
Succinct Sampling from Discrete Distributions

Karl Bringmann
∗

Max Planck Institute for Informatics
Campus E1.4

66123 Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Kasper Green Larsen
†

MADALGO‡, Department of Computer Science
Aarhus University
Aarhus, Denmark

larsen@cs.au.dk

ABSTRACT
We revisit the classic problem of sampling from a discrete
distribution: Given n non-negative w-bit integers x1, . . . , xn,
the task is to build a data structure that allows sampling i
with probability proportional to xi. The classic solution is
Walker’s alias method that takes, when implemented on a
Word RAM, O(n) preprocessing time, O(1) expected query
time for one sample, and n(w+2 lgn+o(1)) bits of space. Us-
ing the terminology of succinct data structures, this solution
has redundancy 2n lgn+o(n) bits, i.e., it uses 2n lgn+o(n)
bits in addition to the information theoretic minimum re-
quired for storing the input. In this paper, we study whether
this space usage can be improved.

In the systematic case, in which the input is read-only, we
present a novel data structure using r + O(w) redundant
bits, O(n/r) expected query time and O(n) preprocessing
time for any r. This is an improvement in redundancy by
a factor of Ω(lgn) over the alias method for r = n, even
though the alias method is not systematic. Moreover, we
complement our data structure with a lower bound showing
that this trade-off is tight for systematic data structures.

In the non-systematic case, in which the input numbers
may be represented in more clever ways than just storing
them one-by-one, we demonstrate a very surprising separa-
tion from the systematic case: With only 1 redundant bit,
it is possible to support optimal O(1) expected query time
and O(n) preprocessing time!

On the one hand, our results improve upon the space require-

‡Center for Massive Data Algorithmics, a Center of the Dan-
ish National Research Foundation.
∗Karl Bringmann is a recipient of the Google Europe Fel-
lowship in Randomized Algorithms, and this research is sup-
ported in part by this Google Fellowship.
†Kasper Green Larsen is a recipient of the Google Europe
Fellowship in Search and Information Retrieval, and this
research is supported in part by this Google Fellowship.

ment of the classic solution for a fundamental sampling prob-
lem, on the other hand, they provide the strongest known
separation between the systematic and non-systematic case
for any data structure problem. Finally, we also believe
our upper bounds are practically efficient and simpler than
Walker’s alias method.

Categories and Subject Descriptors
E.1 [Data]: Data Structures

General Terms
Theory, Algorithms

1. INTRODUCTION
We revisit the classic problem of sampling from a discrete
distribution: The input consists of non-negative numbers
x1, . . . , xn, and we want to build a data structure that sup-
ports the operation Draw, which returns i ∈ {1, . . . , n}
with probability pi = xi∑

j xj
. Multiple Draw queries shall

be independent. This problem has a classic solution by
Walker [20], with preprocessing time improved by Kronmal
and Peterson [14]; see [18] for an excellent explanation. The
improved version of Walker’s alias method needs O(n) pre-
processing time, after which a Draw query can be answered
in O(1) worst case time. While the query time bound is
clearly optimal, it has been noted in [1] that this has opti-
mal preprocessing time, too.

We focus on the question of whether Walker’s alias method
has optimal space usage, or whether there are data struc-
tures for sampling from a discrete distribution that use less
space. Unfortunately, as most sampling algorithms and data
structures, the alias method is usually analyzed on the Real
RAM model, where a memory cell may store an arbitrary
real number, and any reasonable operation on two reals can
be performed in constant time. In this model, an arbitrary
amount of information can be stored in each memory cell.
Hence, this model is not suited for analyzing space usage. In
practice, where one usually implements algorithms and data
structures analyzed on the Real RAM using double precision
approximations, the space usage of the alias method would
be O(nw̃), where w̃ is the bit length of a double precision
floating point number. More precisely, it uses n integers
and n doubles. However, an algorithm or data structure
that is exact on the Real RAM usually incurs some error
when run on a physical computer, so that an analysis on
a bounded precision machine model would be preferable to
increase practicality.

