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ABSTRACT

It was recently proven that sets of points maximizing the
hypervolume indicator do not give a good multiplicative ap-
proximation of the Pareto front. We introduce a new “loga-
rithmic hypervolume indicator” and prove that it achieves a
close-to-optimal multiplicative approximation ratio. This is
experimentally verified on several benchmark functions by
comparing the approximation quality of the multi-objective
covariance matrix evolution strategy (MO-CMA-ES) with
the classic hypervolume indicator and the MO-CMA-ES
with the logarithmic hypervolume indicator.
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Keywords
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1. INTRODUCTION
Most real-world optimization problems have to deal with

multiple objectives (like time vs. cost) and cannot be eas-
ily described by some scalar objective function. The quality
of solutions to such multi-criteria optimization problems are
measured by vector-valued objective functions. This implies
that there is in general no unique optimal value, but a pos-
sibly very large set of incomparable optimal values, which
form the Pareto front. The corresponding solutions consti-
tute the Pareto set and have the defining property that they
cannot be improved in some objective without getting worse
in another one.
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Many different multi-objective evolutionary algorithms
(MOEAs) have been developed to find a Pareto set of (small)
size n which gives a good approximation of the Pareto front.
A popular way to measure the quality of a Pareto set is the
hypervolume indicator (HYP), which measures the volume
of the dominated space [23]. For small numbers of objec-
tives, MOEAs directly using the hypervolume indicator to
guide the search have become the methods of choice. These
include for example the generational MO-CMA-ES [10, 20],
the SMS-EMOA [3, 8], and variants of IBEA [22, 25]. De-
spite its popularity, up to recently there was not much rig-
orously known about the distribution of solution sets that
maximize the hypervolume. Such solution sets have been
described empirically as “well distributed” in [8, 13, 14]. In
contrast to this it was observed that “convex regions may be
preferred to concave regions” [17, 23] as well as that HYP is
“biased towards the boundary solutions” [7]. For the number
of points n → ∞, it is also known that the density of points
only depends on the gradient of the function describing the
front [2].

At first sight, it is not obvious why maximizing the hyper-
volume indicator should yield a good approximation of the
Pareto front. If we are, for example, interested in a good
multiplicative approximation, an “ideal” indicator would di-
rectly measure the approximation quality of a solution set P
by returning the smallest α ∈ R

+ such that each element of
the Pareto front is dominated by some vector resulting from
dividing an element in P by α (we consider minimization and
assume positive objective function values). This corresponds
to the binary multiplicative ε-indicator [16, 24] applied to
the solution set and the (possibly infinite) Pareto front. Un-
fortunately, such an indicator cannot be used in practice
because the Pareto front is usually unknown. This leads
to the important question of how close the approximations
achieved by realistic indicators such as the hypervolume in-
dicator come to those that could be obtained by an “ideal”
indicator. This can be measured by the approximation ra-
tio of a solution set maximizing the hypervolume [4, 5, 9].
Formal definitions of the multiplicative approximation ratio
and the alternative additive approximation ratio are given
in Definitions 3.1 and 3.4, respectively.

The approximation quality achieved by the hypervolume
indicator has been analyzed rigorously for bi-criterion maxi-
mization problems by Bringmann and Friedrich [4, 5]. They
prove in [5] that for all possible Pareto fronts the multi-
plicative approximation factor achieved by a set of n solu-
tions maximizing the hypervolume indicator is 1 + Θ(1/n)
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(cf. Theorem 4.1)1. This is asymptotically equivalent to
the optimal multiplicative approximation factor (cf. Corol-
lary 3.2) [5]. Thus, one can conclude that the hypervolume
indicator is guiding the search in the correct direction for
sufficiently large n. However, the constant factors hidden
by the Θ’s are larger for the set maximizing hypervolume
compared to the set with best possible approximation fac-
tor. Bringmann and Friedrich [4] studied the multiplicative
approximation factor relative to the ratio A/a between the
largest and smallest coordinate2. Using this notation, the
precise result of [5] is the computation of the optimal multi-
plicative approximation ratio as 1 + log(A/a)/n (cf. Corol-
lary 3.2). In [4] it is further shown that the multiplicative
approximation ratio for a set maximizing the hypervolume
is strictly larger, namely of the order of at least 1+

√

A/a /n
(cf. Theorem 4.2). This implies that the multiplicative ap-
proximation ratio achieved by a set maximizing the hyper-
volume can be exponentially worse in the order of the ratio
A/a. Hence for numerically very wide spread fronts there are
Pareto sets which give a much better multiplicative approx-
imation than Pareto sets which maximize the hypervolume.

