
Online Checkpointing with
Improved Worst-Case Guarantees

Karl Bringmann, Benjamin Doerr, Adrian Neumann, and Jakub Sliacan

Max Planck Institute for Informatics

Abstract. In the online checkpointing problem, the task is to continu-
ously maintain a set of k checkpoints that allow to rewind an ongoing
computation faster than by a full restart. The only operation allowed
is to remove an old checkpoint and to store the current state instead.
Our aim are checkpoint placement strategies that minimize rewinding
cost, i.e., such that at all times T when requested to rewind to some time
t ≤ T the number of computation steps that need to be redone to get
to t from a checkpoint before t is as small as possible. In particular, we
want that the closest checkpoint earlier than t is not further away from t
than pk times the ideal distance T/(k + 1), where pk is a small constant.
Improving over earlier work showing 1 + 1/k ≤ pk ≤ 2, we show that pk
can be chosen less than 2 uniformly for all k. More precisely, we show the
uniform bound pk ≤ 1.7 for all k, and present algorithms with asymptotic
performance pk ≤ 1.59 + o(1) valid for all k and pk ≤ ln(4) + o(1) ≤
1.39+o(1) valid for k being a power of two. For small values of k, we show
how to use a linear programming approach to compute good checkpointing
algorithms. This gives performances of less than 1.53 for k ≤ 10.
One the more theoretical side, we show the first lower bound that is
asymptotically more than one, namely pk ≥ 1.30 − o(1). We also show
that optimal algorithms (yielding the infimum performance) exist for
all k.

1 Introduction

Checkpointing means storing selected intermediate states of a long sequence of
computations. This allows reverting the system into an arbitrary previous state
much faster, since only the computations from the preceding checkpoint have
to be redone. Checkpointing is one of the fundamental techniques in computer
science. Classic results date back to the seventies [4], more recent topics are
checkpointing in distributed [5], sensor network [8], or cloud [11] architectures.

Checkpointing usually involves doing a careful trade-off between the speed-up
of reversions to previous states and the costs incurred by setting checkpoints
(time, memory). Much of the classic literature (see [6] and the references therein)
studies checkpointing with the focus of gaining fault tolerance against immediately
detectable faults. Consequently, only reversions to the most recent checkpoint are
needed. On the negative side, setting a checkpoint can be highly time consuming,
because the whole system state has to be copied to secondary memory. In such

a scenario, the central question is how often to set a checkpoint such that the
expected time spent on setting checkpoints and redoing computations from
the last checkpoint is minimized (under a stochastic failure model and further,
possibly time-dependent [10], assumptions on the cost of setting a checkpoint).

In this work, we will regard a checkpointing problem of a different nature.
If not fault-tolerance of the system is the aim of checkpointing, then often the
checkpoints can be kept in main memory. Applications of this type arise in
data compression [3] and numerics [7, 9]. In such scenarios, the cost of setting a
checkpoint is small compared to the cost of the regular computation. Consequently,
the memory used by the stored checkpoints is the bottleneck.

The first to provide an abstract framework independent of a particular
application in mind were Ahlroth, Pottonen and Schumacher [1]. They do not
make assumptions on which reversion to previous states will be requested, but
simply investigate how checkpoints can be set in an online fashion such that at
all times their distribution is balanced over the total computation history.

They assume that the system is able to store up to k checkpoints (plus a
free checkpoint at time 0). At any point in time, a previous checkpoint may be
discarded and replaced by the current system state as new checkpoint. Costs
incurred by such a change are ignored. However, most good checkpointing al-
gorithms do not set checkpoints very often. For all algorithms discussed in the
remainder of this paper, each checkpoint is changed only O(log T) times up to
time T .

The max-ratio performance measure. Each set of checkpoints, together with the
current state and the state at time 0, partitions the time from the process start to
the current time T into k + 1 disjoint intervals. Clearly, without further problem-
specific information, an ideal set of checkpoints would lead to all these intervals
having identical length. Of course, this is not possible at all points in time due
to the restriction that new checkpoints can only be set on the current time.
As performance measure for a checkpointing algorithm, Ahlroth et al. mainly
regard the maximum gap ratio, that is, the ratio of the longest vs. the shortest
interval (ignoring the last interval, which can be arbitrarily small), maximized
over all current times T . They show that there is a simple algorithm achieving
a performance of two: Start with all checkpoints placed evenly, e.g., at times
1, . . . , k. At an even time T , remove one of the checkpoints at an odd time and
place it at T . This will lead to all checkpoints being at the even times 2, 4, . . . , 2k
when T = 2k is reached. Since this is a position analogous to the initial one, we
can continue in the same fashion forever. It is easy to see that at all times, the
intervals formed by neighboring checkpoints have at most two different lengths,
the larger being twice the smaller in case that not all lengths are equal. This
shows the performance of two.

It seems tempting to believe that one can do better, but, in fact, not
much improvement is possible for general k as shown by the lower bound of
21−1/d(k+1)/2e = 2(1 − o(1)). For small values of k, namely k = 2, 3, 4, and 5,
better upper bounds of approximately 1.414, 1.618, 1.755, and 1.755, respectively,
were shown.

2

The maximum distance performance measure. In this work, we shall regard a
different, and, as we find, more natural performance measure. Recall that the
actual cost of reverting to a particular state is basically the cost of redoing the
computation from the preceding checkpoint to the desired point in time. Adopting
a worst-case view on the reversion time, our aim is to keep the length of the
longest interval small (at all times). Note that with time progressing, the interval
lengths necessarily grow. Hence a fair point of comparison is the length T/(k+ 1)
of a longest interval in the (at time T) optimal partition of the time frame into
equal length intervals. For this reason, we say that a checkpointing algorithm
(using k checkpoints) has maximum distance performance (or simply performance)
p if it sets the checkpoints in such a way that at all times T , the longest interval
has length at most pT/(k + 1). Denote by pk the infimum performance among
all checkpointing algorithms using k checkpoints.

This maximum distance performance measure was suggested in [1], but not
further investigated, apart from the remark that an upper bound of β for the
gap-ratio performance implies an upper bound of β(1 + 1

k) for the maximum
distance performance. In the journal version [2] of [1], for all k an upper bound
of 2 and a lower bound of 1 + 1

k is shown for pk. For k = 2, 3, 4, and 5, stronger
upper bounds of 1.785, 1.789, 1.624, and 1.565, respectively, were shown.