We suggest to use the standard Word RAM model for this
purpose, augmented by functionality for generating random
numbers. In this model, a memory cell stores a w-bit in-
teger (called word) and usual operations on two words can
be performed in constant time. This includes bit level op-
erations, such as ∧, ∨, ¬, and arithmetic operations, like +,
·, and integer division. For sampling we need an additional
operation Rand that produces a random word in constant
time,1 i.e., we assume to be able to draw w random bits in
constant time. Thus, we can only draw a random number
from a range {1, . . . , 2`}, ` = O(w), in constant worst-case
time, i.e., from a range with size a power of 2. For all other
ranges {1, . . . , k}, k ∈ N, we can still uniformly sample from

it in O(1) expected time when k 6 2O(w), e.g., by sampling
in the range {1, . . . , 2`}, where 2` > k is the next power of 2,
and rejecting as long as the sampled number does not lie in
the goal range {1, . . . , k}. We make the usual assumption
that w = Ω(lgn), to be able to store pointers to all input
elements.

Our sampling problem is the following on the Word RAM:
The input consists of non-negative integers x1, . . . , xn, each
of w bits. Build a data structure that supports an operation
Draw, which returns i ∈ {1, . . . , n} with probability pi =
xi/S, where S :=

∑
j xj . All invocations of Draw shall be

independent.

Is Walker’s alias method efficient on the Word RAM? The
biggest potential obstacle to that would be the computa-
tion with numbers of too long bit length. However, closely
looking at the Real RAM version of the data structure one
can see that all produced numbers are either integers less
than n or rationals with denominator nS (more precisely,
lcm(n, S)), so they fit in O(1) words and can be processed
in constant time. Thus, the data structure can easily be
adapted and has preprocessing time O(n). There is one
drawback: We need to draw uniform random numbers in
{1, . . . , n} and in {1, . . . , nS}, which can only be done in
O(1) expected time. Thus, Walker’s alias method degen-
erates to O(1) expected query time, which is theoretically
unappealing, but makes not much difference for practice. In
any case, no guarantee on worst-case query time is possible
for our Word RAM model, as any probability we can gen-
erate in a bounded number of steps has as denominator a
power of 2, but n and S are not bound to be powers of 2.

Working this out, on the Word RAM Walker’s alias method
needs Θ(n) preprocessing time, Θ(1) expected query time,
and n(w+2 lgn+o(1)) bits of space. Thus the data structure
has a space overhead of more than 2n lgn bits compared to
just storing the input numbers. Using the terminology from
the world of succinct data structures, we say that the data
structure has redundancy 2n lgn+o(n) bits. Note that these
are roughly the same requirements as for the Real RAM
version of the data structure used with double precision ap-
proximations, only that now this is an exact data structure
on a bounded precision machine.

1If we instead can only generate a random bit in constant
time, then we can clearly simulate Rand in time O(w).
However, even for uniform sampling we need Ω(lgn) ran-
dom bits, so that we cannot hope for a better query time
than Θ(lgn) in this case.

It is now a well-defined question to ask whether the space
usage of Walker’s alias method is optimal: On the Word
RAM, is there a data structure for sampling from a discrete
distribution with redundancy less than 2n lgn+o(n) bits? Of
course, such a data structure should use the optimal O(n)
preprocessing time and O(1) expected query time, if possi-
ble.

In this paper we answer this question in two ways, in both
cases improving upon Walker’s data structure. First, we
consider the systematic case, in which the input is read-
only and also available at query time. This is a reasonable
model if the input numbers may not be overwritten by the
data structure, or if the input numbers are available only
implicitly, i.e., we can afford to recompute each xi when
needed, but we cannot afford to store each xi explicitly. In
this case we present a data structure that uses O(n + w)
redundant bits. In fact, Walker’s classic data structure is
not systematic, so that all n(w + 2 lgn + o(1)) bits stored
in his solution are redundant, i.e., we improve by a factor of
Θ(w) = Ω(lgn) over the alias method. We then generalize
this result to further reduce the redundancy, at the cost of
increasing the query time, yielding the following trade-off.

Theorem 1.1. For any 1 6 r 6 n we can build a system-
atic data structure for sampling from a discrete distribution
having r +O(w) bits of redundancy, O(n/r) expected query
time, and O(n) preprocessing time.

The question arises of whether one could save more than a
factor of Θ(w) while still having O(1) expected query time,
or, more generally, whether one can reduce the product rt
further, where r is the redundancy and t the expected query
time. With the following theorem we prove that this is im-
possible, showing optimality of the trade-off between redun-
dancy and query time in Theorem 1.1.

Theorem 1.2. Consider any systematic data structure for
sampling from a discrete distribution, having redundancy r
and supporting Draw in expected query time t. Then r · t =
Ω(n).

This shows that Theorem 1.1 is asymptotically optimal with
respect to all three aspects: space usage, query time, and
preprocessing time (for the latter see [1], this proof also
works in the Word RAM model).