These results about the multiplicative approximation ra-
tio were surprisingly bad news for the hypervolume indica-
tor. On the other hand, Bringmann and Friedrich [4] also ex-
amined the additive approximation ratio and observed that
while the multiplicative approximation factor is determined
by the ratio A/a, the additive approximation factor is de-
termined by the width of the domain A − a. They proved
that the optimal additive approximation ratio is (A− a)/n
(cf. Theorem 3.3) and upper bound the additive approxima-
tion ratio achieved by a set maximizing the hypervolume by
(A−a)/(n−2) (cf. Theorem 4.3). This is a very strong state-
ment, because, apart from a small factor of n/(n − 2), the
additive approximation ratio achieved when maximizing the
hypervolume is optimal. This shows that the hypervolume
indicator yields a much better additive than multiplicative
approximation for maximization problems.

Our Results

An obvious next question is to verify whether the same re-
sults hold for minimization problems. The first part of this
paper accordingly confirms this and presents the results of
Bringmann and Friedrich [4, 5] in a minimization setting.
In the main part, we address the open question whether
there are natural indicators which provably achieve a good
multiplicative approximation ratio. Since it is known that
the hypervolume gives a very good additive approximation,
we hypothesize that an indicator achieving a good multi-
plicative approximation can be constructed by taking the
logarithm of all axes before computing the classic hypervol-
ume. We call this new indicator the logarithmic hypervol-
ume indicator and analyze its properties in this study. Note
that in the setting of weighted hypervolume indicators [25]
this corresponds to a reciprocal weight function (cf. Sec-
tion 4.3). We prove that the logarithmic hypervolume in-
dicator achieves a multiplicative approximation ratio of less
than 1+ log(A/a)/(n− 2) (cf. Corollary 4.6), which is again
optimal apart from the factor n/(n− 2).

1The precise statements of this and the following results is slightly
more technical. For details see the respective theorems.
2The approximation ratio depends on the ratios in both dimensions.
To simplify the presentation in the introduction, we assume that the
ratio A/a in the first dimension is equal to the ratio B/b in the second
dimension.

These theoretical results indicate that one should get a
much better multiplicative approximation of the Pareto-
front if one uses the logarithmic instead of the classic hy-
pervolume indicator as a subroutine of an indicator-based
evolutionary algorithm. However, the results do not directly
apply to solutions returned by such an algorithm: First,
these algorithms might fail to return a solution maximizing
the (logarithmic) hypervolume indicator, because they did
not run long enough or got stuck in a local optimum. Sec-
ond, in the theoretical part we measure the approximation
quality in the worst-case over all possible fronts, which gives
only upper, but no lower bounds for “typical” fronts. And
third, the factor n/(n − 2) the logarithmic hypervolume is
worse in the worst-case, goes to 1 for large n, but the number
of non-dominated solutions n can be very small in a solution
returned by an evolutionary algorithm. To examine whether
the logarithmic hypervolume indicator yields indeed a bet-
ter multiplicative approximation than the classic hypervol-
ume indicator for a typical indicator-based evolutionary al-
gorithm, we compare the (µ+1)-MO-CMA-ES with the clas-
sic hypervolume indicator and the (µ+1)-MO-CMA-ES with
the logarithmic hypervolume indicator. This study is per-
formed on the DTLZ benchmark functions [6]. We observe
that the results for the theoretical worst-case bounds match
well with the empirically measured approximation ratios for
these benchmark functions. On all benchmark functions,
the approximation achieved by the logarithmic hypervolume
indicator compared to the classic hypervolume indicator is
better by up to 31% (cf. Table 1). This implies that for mul-
tiplicative problems the logarithmic hypervolume indicator
should be preferred over the classic hypervolume indicator.

The remainder of this paper is structured as follows. In
Section 2 we define the used notation. The following two
Sections 3.1 and 3.2 define the concepts of multiplicative
and additive approximation ratios. Section 4 introduces the
weighted, normal and logarithmic hypervolume indicator.
The following Section 4.4 proves the bounds on the multi-
plicative approximation ratio of the logarithmic hypervol-
ume indicator. Finally, Section 5 presents our experimental
framework and results.