Our results. In this work, we show that for all k the optimal performance pk is
bounded away from both one and two by a constant. More precisely, we show
that pk ≤ 1.7 for all k (cf. Section 6). We present algorithms that achieve an
upper bound of 1.59 + O(1/k) for all k (cf. Theorem 2), and an upper bound
of ln(4) + o(1) ≤ 1.39 + o(1) for k being any power of two (cf. Theorem 3). For
small values of k, and this might be an interesting case in applications with
memory-consuming states, we show superior bounds by suggesting a class of
checkpointing algorithms and optimizing their parameters via a combination of
exhaustive search and linear programming (cf. Table 1). We complement these
constructive results by a lower bound for pk of 2− ln(2)−O(1/k) ≥ 1.30−O(1/k)
(cf. Theorem 6). We round our work off with a natural, but seemingly nontrivial
result: We show that for each k there is indeed a checkpointing algorithm having
performance pk (cf. Theorem 4). In other words, the infimum in the definition of
pk can be replaced by a minimum.

2 Notation and Preliminaries

In the checkpointing problem with k checkpoints, we consider a long running
computation during which we can choose to save the state at the current time T
in a checkpoint, or delete a previously placed one. We assume that our storage
can hold at most k checkpoints simultaneously, and that there are an implicit
checkpoint at time t = 0 and the current time.

An algorithm for checkpoint placement can be uniquely described by two
infinite sequences. First, the time points where new checkpoints are placed, i.e., a
non-decreasing infinite sequence of reals t1 ≤ t2 ≤ . . . such that limi→∞ ti =∞,

3

and second, a rule that describes which old checkpoints to delete, that is, an
injective function d : [k + 1..∞)→ N satisfying di < i for all i ≥ k + 1.

The algorithm A described by (t, d) will start with t1, . . . , tk as initial check-
points and then for each i ≥ k+ 1, at time ti remove the checkpoint at tdi and set
a new checkpoint at the current time ti. We call the act of removing a checkpoint
and placing a new one a step of A. Note that there is little point in setting
the first k checkpoints to zero, so to make the following performance measure
meaningful, we shall always require that tk > 0.

We call the set of checkpoints that exist at time T active. The active check-
points, together with the two implicit checkpoints at times 0 and T , define a
sequence of k + 1 interval lengths LT = (`0, . . . , `k). The quality q(A, T) of an
algorithm A at time T ≥ tk is a measure of how long the maximal interval is,
normalized to be one if all intervals have the same length. It is calculated as

q(A, T) := (k + 1)¯̀
T /T,

where ¯̀
T = ||LT ||∞ denotes the length of the longest interval. We also use the

term quality when we refer to the scaled length of a single interval.
The performance Perf(A) is then the supremum over the quality over all

times T , i.e.,
Perf(A) := sup

T≥tk
q(A, T).

Hence the performance of an algorithm would be 1, if it kept its checkpoints evenly
distributed at all times. Denote the infimum performance of a checkpointing
algorithm using k checkpoints by

p∗k := inf
A

Perf(A),

where A runs over all algorithms using k checkpoints. We will see in Sect. 7 that
algorithms achieving this performance actually exist.

Note that we allow checkpointing algorithms to set checkpoints at contin-
uous time points. One can convert any such algorithm to an algorithm with
integral checkpoints by rounding all checkpointing times ti. This introduces only
a bounded rounding error. As the original and the rounded algorithm have the
same performance for T →∞, we can restrict our attention to the continuous
model.

In the definition of the performance, the supremum is never attained at some
T with ti < T < ti+1 for any i, as shown by the following lemma.

Lemma 1. In the definition of the performance it suffices to look at times T = ti
for all i ≥ k, i.e., we have

Perf(A) = sup
i≥k

q(A, ti).

Proof. Consider a time T with ti < T < ti+1 for any i ≥ k. We show that

q(A, T) ≤ max{q(A, ti), q(A, ti+1)}.

4

Denote the active checkpoints at time T by p1, . . . , pk. Note that pk = ti, since
ti was the last time we set a checkpoint. Consider the interval [pk, T]. Its quality
is exactly

(k + 1)
T − pk
T

≤ (k + 1)
ti+1 − pk
ti+1

≤ q(A, ti+1).

Any other interval at time T is of the form [pj−1, pj] for some 1 ≤ j ≤ k (where
we set p0 := 0), whose quality is

(k + 1)
pj − pj−1

T
≤ (k + 1)

pj − pj−1
ti

≤ q(A, ti).

Together, this proves the claim. ut

To bound the performance of an algorithm we need to bound the largest of
the q(A, ti) over all i ≥ k. For this purpose, it suffices to look at the two newly
created intervals at time ti for each i, as made explicit by the following lemma.

Lemma 2. Let i > k and let `1, `2 be the lengths of the two newly created
intervals at time ti due to the removal and the insertion of a checkpoint. Then

max{q(A, ti−1), q(A, ti)} = max{q(A, ti−1), (k + 1)`1/ti, (k + 1)`2/ti}.

Proof. If `1 or `2 is the longest interval at time ti the claim holds. Any other
interval already existed at time ti−1 and had a larger quality at this time, as we
divide by the current time to compute the quality. Thus, if any other interval
is the longest at time ti, then we have q(A, ti−1) ≥ q(A, ti) and the claim holds
again. ut

Often, it will be useful to use a different notation for the checkpoint that
is removed in step i. Instead of the global index d, one can also use the index
p : [k + 1,∞)→ [1, k] among the active checkpoints, i.e.,

pi = di −
∑
j<i

1dj<di .

We call an algorithm A = (t, p) cyclic, if the pi are periodic with period n, i.e.,
pi = pi+n for all i, and after n steps A has transformed the intervals to a scaled
version of themselves, that is, Ltk+jn

= γjLtk for some γ > 1 and all j ∈ N. We
call γ the stretch, or the scaling factor. For a cyclic algorithm A, it suffices to
fix the pattern of removals P = (pk+1, . . . , pk+n) and the checkpoint positions
t1, . . . , tk, tk+1, . . . , tk+n. We can assume without loss of generality that tk = 1
(and hence tk+n = γ).

Since cyclic algorithms transform the starting position to a scaled copy of
itself, it is easy to see that their performance is given by the maximum over the
qualities during one period, i.e., for cyclic algorithms A with period n we have

Perf(A) = max
k<i≤k+n

q(A, ti).

This makes this class of algorithms easy to analyze.

5

3 Introductory Example – A Simple Bound for k = 3

For the case of k = 3 there is a very simple algorithm, Simple, with a performance
of 4/φ2 ≈ 1.53, where φ = (

√
5 + 1)/2 is the golden ratio. Because the algorithm

is so simple, we use it to familiarize ourselves with the notation we introduced
in Sect. 2. The algorithm is cyclic with a pattern of length one. We prove the
following theorem.

Theorem 1. For k = 3 there is a cyclic algorithm Simple with period length
one and

Perf(Simple) =
4

φ2
.

Proof. We fix the pattern to be P = (1), that is, algorithm Simple always
removes the oldest checkpoint. For this simple pattern it is easy to calculate the
performance depending on the scaling factor γ. Since the intervals need to be
a scaled copy of themselves after just one step and we can fix t3 = 1, we know
immediately that

t1 =
1

γ2
, t2 =

1

γ
, t3 = 1, t4 = γ,

and hence the performance is determined by

4 ·max

{
t1 − 0

t3
,
t2 − t1
t3

,
t3 − t2
t3

}
= 4 ·max

{
1

γ2
,
γ − 1

γ2
,
γ − 1

γ

}
.

