
Efficient Sampling Methods for
Discrete Distributions

Karl Bringmann and Konstantinos Panagiotou

Max Planck Institute for Informatics
Campus E1.4, 66123 Saarbrücken, Germany

Abstract We study the fundamental problem of the exact and efficient
generation of random values from a finite and discrete probability dis-
tribution. Suppose that we are given n distinct events with associated
probabilities p1, . . . , pn. We consider the problem of sampling a subset,
which includes the ith event independently with probability pi, and the
problem of sampling from the distribution, where the ith event has a
probability proportional to pi. For both problems we present on two
different classes of inputs – sorted and general probabilities – efficient
preprocessing algorithms that allow for asymptotically optimal query-
ing, and prove almost matching lower bounds for their complexity.

1 Introduction

Generating random variables from finite and discrete distributions has long been
an important building block in many applications. For example, in computer
simulations usually a huge number of random decisions based on prespecified
or dynamically changing distributions is made. In this work we consider two
fundamental computational problems, namely sampling independent events and
sampling from a distribution, on two different classes of inputs, sorted and un-
sorted probabilities. As we will see, there is a rich interplay in designing efficient
algorithms that solve these different variants.

Our results are valid in the classical RealRAM model [1, 9] of computation.
In particular, we will assume that the following operations take constant time:

• Accessing the content of any memory cell.

• Generating a uniformly distributed real number in the interval [0, 1].

• Performing any basic arithmetical operation involving real numbers like ad-
dition, multiplication, division, comparison, truncation, and evaluating any
fundamental function like exp and log.

In the remainder, we will abbreviate [n] = {1, . . . , n} and we will write lnx
for the natural logarithm of x and log x for the binary logarithm of x. Finally,
we will write rand() for a uniform random number in [0, 1].

2

1.1 Subset Sampling

We consider n independent events with indicator random variables X1, . . . , Xn,
and Pr[Xi = 1] = pi. For shortcut we write µ = µp =

∑n
i=1 pi = E[

∑n
i=1Xi] and

p = (p1, . . . , pn). Consider the random variable X = Xp = {i ∈ [n] | Xi = 1},
which is the set of all events that occurred.

We concern ourselves with the problem of sampling X. We study this problem
on two different classes of input sequences, sorted and general (i.e., not neces-
sarily sorted) sequences; dependent on the class under consideration we call the
problem SortedSubsetSampling or UnsortedSubsetSampling.

A single-sample algorithm for SortedSubsetSampling or UnsortedSub-
setSampling gets input p and outputs a set S ⊆ [n] that has the same distri-
bution as X. Such an algorithm cannot run faster than O(1+µ), as its expected
output size is µ and any algorithm requires a running time of Ω(1). This runtime,
however, is in general not achievable, as our results below make more precise.
Hence, we consider a preprocessing-query variant of the problem, where we want
to be able to answer queries in the optimal expected runtime of O(1 + µ) after
a certain preprocessing.

In the preprocessing-query variant we consider the interplay of two algo-
rithms. First, the preprocessing algorithm P gets p as input and computes some
auxiliary data D = D(p). Second, the query algorithm Q gets input p and D,
and samples X, i.e., for any S ⊆ [n] we have Pr[Q(p, D) = S] = Pr[Xp = S].
Here Pr goes only over the random choices of Q, so that, after running the pre-
processing once, running the query algorithm multiple times generates multiple
independent samples. Note that if the preprocessing time is p and the query
time is q, then we can generate a single sample of X in time p+ q, so the single-
sample variant of the problem is also solved by the preprocessing-query variant.
In this paper we will not consider single-sample algorithms any further, because
our constructed preprocessing-query algorithms are already for a single query
as efficient as the best single-sample algorithm we can devise. This holds for all
problem variants we consider.

The single-sample variant of UnsortedSubsetSampling can be solved triv-
ially in time O(n); we just toss a biased coin for every pi. A classic algorithm
solves this problem for p1 = . . . = pn = p in the optimal expected time O(1+µ),
see e.g. the monographs [2] by Devroye and [5] by Knuth, where also many other
cases are discussed. Indeed, observe that the index i1 of the first sampled element
is geometrically distributed, i.e., Pr[i1 = i] = (1− p)i−1p. Such a random value

can be generated by setting i1 = b log rand()
log(1−p) c. Moreover, after having sampled the

index of the first element, we iterate the process starting at i1 + 1 to sample the
second element, and so on, until we arrive for the first time at an index ik > n.