2. PRELIMINARIES
All three previous papers on the approximation ratio of

the hypervolume indicator [4, 5, 9] only consider maximiza-
tion problems. As benchmark functions such as DTLZ [6]
usually consider minimization problems, the first part of this
paper (till Section 3.2) deals with translating the results
of Bringmann and Friedrich [4, 5] for the approximation ra-
tios of maximization problems to minimization problems.
This is straight-forward for the definitions, but not obvious
for all of the theorems. All results still hold analogously if
the handling of the boundary solutions is adapted. As these
changes are easy to verify, all proofs of theorems which are
translated from the maximization setting of [4, 5] are omit-
ted.

As in [4, 5], we consider the case of two objectives where
there is a mapping from an arbitrary search space to an
objective space which is a subset of R

2. Throughout this
paper, we will only work on the objective space. For points
from the objective space we define the following dominance
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relation:

(x1, y1) � (x2, y2) iff x1 6 x2 and y1 6 y2,

(x1, y1) ≺ (x2, y2) iff (x1, y1) � (x2, y2) and

(x1, y1) 6= (x2, y2).

We restrict ourselves to Pareto fronts that can be written
as {(x, f(x)) | x ∈ [a,A]} where f : [a,A] → [b, B] is a (not
necessarily strictly) monotonically decreasing, lower semi-
continuous3 function with f(a) = B, f(A) = b for some
a < A, b < B with a,A, b,B ∈ R. We write F = F[a,A]→[b,B]

for the set of all such functions f . We will use the term front
for both, the set of points {(x, f(x)) | x ∈ [a,A]}, and the
function f .

The condition of f being lower semi-continuous cannot
be relaxed further as without it the front lacks a certain
symmetry in the two objectives: This condition is neces-
sary and sufficient for the existence of the inverse function
f−1 : [b, B] → [a,A] defined by setting f−1(y) := min{x ∈
[a,A] | f(x) 6 y}. Without lower semi-continuity this mini-
mum does not necessarily exist. Furthermore, this condition
implies that there is a set maximizing the hypervolume in-
dicator.

Note that the set F of fronts we consider is a very general
one. Many papers that theoretically examine the hyper-
volume indicator assume that the front is continuous and
differentiable (e.g. [1, 2, 9]), and are thus not able to give
results about discrete fronts.

Let n ∈ N. For fixed [a, A], [b,B] ⊂ R we call a set P =
{p1, . . . , pn} ⊂ [a,A] × [b,B] a solution set (of size n) and
write P = Pn for the set of all such solution sets. A solution
set P is said to be feasible for a front f ∈ F , if y > f(x)
for all p = (x, y) ∈ P . We write Pf ⊆ P for the set of all
solution sets that are feasible for f .

A common approach to measure the quality of a solution
set is to use unary indicator functions [26]. They assign
to each solution set a real number that somehow reflects
its quality, i.e., we have a function ind:

⋃

∞

n=1 Pn → R. As
throughout the paper n ∈ N is fixed, it is sufficient to define
an indicator ind: Pn → R. Note that as we are only working
on the objective space, we here slightly deviate from the
usual definition of an indicator function where the domain
is the search space, not the objective space.

A final remark regarding our notation: We will mark every
variable with a + or ∗ depending on whether it belongs to
the additive or multiplicative approximation.

3. APPROXIMATING THE PARETO

FRONT
When attempting to minimize an indicator function, we

actually try to find a solution set P ∈ P that constitutes a
good approximation of the front f . In the following, we in-
troduce notions of multiplicative and additive approximtion
quality.

3.1 Multiplicative Approximation
According to the custom of approximation algorithms, we

measure the quality of a solution by its multiplicative ap-
3Semi-continuity is a weaker property than normal continuity. A
function f is said to be lower semi-continuous if for all points x
of its domain, lim infy→x f(y) > f(x). Intuitively speaking this
means that for all points x the function values for arguments near
x are either close to f(x) or greater than f(x). For more details see
e.g. Rudin [19].

proximation ratio. This can be transferred to the world of
multi-objective optimization. For this we use the following
definition of Papadimitriou and Yannakakis [18], which was
also used in [4, 5, 9, 15, 16]. Note that it is crucial to require
a, b > 0 here, as it is unclear what multiplicatively approx-
imating a negative number should mean. We will always
assume this when talking about multiplicative approxima-
tion throughout the paper.

Definition 3.1. Let f ∈ F and P ∈ Pf . The solution
set P is a multiplicative α-approximation of f if for each
x̂ ∈ [a, A] there is a p = (x, y) ∈ P with

x̂ > x/α and f(x̂) > y/α

where α ∈ R, α > 1. The multiplicative approximation ratio
of P with respect to f is defined as

α∗(f, P ) := inf{α ∈ R | P is a mult. α-approximation of f}.