Since γ > 1, the second term is always smaller than the third and can be ignored.
As 1/γ2 is decreasing and (γ − 1)/γ is increasing, the maximum is minimal when
they are equal. Simple calculation shows this to be the case at γ = φ.

Hence for k = 3 the algorithm with pattern (1) and checkpoint positions
t1 = 1/φ2, t2 = 1/φ, t3 = 1, and t4 = φ has performance 4/φ2 ≈ 1.53. ut

The experiments in Sect. 6 indicate that for k = 3 this is optimal among all
algorithms with a period of length at most 6.

4 A Simple Upper Bound for Large k

In this section we present a simple algorithm, Linear, with a performance of
roughly 1.59 for large k. This shows that the asymptotic bound of 2 from [1]
does not hold in our setting. Moreover, Linear is easily implemented, works for
all k (i.e., it is robust), and yields reasonably good bounds.

Like the algorithm Simple of the previous section, algorithm Linear is cyclic.
It has a simple linear pattern of length k. The pattern is just (1, . . . , k − 1), that
is, at the i-th step of a period Linear deletes the i-th active checkpoint. Overall,
during one period Linear removes all checkpoints at times ti with odd index i,
as shown in Fig. 1. The checkpoints are put on a polynomial. For i ∈ [1, 2k] we
set ti = (i/k)α, where α is a constant. In the analysis we optimize the choice of
α and set α := 1.302. For this algorithm we show the following theorem.

6

Theorem 2. Algorithm Linear has a performance of at most

Perf(Linear) ≤ 1.586 +O(k−1).

Experiments show that the performance of algorithm Linear is close to the
bound of 1.586 even for moderate sizes of k. Comparisons using the optimization
method from Sect. 6 indicate that for the pattern (1, . . . , k − 1) of algorithm
Linear, different checkpoint placements can yield only improvements of about
4.5% for large k. Experimental results are summarized in Fig. 4.

step 0
step 1
step 2
step 3
step 4
step 5

T = 1

T = 2.46

Fig. 1. The moving pattern of algorithm Linear from Sect. 4 for k = 5. After one
period all intervals are scaled by the same factor.

Proof. As algorithm Linear is cyclic, we can again compute the performance
from the 2k checkpoint positions and the pattern,

Perf(Linear) = max
k<i≤2k

(k + 1)¯̀
ti/ti,

where ¯̀
ti is the length of the longest interval at time ti. By Lemma 2 it suffices

to consider newly created intervals at times tk+1, . . . , t2k. Note that at time
ti we create the intervals [ti−1, ti] (from insertion of a checkpoint at ti) and
[t2(i−k)−2, t2(i−k)] (from deletion of the checkpoint at t2(i−k)−1). The quality of
the new interval by insertion is, for k < i ≤ 2k,

(k + 1)
ti − ti−1

ti
= (k + 1)

iα − (i− 1)α

iα
≤ (k + 1)

(k + 1)α − kα

kα
.

Using (x+ 1)c − xc ≤ c(x+ 1)c−1 for any x ≥ 0 and c ≥ 1, this simplifies to

≤ (k + 1)
α(k + 1)α−1

kα
= α(1 + 1/k)α = α+O(k−1),

for any constant α ≥ 1.
For the new interval from deleting the checkpoint at t2(i−k)−1 we get a quality

of

(k + 1)
t2(i−k) − t2(i−k)−2

ti
= (k + 1)

(2(i− k))α − (2(i− k)− 2)α

iα

≤ (k + 1)2α
α(i− k)α−1

iα
,

7

where we used again (x+ 1)c − xc ≤ c(x+ 1)c. An easy computation shows that
(i − k)α−1/iα is maximized at i = αk over k < i ≤ 2k. Hence, we can upper
bound this quality by

≤
(

1 +
1

k

)
2α
α(α− 1)α−1

αα
= 2α

(
1− 1

α

)α−1
+O(k−1).

We optimize the latter term numerically and obtain for α = 1.302 an upper
bound of

1.586 +O(k−1).

Note that this bound is larger than the bound α + O(k−1) = 1.302 + O(k−1)
from the new intervals from insertion. Hence, overall we get the desired upper
bound. ut

5 An Improved Upper Bound for Large k

In this section we present algorithm Binary that yields a quality of roughly
ln(4) ≈ 1.39 for large k. Compared to algorithm Linear from the last section,
Binary has a considerably better performance and more involved analysis, but
it only works for k being a power of two. Since this is an interesting and realistic
condition, we are convinced that this is an interesting result.

Theorem 3. For k ≥ 8 being any power of 2, algorithm Binary has performance

Perf(Binary) ≤ ln(4) +
0.05

lg(k/4)
+O

(1

k

)
.

Note that the term O(1/k) quickly tends to 0. This is not true for 1/ lg(k/4),
however, the constant 0.05 is already small. Hence, this quality is close to ln(4)
already for moderate k. Also note that ln(4) is by less than 0.1 larger than our
lower bound from Sect. 8. In fact, for large k our lower bound leaves room for
less than a 6% improvement over the upper bound for algorithm Binary. We
verified experimentally that algorithm Binary yields very good bounds already
for relatively small k. The results are summarized in Fig. 5.

5.1 The Algorithm

The initial checkpoints t1, . . . , tk satisfy the equation

ti = αti/2 (1)

for each even 1 ≤ i ≤ k and some α = α(k) ≥ 2. Precisely, we set

α := 21+
lg(
√

2/ ln 4)
lg(k/4) ≈ 21+

0.029
lg(k/4) ,

8

where here and in the rest of this paper lg denotes the binary and ln the natural
logarithm. However, the usefulness of this expression becomes clear only from
the analysis of the algorithm.

During one period we delete all odd checkpoints t1, t3, . . . , tk−1 and insert the
new checkpoints

tk+i := αtk/2+i, (2)

for 1 ≤ i ≤ k/2. Then after one period we end up with the checkpoints

(t2, t4, . . . , tk−2 , tk , tk+1 , tk+2 , . . . , tk+k/2)
= α· (t1, t2, . . . , tk/2−1, tk/2, tk/2+1, tk/2+2, . . . , tk/2+k/2) = α(t1, t2, . . . , tk),

which proves cyclicity. Note that (1) and (2) allow to compute all ti from the
values tk/2+1, . . . , tk, however, we still have some freedom to choose the latter
values. Without loss of generality we can set tk := 1, then tk/2 = α−1. In between
these two values, we interpolate lg ti linearly, i.e., we set for i ∈ (k/2, k]

ti := α2i/k−2, (3)

completing the definition of the ti. Note that this equation also works for i = k
and i = k/2.