In this paper we generalize this bound for equal probabilities as far as possi-
ble. More precisely, we ask whether the optimal query time O(1+µ) is achievable
for larger classes of inputs and how much preprocessing is needed. We obtain
the following answers.

Theorem 1. SortedSubsetSampling can be solved in O(log n) preprocessing
time and O(1+µ) expected query time. Moreover, the bound on the preprocessing

3

time is nearly tight, as the sum of preprocessing and query time is Ω
(

logn
log logn

)
for any such algorithm, as n→∞ and µ = µ(n) > (log n)−O(1).

Due to space limitations, the proof of the lower bound of Theorem 1 can be
found in the appendix.

To avoid any confusion, note that we mean worst-case bounds whenever we
speak of (running) time and expected bounds whenever we speak of expected
(running) time. The next result addresses the case where the probabilities are
not necessarily sorted.

Theorem 2. UnsortedSubsetSampling can be solved in O(n) preprocessing
time and O(1 + µ) expected query time. Moreover, this is optimal, as even any
single-sample algorithm for UnsortedSubsetSampling needs time Ω(n).

Both positive results in the previous theorems depend highly on each other.
In particular, as it is demonstrated in Section 3, we prove them by repeatedly
reducing the instance size n and switching from the one problem variant to the
other.

The problem of UnsortedSubsetSampling was considered also recently
in the two papers [11, 12], where algorithms with linear preprocessing time and
suboptimal query time O(log n + µ) were designed. Thus, our results improve
upon these running times, and provide accompanying and (almost) matching
lower bounds.

1.2 Proportional Sampling

In the previous section we considered the problem of sampling subsets. Here
we will focus on a slightly different and more classical problem. Given p =
(p1, . . . , pn) ∈ Rn>0, we define a random variable Y = Yp that takes values in [n]

such that Pr[Y = i] = pi/µ, where again µ =
∑n
i=1 pi. We call the problem of

sampling Y SortedProportionalSampling or UnsortedProportional-
Sampling, if we consider it on sorted or general input sequences, respectively.

As previously, we consider two variations of the problem. In the single-sample
variant we are given p and we want to compute an output that has the same
distribution as Y . Moreover, in the preprocessing-query variant we have a pre-
computation algorithm that, given p, computes some auxiliary data D, and a
query algorithm that is given p and D and has an output with the same distri-
bution as Y .

In this setting, we no longer output µ elements. So, it could be that the
optimal expected query time reduces to O(1). For sorted sequences, this optimal
query time can be indeed achieved after a relatively small preprocessing time,
as the next result shows.

Theorem 3. SortedProportionalSampling can be solved in O(log n) pre-
processing time and O(1) expected query time.

For general input sequences, this problem can be solved by the technique known
as pairing or aliasing [5, 13]. This result is not new, but will be used in the
proofs of Theorem 1 and Theorem 2, so we include it for completeness.

4

Theorem 4. UnsortedProportionalSampling can be solved in O(n) pre-
processing time and O(1) query time. Moreover, this is optimal, as any single-
sample algorithm for UnsortedProportionalSampling needs time Ω(n).

The fundamental problem of the exact and efficient generation of random values
from discrete and continuous distributions has been studied extensively in the
literature. Knuth and Yao investigated in their seminal work [6] the power of
several restricted devices, like finite-state machines; the articles [3, 14] provide
a further refined treatment of the topic. However, their results are not directly
comparable to ours, since they do not make any assumption on the sequence of
probabilities, and use unbiased coin flips as the only source of randomness, but
cannot guarantee efficient precomputation on general sequences. Furthermore,
Hagerup, Mehlhorn and Munro [4] and Matias, Vitter and Ni [7] provided algo-
rithms for a dynamic version of UnsortedProportionalSampling, where the
probabilities may change over time. In particular, under certain mild conditions
their results guarantee the same bounds as in Theorem 4.

The rest of the paper is structured as follows. In the following section we
will show Theorem 4. Section 3 contains the proofs of Theorems 1 and 2, while
Section 4 is devoted to the proof of Theorem 3. We discuss relaxations to our
input model and possible extensions in Section 5.

2 Proportional Sampling on Unsorted Probabilities

In this section we consider UnsortedProportionalSampling and prove The-
orem 4. The upper bound can be reached by the old technique known as pairing
or aliasing [13]; see also Mihai Pătraşcu’s blog [10] for a nice explanation. Ba-
sically, we use O(n) preprocessing to distribute the probabilities of all elements
over n urns such that any urn contains probability mass of at most two elements.
For querying we choose an urn uniformly at random and choose a random one of
the two included elements according to their probability mass in the urn, which
gives O(1) worst-case querying time.