The quality of an algorithm which calculates a solution set
of size n for each Pareto front in F has to be compared
with the respective optimal approximation ratio defined as
follows.

Definition 3.2. For fixed [a,A], [b, B], and n, let

α∗

OPT := sup
f∈F

inf
P∈Pf

α∗(f, P ).

The value α∗
OPT is chosen such that every front in F can

be approximated by n points to a ratio of α∗
OPT , and there

is a front which cannot be approximated better. In [5] the
following results was shown.

Theorem 3.1. α∗
OPT = min{A/a,B/b}1/n.

As shown in [5], this implies the following corollary.

Corollary 3.2. For all n > log(min{A/a,B/b})/ε and
ε ∈ (0, 1),

α∗

OPT > 1 +
log(min{A/a,B/b})

n
,

α∗

OPT 6 1 + (1 + ε)
log(min{A/a, B/b})

n
.

We further want to measure the approximation of the so-
lution set of size n maximizing an indicator ind. As there
might be several solution sets maximizing ind, we consider
the worst case and use the following definition.

Definition 3.3. For a unary indicator ind and fixed
[a,A], [b,B], n, and f ∈ F let

Pf
ind :=

{

P ∈ Pf
∣

∣ ind(P ) = max
Q∈Pf

ind(Q)
}

and

α∗

ind := sup
f∈F

sup
P∈P

f
ind

α∗(f, P ).

The set Pf
ind is the set of all feasible solution sets that max-

imize ind on f . The value α∗
ind is chosen such that for ev-

ery front f in F every solution set maximizing ind approxi-
mates f by a ratio of at most α∗

ind.

3.2 Additive Approximation
Depending on the problem at hand, one can also con-

sider an additive approximation ratio. Analogous to Defini-
tion 3.1 we use the following definition.
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Definition 3.4. Let f ∈ F and P ∈ Pf . The solution
set P is an additive α-approximation of f if for each x̂ ∈
[a,A] there is a p = (x, y) ∈ P with

x̂ > x− α and f(x̂) > y − α

where α ∈ R, α > 0. The additive approximation ratio of
P with respect to f is defined as

α+(f, P ) := inf{α ∈ R | P is an add. α-approximation of f}.
Again, we are interested in the optimal approximation ratio
for Pareto fronts in F . Analogous to Definition 3.2 we use
the following definition.

Definition 3.5. For fixed [a, A], [b, B], and n, let

α+
OPT := sup

f∈F

inf
P∈Pf

α+(f, P ).

Bringmann and Friedrich [4] showed the following result
which identifies α+

OPT equivalently to Theorem 3.1 for α∗
OPT .

It will be reproven in Section 4.4 to illustrate the relationship
between additive and multiplicative approximation ratios.

Theorem 3.3. α+
OPT = min{A− a,B − b}/n.

Moreover, the analog for α∗
ind is defined similarly to Defi-

nition 3.3.

Definition 3.6. For a unary indicator ind and fixed
[a,A], [b, B], n, and f ∈ F let

α+
ind := sup

f∈F

sup
P∈P

f
ind

α+(f, P ).

4. HYPERVOLUME INDICATORS
In this section we come to concrete indicators for which

upper bounds for α∗
ind or α+

ind are known. First, we recap the
general framework of the weighted hypervolume indicator.
Then we review the results for the classic hypervolume indi-
cator. After that, a new indicator designed for multiplicative
approximation—the logarithmic hypervolume indicator—is
proposed. We then show how to carry over additive approxi-
mation results to multiplicative approximation. Further, we
discuss the combination of classic and logarithmic indicator.

4.1 The Weighted Hypervolume
The classic definition of the hypervolume indicator is the

volume of the dominated portion of the objective space rel-
ative to a fixed footpoint called the reference point R =
(Rx, Ry) � (A,B). As a general framework for our two in-
dicators we use the more general weighted hypervolume in-
dicator of [25]. It weights points with a weight distribution
w : R2 → R. The hypervolume HYPw(P,R) (or HYPw(P )
for short) of a solution set P ∈ P is then defined as

HYPw(P ) := HYPw(P,R) :=

∫∫

R2

A(x, y)w(x, y) dy dx

where the attainment function A : R2 → R is an indicator
function on the objective space which describes the space
below the reference point which weakly dominates P . For-
mally, A(x, y) = 1 if (Rx, Ry) � (x, y) and there is a
p = (px, py) ∈ P such that (x, y) � (px, py), and A(x, y) = 0
otherwise.