There is one more freedom we have with this algorithm, namely in which
order we delete all odd checkpoints during one period, i.e., we need to fix the
pattern of removals. In iteration 1 ≤ i ≤ k/2 we insert the checkpoint tk+i and
remove the checkpoint td(i+k), defined as follows. For m ∈ N = N≥1 let 2e(m) be
the largest power of 2 that divides m. We define S : N → N, S(m) := m/2e(m).
Note that S(m) is an odd integer, since it is no longer divisible by any power of
2. Using this definition, we set

d(k + i) := S
(
i+

k

2

)
, (4)

finishing the definition of algorithm Binary. If we write this down as a pattern,
then we have pi = 1 + k/(21+e(i)) for 1 ≤ i < k/2 and pk/2 = 1. For intuition as
to the behavior of this pattern, see the example in Fig. 2. The following lemma
implies that the deletion behavior of Binary is indeed well-defined, meaning that
during one period we delete all odd checkpoints t1, t3, . . . , tk−1 (and no point is
deleted twice).

Lemma 3. The function S induces a bijection between {k/2 < i ≤ k} and
{1 ≤ i ≤ k | i is odd}.

Proof. Let A := {k/2 < i ≤ k} and B := {1 ≤ i ≤ k | i is odd}. Since S(m) ≤ m
and S(m) is odd for all m ∈ N, we have S(A) ⊆ B. Moreover, A and B are of
the same size. We present an inverse function to finish the proof. Let x ∈ B.
Note that there is a unique number y ∈ N such that x2y ∈ A, since A is a range
between two consecutive powers of 2 and x ≤ k. Setting S−1(x) = x2y we have
found the inverse. ut

9

step 0
step 1
step 2
step 3
step 4
step 5
step 6
step 7
step 8

T = 1

T = 2.012

Fig. 2. One run of algorithm Binary for k = 16. Note that, recursively, checkpoints
from the right half of the initial setting are removed twice as often (at steps i where i
mod 2 = 1) as checkpoints from the second quarter.

5.2 Quality Analysis

We have to bound the largest quality encountered during one period, i.e.,

Perf(Binary) = max
1≤i≤k/2

q(Binary, ti+k) = (k + 1) max
1≤i≤k/2

`ti+k
/ti+k.

We first compute the maximum and later multiply with the factor k + 1. By
Lemma 2, we only have to consider intervals newly created by insertion and
deletion at any step.

Intervals from Insertion: We first look at the quality of the newly added interval
at time ti+k, 1 ≤ i ≤ k/2. Its length is ti+k − ti+k−1, so its quality (without the
factor k + 1) is

ti+k − ti+k−1
ti+k

= 1− ti+k−1
ti+k

(2)
= 1−

ti+k/2−1

ti+k/2
(3)
= 1− α−2/k.

Using ex ≥ 1 + x for x ∈ R yields a bound on the quality of

ti+k − ti+k−1
ti+k

≤ ln(α)
2

k
= ln(α2)/k.

Deleting t1: We show similar bounds for the intervals we get from deleting an
old checkpoint. We first analyze the deletion of t1—this case is different from the
general one, since t1 has no predecessor. Note that t1 is deleted at time t3k/2.
The deletion of t1 creates the interval [0, t2]. This interval has quality

t2
t3k/2

(2),(1)
=

αt1
αtk

(1)
= α− lg k ≤ 1/k,

10

since we choose α ≥ 2. Hence, this quality is dominated by the one we get from
newly inserted intervals.

Other Intervals from Deletion: It remains to analyze the quality of the intervals we
get from deletion in the general case, i.e., at some time ti+k, 1 ≤ i < k/2. At this
time we delete checkpoint d(i+ k), so we create the interval [td(i+k)−1, td(i+k)+1]
of quality

qi :=
td(i+k)+1 − td(i+k)−1

ti+k

(2),(4)
=

tS(i+k/2)+1 − tS(i+k/2)−1
αti+k/2

.

Let h := e(i + k/2), so that 2h is the largest power of 2 dividing i + k/2, and
2h S(i+ k/2) = i+ k/2. Then tS(i+k/2)+1 = α−hti+k/2+2h by (1), and a similar
statement holds for tS(i+k/2)−1, yielding

qi = α−1−h
ti+k/2+2h − ti+k/2−2h

ti+k/2
.

Using (3) we get ti+k/2 = α2i/k−1. Comparing this with the respective terms for
ti+k/2+2h and ti+k/2−2h yields

qi = α−1−h
(
α2h+1/k − α−2

h+1/k
)

= α−1−h · 2 sinh
(
ln
(
α2
)

2h/k
)
.

By elementary means one can show that the function f(x) = x−A sinh(Bx),
A ≥ 1, B > 0, is convex on R≥0. Since convex functions have their maxima at
the boundaries of their domain, and since by above equation qi can be expressed
using f(2h) (for A = lgα and B = ln(α2)/k), we see that qi is maximal at (one
of) the boundaries of h. Recall that we treated i = k/2 separately, and observe
that the largest power of 2 dividing i+ k/2, 1 ≤ i < k/2 is at most k/4. Hence,
we have 0 ≤ 2h ≤ k/4 and

qi ≤ max
{

2α−1 sinh(ln(α2)/k), 2α−1(k/4)− lgα sinh(ln(α)/2)
}
.

We simplify using α ≥ 2 and sinh(x) = x+O(x2) to get

qi ≤ max
{

ln(α2)/k +O(1/k2), (k/4)− lgα sinh(ln(α)/2)
}
. (5)

The first term is already of the desired form. For the second one, note that setting
α = 2 we would get a quality of 4 sinh(ln(2)/2)/k =

√
2/k. We get a better bound

by choosing
α := 21+

c
lg(k/4) ,

with c := lg(
√

2/ ln(4)) ≈ 0.029. Then the second bound on qi from above
becomes

(k/4)− lgα sinh(ln(α)/2) =
4

k
2−c sinh

(
ln(2)

2

(
1 +

c

lg(k/4)

))
.

11

The particular choice of c allows to bound the derivative of sinh((1 + x) ln(2)/2)
for x ∈ [0, c] from above by

ln(2)

2
cosh((1 + c) ln(2)/2) < 0.39.

Hence, we can upper bound

sinh

(
ln(2)

2

(
1 +

c

lg(k/4)

))
≤ sinh(ln(2)/2) +

0.39c

lg(k/4)
.

Thus, in total the second bound on qi from inequality (5) becomes

(k/4)− lgα sinh(ln(α)/2) ≤ 4

k
2−c sinh(ln(2)/2) +

4 · 2−c · 0.39c

k lg(k/4)
.

Since c = lg(
√

2/ ln(4)) = lg(4 sinh(ln(2)/2)/ ln(4)), this becomes

≤ ln(4)/k + 0.044/(k lg(k/4)).