The lower bound for Theorem 4 is provided by the following lemma, which re-
duces UnsortedProportionalSampling to searching in an unordered array.
Moreover, the same proof yields the lower bound of Theorem 2 for Unsorted-
SubsetSampling.

Lemma 1. Any single-sample algorithm for UnsortedProportionalSam-
pling needs Ω(n) expected time. Moreover, any single-sample algorithm for Un-
sortedSubsetSampling needs Ω(n) expected time.

Proof. Consider the instances p(k) = (p
(k)
1 , . . . , p

(k)
n) with p

(k)
i = δik, where δik

is the Kronecker delta. Any sampling algorithm for UnsortedProportional-
Sampling returns k on instance p(k) with probability 1. This cannot be done
better than with linear search for k, and randomness does not help, either. With

varying µ, no better bound is possible, either: Simply set p
(k)
i = µδik.

5

Observe that on the same instance any sampling algorithm for Unsorted-
SubsetSampling returns {k} with probability 1. This needs runtime Ω(n) for
the same reasons. With varying µ, no better bound is possible, either: Set the

first s := dµ−1e probabilities pi to values that sum up to µ−1, and let p
(k)
i = δik

for s < i 6 n. Then we still need runtime Ω(n− µ) for searching k. As we also
need runtime Ω(µ) for outputting the result, the claim follows. ut

3 Subset Sampling

In this section we consider SortedSubsetSampling and UnsortedSubset-
Sampling and prove Theorems 1 and 2. An interesting interplay between both
of these problems will be revealed on the way.

We begin with a first algorithm for unsorted probabilities that has a quite
large preprocessing time, but will be used for a base case later. The algorithm
uses Theorem 4, which we proved in the preceding section.

Lemma 2. UnsortedSubsetSampling can be solved in O(n2) preprocessing
time and O(1 + µ) expected query time.

Proof. For i ∈ [n] let Xi be the smallest sampled element which is at least i,
or ∞, if no such element is sampled. Xi is a random variable with Pr[Xi =
j] = pj

∏
i6k<j(1− pk) and Pr[Xi =∞] =

∏
i6k6n(1− pk). These probabilities

can be computed in time O(n) for any i, i.e., in time O(n2) for all i. After
having computed the distribution of the Xi’s, we execute, for each i ∈ [n], the
preprocessing of Theorem 4, see the beginning of Section 2, which allows us to
quickly sample Xi later on. This preprocessing costs in total O(n2).

For querying, we start at i = 1 and iteratively sample the smallest element
j > i (i.e., sample Xi), output j, and start over with i = j+1. This is done until
j =∞ or i = n+ 1. Note that any sample of Xi can be computed in O(1) time
with our preprocessing, so that sampling S ⊆ [n] will be done in time O(1+ |S|).
The expected runtime is, thus, O(1 + µ). ut

After having this base case, we turn towards reductions between SortedSub-
setSampling and UnsortedSubsetSampling. First, we give an algorithm
for UnsortedSubsetSampling, that reduces the problem to SortedSubset-
Sampling. For this, we roughly sort the probabilities so that we get good upper
bounds for each probability. Then these upper bounds will be a sorted instance.
After querying from this sorted instance, we use rejection (see, e.g., [5]) to sample
with the original probabilities.

Lemma 3. Assume that SortedSubsetSampling can be solved in p(n, µ) pre-
processing time and q(n, µ) expected query time, where p and q are monotoni-
cally increasing in n and µ. Then UnsortedSubsetSampling can be solved
in O(n+ p(n, 2µ+ 1)) preprocessing time and O(1 + µ+ q(n, 2µ+ 1)) expected
query time.

6

Proof. For preprocessing, we permute the input p so that it is approximately
sorted, by putting it into buckets Bk := {i ∈ [n] | 2−k > pi > 2−k−1}, for
k ∈ {0, 1, . . . , L}, and BL := {i ∈ [n] | 2−L > pi}, where L = dlog ne. For each
i ∈ Bk we set pi := 2−k, which is an upper bound on pi. We sort the probabilities
pi, i ∈ [n], descendingly using bucket sort with the buckets Bk, yielding p′1 >
. . . > p′n. In this process we store the original index ind(i) corresponding to p′i,
so that we can find pind(i) corresponding to p′i in constant time. Then we run
the preprocessing of SortedSubsetSampling on p′1, . . . , p

′
n. Note that

µ :=

n∑
i=1

p′i =

n∑
i=1

pi 6
n∑
i=1

max

{
2pi,

1

n

}
6 2µ+ 1.