The original purpose of the weighted hypervolume indica-
tor was to allow the decision maker to stress certain regions
of the objective space. In this paper we unleash one of its
hidden powers by showing that one gets a better multiplica-
tive approximation choosing the right weight distribution.

4.2 The Classic Hypervolume
If w is the all-ones functions 1 with 1(x, y) = 1 for all

x, y ∈ R, above definition matches to the classic defini-
tion of the hypervolume indicator. In this case we write
HYP = HYP1 for short. Bounds for this indicator are of
particular interest. Bringmann and Friedrich [5] examined
α∗
HYP and showed the following upper bound that has the

same asymptotic behavior as α∗
OPT , but a much larger con-

stant factor

Theorem 4.1. Let f ∈ F and n > 4. If we have

• Rx > A+ 1
n−2

min{
√
AaB/b, A

√

B/b } and

• Ry > B + 1
n−2

min{
√
Bb A/a,B

√

A/a }

for the reference point R = (Rx, Ry), then

α∗

HYP 6 1 +

√

A/a +
√

B/b

n− 4
.

This shows that for sufficiently large n the hypervolume
yields a good multiplicative approximation. However, this
does not hold for small n as shown by the following lower
bound of [5] for the case A/a = B/b.

Theorem 4.2. Let n > 7 and A
a
= B

b
> 13. Then

α∗

HYP > 1 +
2
√

A/a− 1

3(n+ 1)
.

Hence the multiplicative approximation ratio of HYP is ex-
ponentially worse in the ratio A/a. On the other hand, the
following theorem of [4] shows that HYP has a close to op-
timal additive approximation ratio.

Theorem 4.3. If n > 2 and

(n− 2)min{Rx − A,Ry −B} >
√

(A− a) (B − b)

we have

α+
HYP 6

√

(A− a) (B − b)

n− 2
.

Note that the precondition is fulfilled if n is large enough
or if the reference point is sufficiently far away from (a, b).
Compared to Theorem 3.3 it means that for A− a ≈ B − b
and moderately sized n, α+

HYP is very close to α+
OPT . For

A−a ≪ B− b (or the other way around) the constant is the
geometric mean of A− a and B− b instead of the minimum
of both.

4.3 The Logarithmic Hypervolume
Up to now we have mainly reviewed the results for the

approximation ratios of the hypervolume indicator for max-
imization problems and have confirmed that the classic hy-
pervolume indicator yields a good additive approximation
also in the minimization setting. For getting a good mul-
tiplicative approximation HYP turned out to be inapplica-
ble. We propose the logarithmic hypervolume indicator to
address this problem. For a solution set P ∈ P and reference
point R = (Rx, Ry) with (Rx, Ry) � (A,B) we define

logHYP(P,R) := HYP1(logP, logR),

where logP := {(log x, log y) | (x, y) ∈ P} and logR :=
(logRx, logRy). Here, as in the classic case, the reference
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point is a parameter to be chosen by the user. Note, that we
do not really change the axes of the problem to logarithmic
scale: We only change the calculation of the hypervolume,
not the problem itself.

Above definition is nice in that it allows to compute
logHYP using existent implementations of algorithms for
HYP, only wiring the input differently.

It is very illustrative, though, to observe that the logarith-
mic hypervolume indicator fits very well in the weighted hy-
pervolume framework: An equivalent definition of logHYP

is

logHYP(P,R) := HYPŵ(P,R),

where ŵ(x, y) = 1/(xy) is the appropriate weight distribu-
tion.

Lemma 4.4. HYP1(logP, logR) = HYPŵ(P,R).

Proof. Let {(x1, y1), . . . , (xk, yk)} ⊆ P be the set points in
P not dominated by any other point in P with x1 < . . . <
xk, y1 > . . . > yk. With xk+1 := Rx we can then compute
HYP as

HYP1(logP, logR) =

k
∑

i=1

∫ log xi+1

log xi

∫ logRy

log yi

1 dy dx

=
k

∑

i=1

∫ xi+1

xi

∫ Ry

yi

1

xy
dy dx

= HYPŵ(P, R).

The first main result of this paper is now that the loga-
rithmic hypervolume indicator yields a good multiplicative
approximation, just like the classic hypervolume indicator
yields a good additive approximation. The following result
will be shown in Section 4.4.

Theorem 4.5. If n > 2 and

(n− 2) logmin{Rx/A,Ry/B} >
√

log(A/a) log(B/b)

we have

α∗

logHYP 6 exp

(

√

log(A/a) log(B/b)

n− 2

)

.

Note that the precondition is fulfilled if n is large
enough or we choose the reference point far enough away
from (A,B).