Overall Quality: In total, we can bound the performance p := Perf(Binary) of
our algorithm (now including the factor of k + 1) by

p ≤ (k + 1) max
{

ln(α2)/k +O(1/k2), ln(4)/k + 0.044/(k lg(k/4))
}
.

Using (k + 1)/k = 1 +O(1/k) and

ln(α2) = ln(4)

(
1 +

c

lg(k/4)

)
≤ ln(4) +

0.040

lg(k/4)
,

this bound can be simplified to

p ≤ max{ln(4) + 0.040/ lg(k/4) +O(1/k), ln(4) + 0.044/ lg(k/4) +O(1/k)},

which proves Theorem 3.

6 Upper Bounds via Combinatorial Optimization

In this section we show how to find upper bounds on the optimal performance p∗k
for fixed k. We do so by constructing cyclic algorithms using exhaustive enumer-
ation of all short patterns in the case of very small k or randomized local search
on the patterns for larger k, combined with linear programming to optimize the
checkpoint positions. This yields good algorithms as summarized in Table 1. In
the following we describe our algorithmic approach.

12

Finding Checkpoint Positions: First we describe how to find a nearly optimal
cyclic algorithm given a pattern P and stretch γ, i.e., how to optimize for the
checkpoint positions.

Lemma 4. For a fixed pattern P of length n and scaling factor γ, let p∗ =
inf Perf(A) be the optimal performance among algorithms A using P and γ. Then
finding an algorithm with performance at most p∗+ε reduces to solving O(log ε−1)
linear feasibility problems.

Proof. For a fixed pattern and scaling factor, we can tune the performance
of the algorithm by cleverly choosing the time points when to remove an old
checkpoint and place a new one. By solving a linear feasibility problem we
can check whether a cyclic algorithm with stretch γ and pattern P exists that
guarantees a performance of at most λ. We can then optimize over λ to find an
approximately optimal algorithm.

We construct a linear program with the k + n time points (t1, . . . , tk+n) as
variables (where we can set tk = 1 without loss of generality). It uses three kinds
of constraints. The first kind is of the form

ti ≤ ti+1,

for all i ∈ [1, k + n). These constraints are satisfied if the checkpoint positions
have the correct ordering, i.e. checkpoints with larger index are placed at later
times.

The second kind of constraints enforces the scaling factor. Since the pattern
is fixed, we can readily compute at all steps which checkpoints are active. For
i ∈ [1, k] and j ∈ [0, n], let τ ji be the variable of the i-th active checkpoint in step
j and let τ j0 be 0 for all j. It is easy to see that the algorithm has a stretch of γ
if the i-th active checkpoint in the last step is larger by a factor of γ than in the
first step. We encode this as constraints of the form

τni = γτ0i .

Lastly we encode an upper bound of λ for the performance. Since the performance
of a cyclic algorithm is given by

max
k<i≤k+n

(k + 1)¯̀
ti/ti,

and each ¯̀
ti can be expressed by a maximum over k terms, we can encode a

performance guarantee of λ with nk constraints of the form

τ ji+1 − τ
j
i ≤ λτ

j
k/(k + 1),

for all i ∈ [0, k) and j ∈ [0, n].
A feasible solution of these constraints fixes the checkpoint positions and

hence, together with the pattern P , provides an algorithm with performance at
most λ. Using a simple binary search over λ ∈ [1, 2] we can find an approximately
optimal algorithm for this value of γ and the pattern P . ut

13

Finding Stretch Factors: Next we show how to find stretch factors γ for which
algorithms with good performance exist. We first show an upper bound for γ.

Lemma 5. A cyclic algorithm with k checkpoints, performance λ < k, and a
period length of n can have stretch at most

γ ≤
(

1

1− λ/(k + 1)

)n
.

Proof. Consider any checkpointing algorithm A = (t, d) with k checkpoints and
performance λ. At any time ti, i ≥ k, the largest interval has length ¯̀

ti ≥ ti−ti−1,
as there is no checkpoint in the time interval [ti−1, ti]. Hence, we have

(k + 1)
ti − ti−1

ti
≤ λ.

Rearranging, this yields

ti ≤
1

1− λ/(k + 1)
ti−1.

Iterating this n times, we get

tk+n ≤
(

1

1− λ/(k + 1)

)n
tk.

Hence, for any cyclic algorithm (with performance λ, k checkpoints, and a period
length of n) we get the desired bound on the stretch γ = tk+n/tk. ut

Since algorithms with performance 2 are known [1], we can restrict our
attention to λ ≤ 2. Hence, for any given pattern length n, Lemma 5 yields a
concrete upper bound on γ, while a trivial lower bound is given by γ > 1. Now,
for any given pattern P we optimize over γ using a linear search with a small
step size over the possible values for γ. For each tested γ, we optimize over the
checkpoint positions using the linear programming approach described above.

Finding Patterns: For small k and n, we can exhaustively enumerate all kn
removal patterns of period length n. Some patterns can be discarded as they
obviously can not lead to a good algorithm or are equivalent to some other pattern:
No pattern that never removes the first checkpoint can be cyclic. Furthermore,
patterns are equivalent under cyclic shifts, so we can assume without loss of
generality that all patterns end with removing the first checkpoint. Lastly, it never
makes sense to remove the currently last checkpoint. Hence, for k checkpoints
there are at most (k − 1)n−1 interesting patterns of length n. This finishes the
description of our combinatorial optimization approach.

14

Results: We ran experiments that try patterns up to length k for k ∈ [3, 7]. For
k = 8 we stopped the search after examining patterns of length 7. For even larger
k we used a randomized local search to find good patterns. The upper bounds
we found are summarized in Table 1 , and for k ≤ 8 the removal patterns and
time points when to place new checkpoints can be found in Fig. 3. Note that for
k = 3 this procedure re-discovers the golden ratio algorithm of Sect. 3.

Note that we can combine the results presented in Table 1 with algorithm
Linear (Theorem 2 and Fig. 4) to read off a global upper bound of pk ≤ 1.7 for
the optimal performance for any k.

k 3 4 5 6 7 8 9 10 15 20 30 50 100
Perf. 1.529 1.541 1.472 1.498 1.499 1.499 1.488 1.492 1.466 1.457 1.466 1.481 1.484

Table 1. Upper bounds for different k. For k < 8 all patterns up to length k were tried.
For k = 8 all patterns up to length 7 were tried. For larger k patterns were found via
randomized local search.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

k=3
Pattern=1

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

k=4
Pattern=3,1

0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k=5
Pattern=2,3,1

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k=6
Pattern=2,3,5,1,3,1

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k=7
Pattern=3,4,1,5,3,1

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k=8
Pattern=4,7,2,3,4,1

Fig. 3. Time points where the i-th checkpoint is placed to achieve the bounds of Table 1.
Time is on the y-Axis, iteration is on the x-Axis.