For querying, we query p′1, . . . , p
′
n using SortedSubsetSampling, yielding

S′ ⊆ [n]. We compute S := {ind(i) | i ∈ S′}. Each i ∈ S was sampled with
probability pi > pi. We use rejection to get this probability down to pi. For this,
we generate for each i ∈ S a random number rand() and check whether it is
smaller than or equal to pi

pi
. If this is not the case, we delete i from S. Note

that we have thus sampled i with probability pi, and all elements are sampled
independently, so that we can return S. ut

We also give a reduction in the other direction, solving SortedSubsetSam-
pling by UnsortedSubsetSampling.

Lemma 4. Assume that UnsortedSubsetSampling can be solved in p(n, µ)
preprocessing time and q(n, µ) expected query time, where p and q are mono-
tonically increasing in n and µ. Then SortedSubsetSampling can be solved
in O(log n + p(1+log n, 2µ)) preprocessing time and O(1 + µ + q(1+log n, 2µ))
expected query time.

Proof. We consider blocks Bk = {i ∈ [n] | 2k 6 i < 2k+1}, with k ∈ {0, . . . , L}
and L := blog nc. For i ∈ Bk we let pi := p2k , which is an upper bound on
pi. We will first sample with respect to the probabilities pi - call the sampled
elements potential - and then use rejection. For this, let Xk be an indicator
random variable for the event that we sample at least one potential element in
Bk. Then qk := Pr[Xk = 1] = 1 − (1 − p2k)|Bk|. Moreover, let Yk be a random
variable for the first potential element in block Bk minus 2k. Let Yk =∞, if no
element in Bk is sampled as a potential element. Then Pr[Yk = i] = p2k(1−p2k)i

for i ∈ {0, . . . , |Bk| − 1}, and Pr[Yk =∞] = Pr[Xk = 0] = 1− qk. We calculate

Pr[Yk = i | Xk] =
Pr[Yk = i]

Pr[Xk]
=
p2k

qk
(1− p2k)i.

Since this is a geometric distribution, we can sample from it in constant time as
sketched in the introduction; see also [5].

Now, for preprocessing, we compute the probabilities qk, which can be done
in time O(log n) (as ab = exp(b log a) can be computed in constant time on
a Real RAM), and run the preprocessing of UnsortedSubsetSampling on
them. Note that the qk are in general unsorted.

7

For querying, we query the blocks Bk that contain potential elements using
the query algorithm for UnsortedSubsetSampling. Then for each block Bk
that contains a potential element, we sample all potential elements in this block.
Note that the first of the potential elements in Bk is distributed as Pr[Yk =
i | Xk], which is geometric, so we can sample it in constant time, while all
further potential elements are distributed as Yk (but only on the remainder of
the block), which is still geometric. After thus sampling potential elements S,
we reject each potential element with the right probability: We keep each i ∈ S
only if rand() 6 pi

pi
. This yields a correctly distributed sample.

Let µ :=
∑n
i=1 pi. The overall query time is at most q(1+log n, µ)+O(1+ |S|)

when sampling potential elements S. As the expected value of |S| is µ, all we
need to show in order to finish the proof is µ 6 2µ. For this, note that pi 6 pdi/2e.
This yields

µ =

n∑
i=1

pi 6
n∑
i=1

pdi/2e 6 2

n∑
i=1

pi = 2µ.

ut
Next, we put above three lemmas together to prove the upper bounds of

Theorems 1 and 2.

Proof (Theorem 2, upper bound). To solve UnsortedSubsetSampling, we use
the reduction Lemma 3 and then Lemma 4, followed by the base case Lemma 2.
This reduces the instance size from n to O(log n), so that preprocessing costs
O(n) for the invocation of the first lemma, O(log n) for the second, and O(log2 n)
for the third. Note that µ is increased by constant factors only, so that we indeed
get the optimal query time O(1 + µ). ut
Proof (Theorem 1, upper bound). To solve SortedSubsetSampling, we use the
reductions Lemma 4, Lemma 3, and Lemma 4 again, followed by the base case
Lemma 2. This reduces the instance size from n to O(log n) and further down to
O(log log n), while µ is increased by constant factors only. For precomputation
this yields a runtime of O(log n) from Lemmas 4 and 3, O(log log n) from the
second invocation of Lemma 4, and O(log2 log n) from the base case Lemma 2,
summing up to O(log n). The query time is the optimal expected time O(1 +µ).

ut
Note that we moved the proof of the lower bound of Theorem 1 for Sort-

edSubsetSampling to the appendix due to space limitations.