So far we considered the systematic case, in which the input
is read-only and always available. In the non-systematic
case, on the other hand, the preprocessing is given access
to the input, but the query algorithm is not. Thus, the
preprocessing has to encode the input in some way in the
data structure it outputs (possibly just storing the input
without modifications). It is not immediately clear that such
a data structure even needs to use nw bits of space, since two
different inputs x1, . . . , xn and x̂1, . . . , x̂n represent the same
distribution if there exists some α > 0 such that xi = αx̂i for
all i. In fact, answering range minimum queries in an array
of n ordered elements (given two indices i and j, return the
index of the minimum element in the subarray from index

i through j) can be done using only O(n) bits, although
one might first expect that Ω(n lgn) bits are necessary, see
e.g. [5]. However, we prove in Section 5 that such savings
are not possible for sampling. More specifically, we prove
the following result:

Theorem 1.3. Any non-systematic data structure for sam-
pling from a discrete distribution must use at least nw bits
of space for any 1 6 w = o(n) and sufficiently large n.

Thus, in contrast to range minimum queries, it is not pos-
sible to save even a single bit. As mentioned, Walker’s
data structure is non-systematic and has space usage n(w+
2 lgn+ o(1)) bits, i.e., redundancy 2n lgn+ o(n) when ana-
lyzed as a non-systematic data structure. Very surprisingly,
we show that it is possible to vastly improve over this bound
in the non-systematic case. More precisely, we show that we
need only 1 redundant bit to achieve optimal query time and
preprocessing time!

Theorem 1.4. In the non-systematic case we can build a
data structure for sampling from a discrete distribution that
needs nw + 1 bits of space, O(1) expected query time, and
O(n) preprocessing time.

This is an astonishing result since it is the strongest obtained
separation between the systematic and non-systematic case
for any data structure problem: For redundancy r and ex-
pected query time t the optimal bound is r · t = Θ(n) in
the systematic case, while we have r · t = O(1) in the
non-systematic case. The largest previous separation was
obtained for Rank and Select queries, where any sys-
tematic data structure must satisfy r = Ω((n/t) lg t) [8],
while there exist non-systematic data structures achieving
r = Θ(n/(lgn/t)t) + Õ(n3/4) [16].

Finally, we believe that our data structures are not only
interesting from a theoretical point of view, but may also be
of practical use. In fact, our systematic solution with O(1)
query time is simpler than Walker’s alias method, while our
non-systematic solution with just 1 redundant bit is only
slightly more involved. Furthermore, the constants hidden
in the O-notations are all small.

1.1 Related Work

Sampling. The majority of the literature on sampling uses
the Real RAM model (see, e.g., [3]). Such algorithms and
data structures are, in general, not exact on bounded preci-
sion machines and cannot be analyzed with respect to space
usage.

In a seminal work Knuth and Yao [13] initiated the study of
the sampling power of various restricted devices, like finite-
state machines. They devise algorithms trying to minimize
the use of random bits. However, they do not guarantee effi-
cient precomputation on general sequences of probabilities,
so that their results are incomparable to ours. These ideas
have been further developed in [6, 7, 21].

Moreover, there are articles examining generalizations of
the problem of sampling from a discrete distribution: The
dynamic version of the problem, where the input numbers
x1, . . . , xn may change over time, has been investigated in [10,
15]. In another direction, the special case of sorted inputs
x1 > . . . > xn can be solved with a reduced preprocessing
time of O(lgn), as has been shown in [1]. The same pa-
per also presents a generalization to sampling subsets. All
of these papers only achieve O(1) expected sampling time,
even on the Real RAM model, in contrast to Walker’s alias
method.

Succinct Data Structures. In the field of succinct data
structures, the focus is on designing data structures that
have space requirements as close to the information theo-
retic minimum as possible, while still answering queries ef-
ficiently. Here the space usage of a data structure is mea-
sured in the additive number of redundant bits used com-
pared to the information theoretic minimum. As mentioned,
previous work has focused on two types of data structures
called systematic and non-systematic. Some of the most
basic problems in the field include range minimum queries,
Rank and Select. The systematic case is well understood
for all three problems, with tight bounds for Rank and Se-
lect dating back to Raman et al. [19] and Golynski [8]. For
constant query time, the redundancy needed for these two
problems is Θ(n lg lgn/ lgn). For range minimum, Brodal
et al. [2] proved that any systematic data structure with re-
dundancy r must have worst case query time t = Ω(n/r).
They complemented this lower bound with a data structure
matching the entire trade-off curve.