15

For a fixed pattern the method is efficient enough to find good checkpoint
positions for much larger k. For k < 1000 we experimentally compared the
algorithm Linear of Sect. 4 with algorithms found for its pattern (1, . . . , k − 1).
The experiments show that for k = 1000 Linear is within 4.5% of the optimized
bounds. For the algorithm Binary of Sect. 5, this comparison is even more
favorable. For k = 1024 the algorithm places its checkpoints so well that the
optimization procedure improves performance only by 1.9%. The results are
summarized in Fig. 4 and Fig. 5.

101 102 103

k

1.50

1.55

1.60

1.65

1.70

1.75

1.80

P
e
rf

o
rm

a
n
ce

Asymptotic

Algorithm

Optimized

Fig. 4. The performance of algorithm Linear from Sect. 4 for different values of k
compared with the upper bounds for its pattern found via the combinatorial method
from Sect. 6. For large k Linear is about 4.5% worse.

Do we find optimal algorithms? One could ask whether the algorithms from
Table 1 are optimal, or at least near optimal. There are two steps in above
optimization algorithm that prevent this question to be answered positively. First,
we are only optimizing over short patterns, and it might be that much larger
pattern lengths are necessary for optimal checkpointing algorithms. Second, we
do not know how smoothly the optimal performance for fixed pattern P and
stretch γ behaves with varying γ, i.e., we do not know whether our linear search
for γ yields any approximation on the performance λ. However, in experiments
we tried all patterns of length 2k for k ∈ [3, 4, 5] and found no better algorithm
than for the shorter patterns of length up to k. Moreover, smaller step sizes
in the linear search for γ lead only to small improvements, indicating that the
performance is continuous in γ. This suggests that the reported algorithms might
be near optimal.

16

23 24 25 26 27 28 29 210

k

1.35

1.40

1.45

1.50

1.55

1.60

P
e
rf

o
rm

a
n
ce

Asymptotic

Algorithm

Optimized

Fig. 5. The performance of the algorithm from Sect. 5 for some values of k, compared
with the upper bounds for its pattern found via the combinatorial method from Sect. 6.
For k = 1024, the optimization procedure finds a checkpoint placement with only 1.9%
better performance.

7 Existence of Optimal Algorithms

In this section, we prove that optimal algorithms for the checkpointing problem
exist, i.e., that there is an algorithm having performance equal to the infimum
performance p∗k := infA Perf(A) among all algorithms for k checkpoints.

Theorem 4. For each k there exists a checkpointing algorithm A for k check-
points with Perf(A) = p∗k, i.e., there is an optimal checkpointing algorithm.

As we will see throughout this section, this a non-trivial statement. From
the proof of this statement, we gain additional insight in the behavior of good
algorithms. In particular, we show that we can without loss of performance
assume that for all i the i-th checkpoint is set by a factor of at least (1 + 1/k)Θ(i)

later than the first checkpoint.
An initial set of checkpoints can be described by a vector x = (x1, . . . , xk),

0 ≤ x1 ≤ . . . ≤ xk. Since x = (0, . . . , 0) can never be extended to a checkpointing
algorithm of finite performance, we shall always assume x 6= 0. Denote by X the
set of all initial sets of checkpoints (described by vectors x 6= 0 as above), and by
X0 the set of all x ∈ X with xk = 1.

We say that A = (t, d) is an algorithm for an initial set x ∈ X of checkpoints
if ti = xi for all i ∈ [k]. We denote by p(x) := infA p(A), where A runs over all
algorithms for x, the performance of x. An initial set x ∈ X is called optimal if
p(x) = infx∈X p(x) = p∗k.

Lemma 6. Optimal initial sets of checkpoints exist.

17

Proof. Since the performance of an initial set of checkpoints is invariant under
scaling, that is, p(x) = p(λx) for all x ∈ X and λ > 0, we have infx∈X p(x) =
infx∈X0 p(x).

It is not hard to see that p(.) is continuous on X0: Let x, x′ ∈ X0 with
|x − x′|∞ ≤ ε and consider an algorithm A = (t, d) for x. We construct an
algorithm A′ = (t′, d) for x′ by setting t′i = ti for i > k. Then |Perf(A) −
Perf(A′)| ≤ 2ε, since any interval’s length is changed by at most 2ε. This implies
|p(x)− p(x′)| ≤ 2ε and, thus, shows continuity of p(.).

Now, since p(.) is continuous on X0 and X0 is compact, there exists an x ∈ X0

such that p(x) = infx∈X0
p(x) = p∗k. ut

An easy observation is that if some checkpointing algorithms leads to a vector
x of checkpoints at some time, then we may continue from there using any other
algorithm for x. The performance of this combined algorithm is at most the
maximum of the two performances.

Lemma 7. Let A = (t, d) be a checkpointing algorithm. Let i > k. We call pA,i =
maxj∈[k..i] ¯̀

tj (k+1)/tj the partial performance of A observed in the time up to ti.
Assume that when running A, at time ti the checkpoints x = (x1, . . . , xk = ti) are
active. Let A′ = (t′, d′) be an algorithm for x. Then the checkpointing algorithm
obtained from running A until time ti and then continuing with algorithm A′ is a
checkpointing algorithm that has performance at most max{pA,i,Perf(A′)}. If we
run this combined algorithm only until some time t′j , then the partial performance
observed till then is max{pA,i, pA′,j}.

Proof. Trivial. ut

The above lemma implies that in the following, we may instead of looking at
an arbitrary time simply assume that the algorithm just started, that is, that
the current set of checkpoints is the initial one.

The following lemma shows that we can, without loss of performance, assume
that an algorithm for the checkpointing problem does not set checkpoints too
close together. While also of independent interest, among others because it shows
how to keep additional costs for setting and removing checkpoints low, we shall
need this statement in our proof that optimal checkpointing algorithms exist.

Lemma 8. Let A = (t, d) be an algorithm for the checkpointing problem with
q(A) < k − 1. Then there is an algorithm A′ = (t′, d′) with the same starting
position such that (i) Perf(A′) ≤ Perf(A) and

(ii) t′k+3 ≥ t′k
(

1 +
Perf(A)

k + 1− Perf(A)

)
≥ t′k

(
1 +

1

k

)
.

Proof. Let r = Perf(A)/(k+1−Perf(A)) for convenience. By way of contradiction,
assume that the lemma is false. Let A be a counter-example such that i := min{i ∈
N | tk+i ≥ 1+r} is minimal (the minimum is well-defined, since for any algorithm
the sequence (ti)i tends to infinity). Note that i ≥ 4, since A is a counter-example.