4 Proportional Sampling on Sorted Probabilities

We prove Theorem 3 in this section, i.e., we show how to solve SortedPro-
portionalSampling in O(log n) preprocessing time and O(1) expected query
time. We do this by first considering the special case of 1

2 6 µ 6 1, so that we
have a (nearly) proper probability distribution. Lemma 7 shows how to reduce
SortedProportionalSampling to SortedSubsetSampling in this special
case. Then we reduce the general case with arbitrary µ to the special case.

8

4.1 Special Case 1/2 6 µ 6 1

We first fix some notation for this section. Let p be an instance to SortedPro-
portionalSampling with µ = µp in the range [12 , 1]. Instead of p we consider
p′ = (p′1, . . . , p

′
n) with p′i := pi

1+pi
. Note that p′ ist still sorted and µ′ :=

∑n
i=1 p

′
i

is in the range [µ2 , µ], thus in the range [14 , 1].
Let Y = SortedProportionalSampling(p) be the random variable de-

noting proportional sampling on input p, andX = SortedSubsetSampling(p′)
be the random variable denoting subset sampling on input p′. Then conditioned
on sampling exactly one element X = {i}, this element i is distributed exactly
as Y , as formulated by the following lemma.

Lemma 5. With the definitions and assumptions of this section we have for all
i ∈ [n]

Pr[X = {i} | |X| = 1] = Pr[Y = i].

Proof. Bayes’ rule and straightforward calculation give

Pr[X = {i} | |X| = 1] = Pr[X = {i}]/Pr[|X| = 1]

=

(
p′i

1− p′i

n∏
k=1

(1− p′k)

)
/

 n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k)

=

(
p′i

1− p′i

)
/

 n∑
j=1

p′j
1− p′j

Plugging in the definition of p′i yields

Pr[X = {i} | |X| = 1] = pi/

n∑
j=1

pj = Pr[Y = i].

ut

Moreover, the probability of sampling exactly one element is large, as shown
in the following lemma. Note that this bound is not best possible but sufficient
for our purposes.

Lemma 6. With the definitions and assumptions of this section we have

Pr[|X| = 1] > 1/8.

Proof. Clearly,

Pr[|X| = 1] =

n∑
j=1

p′j
1− p′j

n∏
k=1

(1− p′k).

9

Assume there is no p′i greater than 1/2. Then we have 1 − p′i > 4−p
′
i for all

i ∈ [n], so we get

Pr[|X| = 1] >
n∑
j=1

p′j ·
n∏
k=1

4−p
′
k = µ′ · 4−

∑n
k=1 p

′
k = µ′ · 4−µ

′
>

1

8
.

Otherwise, there is exactly one p′i∗ > 1/2, as µ′ 6 1. Then 1− p′k > 4−p
′
k holds

for all k ∈ [n], k 6= i∗, which yields

Pr[|X| = 1] > Pr[X = {i∗}] = p′i∗
∏

16k6n
k 6=i∗

(1− p′k) >
1

2

∏
16k6n
k 6=i∗

4−p
′
k

>
1

2
4−

∑n
k=1 p

′
k =

1

2
4−µ

′
>

1

8
.

ut

We put these facts together to show the following result.

Lemma 7. Assume that SortedSubsetSampling can be solved in p(n, µ) pre-
processing time and q(n, µ) expected query time, where p and q are monotonically
increasing in n and µ. Then SortedProportionalSampling on instances
with 1

2 6 µ 6 1 can be solved in O(p(n, 1)) preprocessing time and O(q(n, 1))
expected query time.

Proof. For preprocessing, given input p, we run the preprocessing of Sorted-
SubsetSampling on input p′. This does not mean that we compute the vector
p′ beforehand, but if the preprocessing algorithm of SortedSubsetSampling
reads the i-th input value, we compute p′i = pi

1+pi
on the fly, so that this needs

runtimeO(p(n, 1)). It allows to sample X later on in expected runtimeO(q(n, 1))
using the same trick of computing p′ on the fly.

For querying, we repeatedly sample X until we sample a set S of size one.
Returning the unique element of S results in a proper sample according to Sort-
edProportionalSampling by Lemma 5. Moreover, by Lemma 6 and the fact
that sampling X needs expected time O(q(n, 1)) after our preprocessing, we need
expected query time O(q(n, 1)). ut

4.2 General Case

Lemma 8. Assume that SortedProportionalSampling on instances with
1
2 6 µ 6 1 can be solved in p(n) preprocessing time and q(n) expected query time.
Then SortedProportionalSampling (for general instances) can be solved in
O(log n+ p(n)) preprocessing time and O(q(n)) expected query time.

