the deletion of a pile and get deleted from Dr again during the
insertion of a pile. With this trick, the dynamic problems are of the demanded form and we now
have at most 4d′ of them: For all of the 2d′ directions we may initialize the problem twice.

A Detail: So far during a sweep of an insertion or deletion of an r-pile we considered only the
boxes in Q and P \(Pr∪Pr̄) for computing the differential volume update. However, the piles in Pr̄
may also influence this volume: If the two rims of r and r̄ cross each other we get U(Pr ∪Pr̄) = R,
but this is not taken into account by our differential volume update so far (and we would probably
return a volume greater than Vol(R)). This detail has a simple fix: During each sweep we have
another stop at the point where the rim crosses its opposite rim, if this happens at all. If this cross
is of the form, that U(Pr ∪ Pr̄) = R afterwards, then we note this and return at the end of the
update not the volume we computed, but Vol(R). If the cross is of the form, that U(Pr′ ∪Pr̄′) (R
for each direction r′ afterwards, then we reset the current volume to Vol(R) at this point. This
simple fix can be seen to work trivially. It ends our description of the solution of the dynamic
problem.

Run-time: To compute the required run-time we note that the number of boxes in each of
the 4d′ dynamic problems is bounded by m and all sweeps (and the rest) can be implemeted in
linear time, as we have sorted lists of coordinates. Hence, we get

Tdyn(m, d′) ≤ Tstat(m, d′) + 4d′ · Tdyn(m, d′ − 1) +O(m).

Using the bound (1) we get

Tdyn(m, d′) ≤ (4d′ + 1) · Tdyn(m, d′ − 1) +O(m).

As d′ is constant, this solves to Tdyn(m, d′) = O(m). Here, we used the observation that the
dynamic problem can be solved in linear time in dimension 1: After each update we have to know
the rim-defining +1-pile and the rim-defining −1-pile to compute the current volume inside the
region. But this is simple since we are given sorted lists of coordinates.

6 Conclusion

In this paper we reduced the exponent β in the run-time of O(nβ) for Klee’s measure problem on
cubes from β = d

2 +O(1) to β = d
3 +O(1).

However, it is not clear so far, whether an algorithm for C-KMP needs a run-time of nΘ(d).
Proving W[1]-hardness of C-KMP would give such a result, conditioned on certain complexity
theoretic assumptions, but this remains open. On the other hand, there may also be a “fast”
algorithm for this problem, waiting to be found.

REFERENCES 11

References

[1] P. K. Agarwal, H. Kaplan, and M. Sharir. Computing the volume of the union of cubes. In
Proc. 23rd annual Symposium on Computational Geometry (SoCG ’07), pp. 294–301, 2007.

[2] J. L. Bentley. Algorithms for Klee’s rectangle problems, 1977. Department of Computer
Science, Carnegie Mellon University, Unpublished notes.

[3] J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi diagrams in higher di-
mensions under certain polyhedral distance functions. In Proceedings of the eleventh annual
symposium on Computational geometry (SoCG ’95), pp. 79–88, 1995.

[4] K. Bringmann and T. Friedrich. Approximating the volume of unions and intersections of
high-dimensional geometric objects. In Proc. 19th International Symposium on Algorithms
and Computation (ISAAC ’08), Vol. 5369 of Lecture Notes in Computer Science, pp. 436–447.
Springer, 2008.

[5] T. M. Chan. Semi-online maintenance of geometric optima and measures. SIAM J. Comput.,
32:700–716, 2003.

[6] T. M. Chan. A (slightly) faster algorithm for Klee’s measure problem. Computational Ge-
ometry: Theory and Applications, 2009+. To appear, preliminary version appeared in Proc.
24th ACM Symposium on Computational Geometry (SoCG ’08).

[7] J. Erickson. Klee’s measure problem, 1998. http://compgeom.cs.uiuc.edu/∼jeffe/open/
klee.html.

[8] M. L. Fredman and B. W. Weide. On the complexity of computing the measure of
⋃

[ai, bi].
Commun. ACM, 21:540–544, 1978.

[9] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin. Counting colors in boxes. In Proc. 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07), pp. 785–794, 2007.

[10] V. Klee. Can the measure of
⋃

[ai, bi] be computed in less than O(n log n) steps? American
Mathematical Monthly, 84:284–285, 1977.

[11] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae, 26:415–419, 1985.

[12] M. H. Overmars and C.-K. Yap. New upper bounds in klee’s measure problem. SIAM J.
Comput., 20:1034–1045, 1991.

[13] S. Suzuki and T. Ibaraki. An average running time analysis of a backtracking algorithm to
calculate the measure of the union of hyperrectangles in d dimensions. In Proc. 16th Canadian
Conference on Computational Geometry (CCCG ’04), pp. 196–199, 2004.