18

Assume that there is a j ∈ [1..i − 1] such that tk+j in the further run
of A is removed (and replaced by the then current time tx) earlier than both
tk+j−1 and tk+j+1. Consider the Algorithm A′ that arises from A by the following
modifications. Let ty be the checkpoint that was removed to install the checkpoint
tj . Let A′ be the checkpointing algorithm that proceeds as A except that ty is not
replaced by tk+j , but by tx, and tk+j is never created. The only interval which
could cause this algorithm to have a worse performance than A is [tk+j−1, tk+j+1].
However, this interval contributes (k+1)(tk+j+1−tk+j−1)/tk+j+1 ≤ (k+1)r/(1+
r) ≤ Perf(A) to the performance of A′. Hence, Perf(A′) ≤ Perf(A) and A′ has
fewer checkpoints in the interval [1, 1+r] contradicting the minimality of A. Thus,
there is no j ∈ [1..i− 1] such that tk+j is removed earlier than both tk+j−1and
tk+j+1 (*).

We consider now separately the two cases that tk+1 is removed earlier than
tk+i−2 and vice versa. Note first that k + 1 < k + i− 2 by assumption that i ≥ 4.

Assume first that tk+1 is removed (at some time tx) earlier than tt+i−2. Then
tk must have been removed even earlier (at some time ty), otherwise we found
a contradiction to (*). Let A′ be an algorithm working identically as A, except
that at time ty the checkpoint tk+1 is removed (instead of tk) and at time tx
the checkpoint tk is removed (instead of tk+1). Since the checkpoint at tt+i−2 is
still present, the only interval affected by this exchange, namely the one with
tk as left endpoint, has length at most r. Hence as above, this contributes at
most Perf(A) to the performance of A′. The algorithm A′ has the property that
there is a checkpoint in between tk and tk+i−2 which is removed before these two
points. The earliest such checkpoint, call it tk+j , has the property that tk+j is
removed earlier than both tk+j−1 and tk+j+1, contradicting earlier arguments.

A symmetric argument shows that also tk+i−2 being removed before tk+1

leads to a contradiction. Consequently, our initial assumption that i ≥ 4 cannot
hold, proving the claim. ut

The following is a global variant of Lemma 8. It shows that any reasonable
checkpointing algorithm does not store new checkpoints too often.

Theorem 5. Let A = (t, d) be a checkpointing algorithm with Perf(A) < k − 1.
Then there is an algorithm A′ = (t′, d′) with the same starting position such that
(i) Perf(A′) ≤ Perf(A) and (ii) t′i+3 ≥ (1 + 1/k) · t′i for all i ≥ k.

Proof. Let j ≥ k be the smallest index with a small jump, tj+3 < (1 + 1/k)tj .
Using Lemma 8 (on the remainder of algorithm A starting at time tj) we can
remove this small jump and get an algorithm A′ = (t′, d′) with Perf(A′) ≤ Perf(A)
and t′i+3 ≥ (1 + 1/k) · t′i for all k ≤ i ≤ j, i.e., we patched the earliest small jump.
Iterating this patching procedure infinitely often yields the desired algorithm. ut

Lemma 9. For any optimal initial set x = (x1, . . . , xk), there is an algorithm
A = (t, d) such that (i) pA,k+3 = maxj∈[k..k+3] `tj (k + 1)/tj ≤ p∗k, (ii) tk+3 ≥
tk(1 + 1/k), and the set of checkpoints active at time tk+3 is again optimal.

Proof. By the definition of optimality, for each n ∈ N there is an algorithm
A(n) for x that has performance at most p∗k + 1/n. Let (t

(n)
k+1, t

(n)
k+2, t

(n)
k+3) denote

19

the corresponding next three checkpoints. By Lemma 8, we may assume that
t
(n)
k+3 ≥ tk(1 + 1/k) for all n ∈ N .

Note that (using the same arguments as in Lemma 5) any algorithm having per-
formance at most 2.5 satisfies tk+i ≤ 6itk for any k ≥ 2. Hence, (t

(n)
k+1, t

(n)
k+2, t

(n)
k+3)n∈N≥2

is a sequence in the compact space [tk, 6
3tk]3. This sequence has a convergent

subsequence with limit (tk+1, tk+2, tk+3). Also, since there are only finitely many
values possible for (d

(n)
k+1, d

(n)
k+2, d

(n)
k+3), this subsequence can be chosen such that

this d-tuple is constant, say (dk+1, dk+2, dk+3). For this subsequence, also all
k + 1 intervals existing at the three times of interest converge. Consequently, the
performance caused by each of them also converges to a value upper bounded by
p∗k, showing that qA,k+3 ≤ p∗k.

Similarly, we observe that the set of checkpoints x(n) active at time t(n)k+3

when running algorithm A(n) has performance at most p∗k + 1/n. Consequently,
the active checkpoints we get from the limit checkpoints (tk+1, tk+2, tk+3) and
deletions (dk+1, dk+2, dk+3) are again optimal.

Finally, since all t(n)k+3 ≥ tk(1 + 1/k), this also holds for tk+3. ut

We are now in position to prove the main result of this section, Theorem 4. For
this, we repeatedly apply Lemma 9: We start with an optimal set of checkpoints x.
Then we run the algorithm delivered by Lemma 9 for three steps. This creates
no partial performance larger than p∗k and we end up with another optimal set
of checkpoints. From this, we continue to apply Lemma 9 and execute three
steps of the algorithm obtained. By Lemma 7, the partial performance of the
combined algorithm is again at most p∗k. Iterating infinitely, this yields an optimal
algorithm, which proves Theorem 4.

8 Lower Bound

In this section, we prove a non-trivial lower bound on the performance of all
checkpointing algorithms. For large k we get a lower bound of roughly 1.30, so
we have a lower bound that is asymptotically larger than the trivial bound of 1.
Moreover, it shows that algorithm Binary from Sect. 5 is nearly optimal, as for
large k the presented lower bound is within 6% of the performance of Binary.

Theorem 6. All checkpointing algorithms with k checkpoints have a performance
of at least

2− ln 2−O(k−1) ≥ 1.306−O(k−1).

The remainder of this section is devoted to the proof of the above theorem. Let
A = (t, d) be an arbitrary checkpointing algorithm and let p′ := Perf(A) be its
performance. For convenience, we define p = kp′/(k + 1) and bound p. Since
p < p′ this suffices to show a lower bound for the performance of A. For technical
reasons we add a gratis checkpoint at time tk that must not be removed by A.
That is, even after the removal of the original checkpoint at tk, there still is the

20

gratis checkpoint active at tk. Clearly, this can only improve the performance.
We analyze the performance of A over the first k/(2p) steps, i.e., up to time
tk+k/(2p).

We partition the intervals that exist at time tk+k/(2p) into three types:

1. Intervals existing both at time tk and tk+k/(2p). These intervals are included
in [0, tk].

2. Intervals that are contained in [0, tk], but did not exist at time tk. These
intervals were created by the removal of some checkpoint in [0, tk] after
time tk.