Proof. We need to compute a good upper bound µ > µ. For this we reuse an
idea of the proof of Lemma 4: For i ∈ [n] let 2k be the largest power of two less

10

than or equal to i, and set pi := p2k . Then µ :=
∑n
i=1 pi >

∑n
i=1 pi = µ, and we

have pi 6 pdi/2e, so that

µ =

n∑
i=1

pi 6
n∑
i=1

pdi/2e 6 2

n∑
i=1

pi = 2µ.

Hence, µ is indeed a good upper bound on µ. Moreover, µ can be computed in
time O(log n), as

µ =

blognc∑
k=0

p2k(min{2k+1 − 1, n} − 2k + 1).

Now, for preprocessing, we compute µ and consider p′ = (p′1, . . . , p
′
n) with

p′i := pi
µ . Since µ > µ > µ

2 we have µ′ :=
∑n
i=1 p

′
i in the range [12 , 1]. Thus, we can

run the preprocessing of SortedProportionalSampling (on instances with
bounded µ) on p′. We do this without computing the whole vector p′. Instead,
if the preprocessing algorithm reads the i-th input value, we compute p′i = pi

µ

on the fly. This way we need a runtime of O(log n+ p(n)).
For querying, we query according to p′ within expected runtime O(q(n)),

where we again compute values of p′ on the fly as needed. As we want to sample
proportional to the input probabilities, a sample with respect to p′ has the same
distribution as a sample with respect to p, so that we simply return the sample
we have. ut

Proof (Theorem 3). To solve SortedProportionalSampling we take Lem-
mas 8 and 7 and Theorem 1 together. ut

5 Relaxations

In this section we describe some natural relaxations for the input model studied
so far in this paper.

Large Deviations for the Running Times The query runtimes in Theorems 1, 2
and 3 are, in fact, not only small in expectation, but they are also concentrated,
i.e., they satisfy large deviation estimates in the following sense. Let t be the
expected runtime bound and T the actual runtime. Then

Pr[T > kt] = e−Ω(k),

where the asymptotics are with respect to k. This is shown rather straightfor-
wardly along the lines of our proofs of these theorems. The fundamental reason
for this is that the size of the random set X is concentrated. Indeed, let Xi be
an indicator random variable for the i-th element as above. Then for any a > 1
we obtain along the lines of the proof of the Chernoff bound

Pr[|S| > k(µ+ 1)] = Pr[a
∑n

i=1Xi > ak(µ+1)] 6
E[a

∑n
i=1Xi]

ak(µ+1)
.

11

Then, the independence of the Xi’s implies that

Pr[|S| > k(µ+ 1)] 6

∏n
i=1 E[aXi]

ak(µ+1)

=

∏n
i=1(api + (1− pi))

ak(µ+1)
6 exp((a− 1)µ− k(µ+ 1) ln a).

Setting a = k + 1 yields

Pr[|S| > k(µ+ 1)] 6 exp(kµ− k(µ+ 1) log(k + 1)) 6 (k + 1)−k,

for k > 2, as claimed.

Partially Sorted Input The condition of sorted input for SortedSubsetSam-
pling and SortedProportionalSampling can easily be relaxed, as long as
we have sorted upper bounds of the probabilities. Given input p and sorted p
with pi 6 pi for all i ∈ [n], we simply sample according to p and use rejection to
get down to the probabilities p. This allows for the optimal query time O(1 +µ)
as long as µ =

∑n
i=1 pi = O(1 + µ), where µ =

∑n
i=1 pi.

Unimodular Input Many natural distributions p are not sorted, but unimodular,
meaning that pi is monotonically increasing for 1 6 i 6 m and monotonically
decreasing for m 6 i 6 n (or the other way round). Knowing m, we can run the
algorithms developed in this paper on both sorted halfs, and combine the return
values, which gives an optimal query algorithm for unimodular inputs. Alter-
natively, if we have strong monotonicity, we can search for m in time O(log n)
using ternary search, which does not increase our precomputation time.

This can be naturally generalized to k-modular inputs, where the monotonic-
ity changes k times.

Approximate Input In some applications it may be costly to compute the proba-
bilities pi exactly, but we are able to compute approximations pi(ε) > pi > p

i
(ε),

with relative error at most ε, where the cost of computing these approximations
depends on ε. We can still guarantee optimal query time, if the costs of comput-
ing these approximations are small enough, see e.g. [8].