This is a very good upper bound compared to α∗
OPT =

exp(min{log(A/a), log(B/b)}/n). Also compare the next
corollary to Corollary 3.2. Its proof is analogous to the one
of Corollary 3.2 in [5].

Corollary 4.6. For ε ∈ (0, 1) and all

n > 2+
√

log(A/a) log(B/b) /min{ε, log(Rx/A), log(Ry/B)}

we have

α∗

logHYP 6 1 + (1 + ε)

√

log(A/a) log(B/b)

n− 2
.

Hence we get a much better constant factor than in the
bound of α∗

HYP .

4.4 Relationship Between Additive and Mul-
tiplicative Approximation

Now we describe a relationship that allows to transfer re-
sults on multiplicative approximation into results on addi-
tive approximation and the other way around. This proves
Theorems 3.3 and 4.5 and gives the intuition behind the
logarithmic hypervolume indicator, as it is the classic hyper-
volume indicator transferred into the world of multiplicative
approximation.

Consider a front f∗ ∈ F[a∗,A∗]→[b∗,B∗] and a solution set

P ∗ ∈ Pf∗

that is a multiplicative α∗-approximation of f∗.
This means that we have for any x̂∗ ∈ [a∗, A∗] a point
(x∗, y∗) ∈ P ∗ with

x̂∗
> x∗/α∗ and f∗(x̂∗) > y∗/α∗.

Logarithmizing both inequalities gives

log x̂∗
> log x∗ − logα∗ and log f∗(x̂∗) > log y∗ − logα∗.

This corresponds to an additive approximation. We set
x+ := log x∗, y+ := log y∗, x̂+ := log x̂∗, α+ := logα∗ and
f+ := log ◦f∗ ◦ exp and get

x̂+
> x+ − α+ and f+(x̂+) > y+ − α+.

This means that P+ := {(log x, log y) | (x, y) ∈
P ∗} is an additive α+-approximation of the front f+ ∈
F[a+,A+]→[b+,B+] with a+ = log a∗, A+ = logA∗, b+ =

log b∗, B+ = logB∗. Observe that this corresponds to loga-
rithmizing both axes.

All operations we used above are invertible, so that we can
do the same thing the other way round: Having a solution set
P+ on a front f+ achieving an additive α+-approximation,
we get a solution set P ∗ = {(expx, exp y) | (x, y) ∈ P+}
on a front f∗ = exp ◦f+ ◦ log achieving a multiplicative
α∗-approximation, with α∗ = expα+. Thereby the in-
terval bounds like a+ are also exponentiated and we get
a∗ = exp a+.

Let F∗ := F[a∗,A∗]→[b∗,B∗ ] and F+ := F[a+,A+]→[b+,B+ ].

Then we have a bijection F∗ → F+, f∗ 7→ f+ and for any

f∗ ∈ F∗ a bijection Pf∗ → Pf+

, P ∗ 7→ P+ that satisfies
α+(f+, P+) = logα∗(f∗, P ∗). Though Theorem 3.3 was al-
ready proven in [4] (for maximization problems), it is inter-
esting to reprove it to illustrate above technique as follows.

Proof of Theorem 3.3. We want to prove α+
OPT = min{A+−

a+, B+ − b+}/n. By definition and the above bijection (∗)
we know that

α+
OPT = sup

f+∈F+

inf
P+∈Pf+

α+(f+, P+)

(∗)
= sup

f+∈F+

inf
P+∈Pf+

logα∗(f∗, P ∗)

(∗)
= sup

f∗∈F∗

inf
P∗∈Pf∗

logα∗(f∗, P ∗)

= log sup
f∗∈F∗

inf
P∗∈Pf∗

α∗(f∗, P ∗).

The last expression matches the definition of α∗
OPT . We

replace α∗
OPT using Theorem 3.1 and a∗ by exp a+ etc. and
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get

α+
OPT = logα∗

OPT

= log
(

min{A∗/a∗, B∗/b∗}1/n
)

= min{logA∗ − log a∗, logB∗ − log b∗}/n
= min{A+ − a+, B+ − b+}/n.

With similar reasoning we can now also prove Theorem 4.5.

Proof of Theorem 4.5. We want to show that

α∗

logHYP 6 exp

(

√

log(A∗/a∗) log(B∗/b∗)

n− 2

)

.

For a solution set P ∗ ∈ P∗ and a reference point
R∗ = (R∗

x, R
∗
y) we defined logHYP by setting

logHYP(P ∗, R∗) = HYP1(logP
∗, logR∗) with logP ∗ =

{(log x, log y) | (x, y) ∈ P ∗} and logR∗ = (logR∗
x, logR

∗
y).