3. Intervals contained in [tk, tk+k/(2p)].

Note that we need the gratis checkpoint at tk in order for these definitions to
make sense, as otherwise there could be an interval overlapping tk.

Let Li denote the set of intervals of type i for i ∈ {1, 2, 3}, and set ki := |Li|.
Let L2 = {I1, . . . , Ik2}, where the intervals are ordered by their creation times
τ1 ≤ . . . ≤ τk2 . We first bound the length of the intervals in L1 and L2.

Lemma 10. The length of any interval in L1 is at most ptk/k.

Proof. As all intervals in L1 already are present at time tk and the algorithm
has quality p′, we have for any I ∈ L1

(k + 1)|I|/tk ≤ p′ = (k + 1)p/k.

The bound follows. ut

The number of checkpoints that are deleted in [0, tk] up to time tk+k/(2p) is
at least k2 (every interval in L2 contains at least one removed checkpoint), say
their total number is k2 +m. Then m counts the number of deleted checkpoints
in [0, tk] that did not create an interval in L2, but some strict sub-interval of an
interval in L2. We call these m removed checkpoints free.

Lemma 11. The length of any interval Ii ∈ L2 is at most

|Ii| ≤
tk

k/p−m− i
.

Proof. As the algorithm has performance p′, we know

|Ii| ≤ pτi/k. (6)

In the following we bound τi, the time of creation of Ii. At time τi there are at
mostm+i intervals in L3, since at mostm free checkpoints and i checkpoints from
the creation of I1, . . . , Ii are available. Comparing with an equidistant spread of
m+ i checkpoints in [tk, τi] and the algorithm’s performance, the longest interval
L in [tk, τi] (at time τi) has length

τi − tk
m+ i

≤ |L| ≤ pτi
k
.

21

Rearranging the outer inequality yields a bound on τi of

τi ≤
ktk

k − (m+ i)p
.

Substituting this into (6) yields the desired result. ut

Furthermore, we need a relation between k1, k,m, and p.

Lemma 12. We have
k1 ≤ k +m− k/p+ 1.

Proof. First, note that in each of the k/(2p) steps of the algorithm from time tk
to tk+k/(2p) at most one point in [0, tk] is deleted, implying

k2 +m ≤ k/(2p). (7)

Moreover, as the intervals in L1 and L2 partition [0, tk], there are k1 +k2 intervals
left in [0, tk] at time tk+k/(2p). Note that each but one such interval has its left
endpoint among the k active checkpoints from time tk (the one exception having as
left endpoint 0). Hence, there are k1 +k2−1 checkpoints left in [0, tk]. Comparing
with the number k2 +m of deleted checkpoints and their overall number k yields

(k2 +m) + (k1 + k2 − 1) = k.

Rearranging this and plugging in inequality (7) yields the desired result. ut

Now we use our bounds on the length of intervals from L1 and L2 to find a bound
on p. Note that the intervals in L1 and L2 partition [0, tk], so that

tk =
∑
I∈L1

|I|+
∑
I′∈L2

|I ′|.

Using Lemmas 10 and 11, we obtain

tk ≤ k1
ptk
k

+

k2∑
i=1

tk
k/p−m− i

.

Substituting k1 using Lemma 12 yields

tk ≤ [k +m− k/p+ 1] ptk/k +

k/(2p)−m∑
i=1

tk
k/p−m− i

= tk

p− 1 +m
p

k
+O(k−1) +

k/(2p)−m∑
i=1

1

k/p−m− i

 . (8)

Recall that Hn =
∑

1≤i≤n i
−1 is the n-th harmonic number. Rearranging (8)

yields

p ≥ 2−mp

k
−O(k−1)−Hk/p−m−1 +Hk/(2p)−1.

22

Observe that we have m p
k +Hk/p−m−1 ≤ Hk/p−1, implying

p ≥ 2 +Hk/(2p)−1 −Hk/p−1 −O(k−1)

≥ 2 +Hk/(2p) −Hk/p −O(k−1),

since we can hide the last summands of Hk/(2p) and Hk/p by O(k−1). In combi-
nation with the asymptotic behavior of Hn = lnn+ γ +O(n−1), where γ is the
Euler-Mascheroni constant, we obtain

p ≥ 2 + ln(k/(2p))− ln(k/p)−O(k−1)

= 2− ln(2)−O(k−1).

This finishes the proof of Theorem 6.

References

1. Lauri Ahlroth, Olli Pottonen, and André Schumacher. Approximately uniform
online checkpointing. In Bin Fu and Ding-Zhu Du, editors, Proceedings of the 17th
Annual International Conference for Computing and Combinatorics (COCOON
2011), volume 6842 of Lecture Notes in Computer Science, pages 297–306. Springer,
2011.

2. Lauri Ahlroth, Olli Pottonen, and André Schumacher. Approximately uniform
online checkpointing with bounded memory, 2013. Preprint.

3. M. Bern, D. H. Greene, A. Raghunathan, and M. Sudan. Online algorithms for
locating checkpoints. In Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing, STOC ’90, pages 359–368. ACM, 1990.

4. K. M. Chandy and C. V. Ramamoorthy. Rollback and recovery strategies for
computer programs. IEEE Transactions on Computers, C-21:546 –556, 1972.

5. E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson.
A survey of rollback-recovery protocols in message-passing systems. ACM Comput.
Surv., 34:375–408, 2002.

6. Erol Gelenbe. On the optimum checkpoint interval. J. ACM, 26:259–270, 1979.
7. Vincent Heuveline and Andrea Walther. Online checkpointing for parallel adjoint

computation in pdes: Application to goal-oriented adaptivity and flow control. In
Wolfgang E. Nagel, Wolfgang V. Walter, and Wolfgang Lehner, editors, Euro-Par
2006 Parallel Processing, volume 4128 of Lecture Notes in Computer Science, pages
689–699. Springer Berlin Heidelberg, 2006.

8. Fredrik Österlind, Adam Dunkels, Thiemo Voigt, Nicolas Tsiftes, Joakim Eriksson,
and Niclas Finne. Sensornet checkpointing: Enabling repeatability in testbeds and
realism in simulations. In Utz Roedig and Cormac J. Sreenan, editors, Wireless
Sensor Networks, volume 5432 of Lecture Notes in Computer Science, pages 343–357.
Springer, 2009.

9. Philipp Stumm and Andrea Walther. New algorithms for optimal online check-
pointing. SIAM Journal on Scientific Computing, 32(2):836–854, 2010.

10. Sam Toueg and Özalp Babaoglu. On the optimum checkpoint selection problem.
SIAM Journal on Computing, 13:630–649, 1984.

11. Sangho Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot instances via
checkpointing in the Amazon elastic compute cloud. In IEEE 3rd International
Conference on Cloud Computing (CLOUD 2010), pages 236–243, 2010.

23

	Online Checkpointing with Improved Worst-Case Guarantees