Indeed, we can surely sample a superset S with respect to the probabilities
pi(1). Then we want to use rejection, i.e., for each element i ∈ S we want to
compute a random number r := rand() and delete i from S if r · pi(1) > pi,
to get a sample set S. This check can be performed as follows. We initialize
k := 1. If r · pi(1) > pi(2

−k) we delete i from S. If r · pi(1) 6 p
i
(2−k) we keep

i and are done. Otherwise, we increase k by 1. This method needs an expected
number of O(1) rounds of increasing k; the probability of needing k rounds is
O(2−k). Hence, if the cost of computing pi(ε) and p

i
(ε) is O(ε−c) with c < 1,

the expected overall cost is constant, and we get an optimal expected query time
of O(1 + µ).

12

Bibliography

[1] Borodin, A., Munro, I.: The computational complexity of algebraic and nu-
meric problems. American Elsevier Publishing Co., Inc., New York-London-
Amsterdam (1975)

[2] Devroye, L.: Nonuniform random variate generation. Springer-Verlag, New
York (1986)

[3] Flajolet, P., Saheb, N.: The complexity of generating an exponentially dis-
tributed variate. Journal of Algorithms 7(4), 463–488 (1986)

[4] Hagerup, T., Mehlhorn, K., Munro, J.I.: Maintaining discrete probability
distributions optimally. In: 20th International Colloquium on Automata,
Languages and Programming (ICALP ’93). pp. 253–264 (1993)

[5] Knuth, D.E.: The Art of Computer Programming. Vol. 2: Seminumerical Al-
gorithms. Addison-Wesley Publishing Co., Reading, Mass., third edn. (2009)

[6] Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number
generation. In: Algorithms and complexity (Proc. Sympos., Carnegie-Mellon
Univ., Pittsburgh, Pa., 1976), pp. 357–428 (1976)

[7] Matias, Y., Vitter, J.S., Ni, W.C.: Dynamic generation of discrete random
variates. Theory of Computing Systems 36(4), 329–358 (2003)

[8] Nacu, Ş., Peres, Y.: Fast simulation of new coins from old. The Annals of
Applied Probability 15(1A), 93–115 (2005)

[9] Preparata, F.P., Shamos, M.I.: Computational Geometry. Texts and Mono-
graphs in Computer Science, Springer-Verlag, New York (1985)

[10] Pătraşcu, M.: Webdiarios de motocicleta, sampling a discrete dis-
tribution (2011), infoweekly.blogspot.com/2011/09/sampling-discrete-
distribution.html

[11] Tsai, M.T., Wang, D.W., Liau, C.J., Hsu, T.S.: Heterogeneous subset sam-
pling. In: 16th Annual International Conference on Computing and Combi-
natorics (COCOON ’10). pp. 500–509 (2010)

[12] Tsai, M.T., Wang, D.W., Liau, C.J., Hsu, T.S.: Heterogeneous subset sam-
pling (2012), submitted for publication

[13] Walker, A.J.: New fast method for generating discrete random numbers
with arbitrary distributions. Electronic Letters 10, 127–128 (1974)

[14] Yao, A.C.: Context-free grammars and random number generation. In:
Combinatorial algorithms on words (Maratea, 1984), vol. 12, pp. 357–361.
Springer (1985)

13

Appendix

Here we present the proof of the lower bound of Theorem 1 for SortedSubset-
Sampling.

Proof (Theorem 1, lower bound). Let (P,Q) be a preprocessing and a query
algorithm, and let p be an instance. Let D = P (p) be the result of the precom-
putation. By definition we have for any S ⊆ [n]

Pr[Q(p, D) = S] =

(∏
i∈S

pi

) ∏
i∈[n]\S

(1− pi)

 =: Pp(S),

meaning that we sample a set with the right probability independent from the
random choices in the preprocessing.

Let C ⊆ [n] be the positions i ∈ [n] where the preprocessing read the value
pi during the computation of D. Without loss of generality, we can assume that
1, n ∈ C, i.e., that the preprocessing read p1 and pn, as this adjustment of the
algorithm does not increase its runtime asymptotically. Furthermore, without
loss of generality, we can assume that the query algorithm reads all positions i
in its return set S = Q(p, D).