This logP ∗ is exactly P+ as defined above. Writ-
ing R+ := logR∗ we thus have logHYP(P ∗, R∗) =
HYP(P+, R+). Now, consider a solution set P ∗ maximizing
logHYP(P ∗, R∗), thus, also maximizing HYP(P+, R+).
We know that P+ is an α+

HYP -approximation of the front
f+, so using Theorem 4.3 and above bijections we get

α∗(f∗, P ∗) = expα+(f+, P+)

6 exp
(
√

(A+ − a+) (B+ − b+) /(n− 2)
)

= exp
(
√

log(A∗/a∗) log(B∗/b∗) /(n− 2)
)

.

The observation that the precondition of Theorem 4.3 trans-
forms directly into the precondition of Theorem 4.5 con-
cludes the proof.

Note that we could also have proceeded the other way
round: Proving a bound for α∗

logHYP and transforming it

into a result for α+
HYP . Above proof also makes clear why

we defined logHYP as it is: Maximizing HYP(P+, R+)
gives a very good additive approximation which transforms
into a very good multiplicative approximation going back
to P ∗.

4.5 A Hybrid Indicator
The results of Bringmann and Friedrich [4, 5] imply that

guiding the search with the hypervolume indicator is an ap-
propriate choice if we want an additive approximation. On
the other hand, guiding the search with the proposed log-
arithmic hypervolume indicator is preferable if we want a
multiplicative approximation.

Of course, it may happen that one wants an additive ap-
proximation of some objectives and a multiplicative of oth-
ers. We propose a simple rule of thumb for this case: Log-
arithmize all objectives of the second type, i.e., that should
get multiplicatively approximated (and leave the objectives
of the first type as they are) and then compute the hyper-
volume indicator. This hybrid indicator should work as in-
tended, i.e., maximizing it should give a good additive ap-
proximation of the objectives of the first type and a good
multiplicative approximation of the objectives of the second
type.

For details, assume we have two objectives, x and y,
and want to approximate x additively and y multiplica-
tively. Then we use the hybrid indicator ind(P,R) :=
HYP(P ′, (Rx, logRy)), where P ′ = {(xi, log yi) | (xi, yi) ∈

P} and R is again a reference point. This indicator loga-
rithmizes the y-axis and applies HYP afterwards. Along the
lines of the proofs in this paper one can show that maximiz-
ing ind on a front f yields a solution set P with the following
property: For any x̂ ∈ [a, A] there is a p = (x, y) ∈ P with

x̂ > x− α+ and f(x̂) > y/α∗,

where α∗ = expα+ and α+
6

√
(A−a)(log(B)−log(b))

n−2
. This

means that we get an additive approximation of x and a
multiplicative approximation of y, as desired.

5. EXPERIMENTS
Above theoretical results indicate that for getting

good multiplicative approximations one should maximize
logHYP instead of HYP. This section substantiates this
claim experimentally by taking a particular indicator-based
selection scheme and running it with the indicator logHYP

instead of HYP on typical test problems.

5.1 Experimental Setup
For the empirical evaluation, we implemented both the

classic as well as the logarithmic hypervolume indicator in
the indicator-based selection strategy of the (µ + 1)-MO-
CMA-ES (see [11, 21]) using the Shark software library [12].
We evaluate both algorithms on a set of benchmark func-
tions taken from the literature, namely DTLZ1-7 (see [6]).
Note that for all considered fitness functions, we lower bound
the individual objectives to 10−6 as otherwise any multi-
plicative approximation ratio would be ∞ (if the solution
set does not include exactly the leftmost point of the front).
For each algorithm and each fitness function, we conducted
25 independent trials with 50,000 fitness function evalua-
tions each. The parent population size µ has been chosen
as 50. For both variants of the (µ + 1)-MO-CMA-ES, we
rely on the parameter setup presented in [21].

We evaluated the final fronts obtained by both variants of
the (µ + 1)-MO-CMA-ES with respect to the absolute hy-
pervolume indicator and with respect to the multiplicative
approximation ratio. In the latter case, we rely on a loga-
rithmic sample of 10000 points of the true Pareto-optimal
front as reference. For the statistical testing procedure, we
refer again to [21].