Now, for instance p and S ⊆ B ⊆ [n], let Pp(B,S) be the probability that
algorithm Q(p, D) reads exactly the values pi with i ∈ B and returns the set S.
We clearly have ∑

B⊇S

Pp(B,S) = Pp(S). (1)

Furthermore, if we assume an expected query runtime of at most t = t(n, µp),
then there is a set S∗ ⊆ [n] with∑

B⊇S∗
|B|62t

Pp(B,S∗) >
1

2
Pp(S∗), (2)

since otherwise

Pr[Q(p, D) runs for time 6 2t] 6
∑

B,S⊆[n]
B⊇S
|B|62t

Pp(B,S) <
1

2

∑
S⊆[n]

Pp(S) =
1

2
,

in contrast to Markov’s inequality. Here we used that |B| is a lower bound on
the runtime of Q(p, D).

From (2) we infer, using the maximum-arithmetic mean inequality, that there
is a set B∗ ⊇ S∗ with

Pp(B∗, S∗) >
1

2
(
n
2t

)Pp(S∗). (3)

14

Now we fix the instance p = (p1, . . . , pn) by setting

pi :=
α

i
,

for a parameter 0 < α 6 1/2 to be chosen later. Fixing sets S∗, B∗ as above for
this instance p, we define a second instance p′ = (p′1, . . . , p

′
n) by setting

p′i := min{pj | i > j ∈ B∗ ∪ C}.

This means that p and p′ agree on the read positions B∗ and C, and at all
other positions p′i is as large as possible with p′ still being sorted. This means
that the prepocessing and the query algorithm cannot distinguish between both
instances, implying a critical property we will use,

Pp′(B
∗, S∗) = Pp(B∗, S∗).

With this, we get

Pp′(S
∗)

(1)

> Pp′(B
∗, S∗) = Pp(B∗, S∗)

(3)

>
1

2
(
n
2t

)Pp(S∗). (4)

We next bound Pp(S∗) and Pp′(S
∗). For the former we get

Pp(S∗) =

(∏
i∈S∗

pi

) ∏
i∈[n]\S∗

(1− pi)

= Q

n∏
i=1

(1− pi),

where Q :=
∏
i∈S∗

pi
1−pi . Since pi 6 α 6 1/2 we have 1−pi > 4−pi for all i ∈ [n],

so we get

Pp(S∗) > Q · 4−
∑n

i=1 pi > Q · 4−α(1+lnn) > Q · 2−(1+lnn).

Since lnn < log n (and even log n − lnn → ∞ for n → ∞) we get for large
enough n

Pp(S∗) >
2Q

n
. (5)

Let B∗ ∪ C = {i1, . . . , ik} with i1 6 . . . 6 ik. By assumption, we have
i1 = 1, ik = n, and we define ik+1 := n+ 1. For Pp′(S

∗) we now get

Pp′(S
∗) =

(∏
i∈S∗

p′i

) ∏
i∈[n]\S∗

(1− p′i)

=

(∏
i∈S∗

pi

) ∏
i∈(B∗∪C)\S∗

(1− pi)

(k∏
`=1

(1− pi`)i`+1−i`−1

)

= Q

k∏
`=1

(1− pi`)i`+1−i` .

15

Using 1− x 6 e−x for x > 0 this yields

Pp′(S
∗) 6 Q · exp

(
−

k∑
`=1

pi`(i`+1 − i`)

)
= Q · exp

(
−α

k∑
`=1

(
i`+1

i`
− 1

))
.

Now we use the arithmetic-geometric mean inequality, yielding

1

k

k∑
`=1

i`+1

i`
>

(
k∏
`=1

i`+1

i`

)1/k

> n1/k,

so that we get

Pp′(S
∗) 6 Q · exp

(
−αk(n1/k − 1)

)
.

Combining this with (4) and (5), and dividing by Q we get

exp
(
−kα(n1/k − 1)

)
>

1

n
(
n
2t

) > n−(2t+1).

Taking the logarithm on both sides yields

kα(n1/k − 1) 6 (2t+ 1) lnn,

which is in turn equivalent to

k >
log n

log(1 + (2t+ 1) lnn/(kα))
.

As k > 1, this implies

k >
log n

log(1 + (2t+ 1) lnn/α)
.

Assuming optimal expected query time t = O(1+µ), and since µ = Θ(α log n)
we get

k = Ω

(
log n

log((1 + 1/µ) log n)

)
.

For µ = µ(n) > 1
logO(1) n

this yields, using that k = B∗ ∪ C is a lower bound

on the sum of preprocessing and query time, that preprocessing and querying
together need running time at least

Ω

(
log n

log log n

)
.

ut