5.2 Results
The results of the performance evaluation are presented in

Figures 1, 2, and 3 and Table 1. For all fitness functions the
(µ+1)-MO-CMA-ES with the logarithmic hypervolume indi-
cator outperformed its counterpart maximizing the original
hypervolume indicator regarding the multiplicative approx-
imation ratio (at a significance level of p < 0.001). For the
functions DTLZ2, DTLZ4, DTLZ5, DTLZ6, and DTLZ7,
both variants find solution sets very close to the optimal ap-
proximation ratio 1. However, the solutions found by guid-
ing the search with the logarithmic hypervolume indicator
still give a slightly better multiplicative approximation ra-
tio. On DTLZ1 and DTLZ3, both variants are far from the
optimal approximation ratio 1. Here the logarithmic hyper-
volume indicator has the largest improvement of more than
17% and 31%, respectively (cf. Table 1). Additionally, we
also examined how both algorithms perform with respect to
the classic hypervolume indicator. As expected, guiding the
(µ + 1)-MO-CMA-ES with the classic hypervolume indica-
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Empirical multiplicative approximation ratio for

(µ+ 1)-MO-CMA-ES (µ+ 1)-MO-CMA-ES
with HYP with logHYP

DTLZ1 3.1581 2.6864 17.56% smaller

DTLZ2 1.0285 1.0245 0.4% smaller

DTLZ3 3.0734 2.3398 31.35% smaller

DTLZ4 1.0618 1.0461 1.51% smaller

DTLZ5 1.0285 1.0245 0.039% smaller

DTLZ6 1.0120 1.0117 0.029% smaller

DTLZ7 1.0133 1.0131 0.019% smaller

Table 1: Experimental results for the (µ+1)-MO-CMA-ES with the classic and the logarithmic hypervolume indicator. Best
values in each row are marked in bold if they are statistically significant at a significance level of p < 0.001.

Theoretical worst-case bound for

multiplicative approximation ratio

OPT 1 +
log(min{A/a,B/b})

n
(cf. Corollary 3.2)

HYP 1 +

√

A/a +
√

B/b

n− 4
(cf. Theorem 4.1)

logHYP 1 +

√

log(A/a) log(B/b)

n− 2
(cf. Corollary 4.6)

Table 2: Theoretical results for the optimal approximation ratio and upper bounds for the approximation ratios of HYP

and logHYP. See the cited theorems for the precise statements. The results for OPT and HYP are proven in [4, 5]. The
result for logHYP is shown in Section 4.4 of this paper.

tor gives a larger (classic) hypervolume for DTLZ1, DTLZ2,
DTLZ5, and DTLZ6 (see Figures 1, 2, and 3). In case of
DTLZ4, both variants are on par w.r.t. the classic hyper-
volume. Surprisingly, this is not the case for DTLZ3 and
DTLZ7. For these two fitness functions, the variant with the
logarithmic hypervolume indicator achieves a large classic
hypervolume after 50,000 fitness function evaluations. We
expect that this results from the limited number of fitness
function evaluations and that also for DTLZ3 and DTLZ7
the classic hypervolume indicator achieves a larger classic
hypervolume for a larger number of fitness function evalua-
tions.

On the set of DTLZ fitness functions our empirical evalu-
ation matches with the theoretical results obtained before-
hand. They further suggest to rely on the logarithmic hyper-
volume indicator if an optimal multiplicative approximation
ratio is desired.

6. CONCLUSION
After it was shown in [4, 5] that the classic hypervolume

indicator does not give an optimal multiplicative approxi-
mation factor, it was natural to ask what other indicator
might have this desirable property. We defined a new indi-
cator logHYP and proved that it yields a close-to-optimal
multiplicative approximation ratio. This was confirmed em-
pirically on a set of typical benchmark functions.
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(a) Fitness function DTLZ1.
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(b) Fitness function DTLZ2.
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(c) Fitness function DTLZ3.

Figure 1: Performance results of the (µ + 1)-MO-CMA-ES with the two different indicators. The left column shows the
results for the classic hypervolume indicator. The right column shows the results for the multiplicative approximation ratio
(scaled logarithmically).
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(a) Fitness function DTLZ4.
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(b) Fitness function DTLZ5.

Figure 2: Performance results of the (µ + 1)-MO-CMA-ES with the two different indicators. The left column shows the
results for the classic hypervolume indicator. The right column shows the results for the multiplicative approximation ratio
(scaled logarithmically).
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(a) Fitness function DTLZ6.
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(b) Fitness function DTLZ7.

Figure 3: Performance results of the (µ + 1)-MO-CMA-ES with the two different indicators. The left column shows the
results for the classic hypervolume indicator. The right column shows the results for the multiplicative approximation ratio
(scaled logarithmically).
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