The strongest separation between the systematic and non-
systematic case had been limited, until somewhat recently,
to a mere lgn factor in the redundancy for constant query
time data structures, see e.g. [9]. In fact, it had been gen-
erally believed that a stronger separation would not be pos-
sible for problems such as Rank and Select. This belief
was disproved in the seminal paper of Pǎtraşcu [16]. Here
Pǎtraşcu demonstrated an exponential separation between
the two cases by obtaining non-systematic Rank and Se-
lect data structures with redundancy r = Θ(n/(lgn/t)t) +

Õ(n3/4). Observe that the redundancy goes down expo-
nentially fast with t and that redundancy O(n/ lgc n) is
possible in constant query time for any constant c > 0.
Reducing the redundancy all the way to a constant while
maintaining constant query time, as we do for our problem,
was, however, proved impossible by Pǎtraşcu and Viola [17].
More specifically, they proved a redundancy lower bound of
r > n/(lgn)O(t), thus almost matching the upper bound of

Pǎtraşcu, except when t > lg1−o(1) n.

Finally, we mention an interesting problem for which ex-
tremely low redundancy and constant query time has been
achieved before this work: The input to this problem con-
sists of an array of n trits, i.e., numbers in {0, 1, 2}, and
the goal is to represent the array in as close to dn lg 3e bits
as possible, such that each entry can be retrieved efficiently.
For this problem, Dodis et al. [4] showed that constant query
time can be achieved with a constant number of input de-
pendent redundant bits plus O(lg2 n) precomputed bits de-
pending only on n and the word size. From a separation

point of view, this problem is, however, not interesting, as
the problem makes no sense in the systematic setting.

1.2 Outline
In Section 2, we present our systematic data structures. In
Section 3, we then demonstrate that it is possible to do much
better in the non-systematic case. In Section 4, we comple-
ment our systematic data structures with a matching lower
bound. Finally, in Section 5, we prove a lower bound on the
amount of bits needed to represent an input distribution.

2. SAMPLING WITH READ-ONLY INPUT
In this section, we present a data structure that supports
sampling from a discrete distribution if the input is read-
only, i.e., in the systematic case. We achieve any desired re-
dundancy of r+O(w) bits with expected query time O(n/r)
and optimal preprocessing time O(n).

First, in the next section, we present a novel and practical
data structure that uses O(n lgn+w) redundant bits, O(1)
expected query time, and O(n) preprocessing time. Then,
in Section 2.2, we modify it to use only O(n + w) redun-
dant bits. In Section 2.3, we show how to get any smaller
redundancy while increasing query time.

2.1 Redundancy ofO(n lgn+ w)

Preprocessing. First, we compute S =
∑

i xi and store it
usingO(w) bits. Additionally, we store a sorted array A that
contains numbers in [n] = {1, . . . , n}, namely, A contains,
for each index i, the number i exactly bnxi/Sc + 1 times.
This finishes space usage.

Observe that A has size at most 2n, since we have

|A| =
∑
i

(⌊nxi
S

⌋
+ 1
)
6
∑
i

(nxi
S

+ 1
)

=
nS

S
+ n = 2n.

Moreover, A has entries in [n], so that we can store it using
O(n lgn) bits. Note that A can easily be constructed in time
O(n).

Sampling. Intuitively, if we return the value A[k] for a uni-
form random k ∈ {1, . . . , |A|}, then this is close to sampling
from the input distribution. We can make this into an ex-
act sampling method with a slight modification, using the
rejection method (see [3]) as follows.

1. Pick a uniformly random k ∈ {1, . . . , |A|}.

2. Rejection: If k = 1 or A[k − 1] 6= A[k] then with
probability 1− frac(nxA[k]/S) goto step 1.

3. Return A[k].

Here, frac(x) = x−bxc is the fractional part of x. Note that
in step 2 we check whether k is the first occurrence of A[k]
in A. If so, with some probability we throw away k and go
to step 1 again, i.e., there is an implicit loop.

Let i ∈ [n]. What is the probability qi of returning i in the
first iteration of the implicit loop? There are bnxi/Sc + 1

occurrences of i in A. If we randomly pick k to be the first
occurrence of i in A, then we return i only with probability
frac(nxi/S) and reject it otherwise. If we pick k to be any
other occurrence of i, then we return i right away. Thus, we
have

qi =
bnxi/Sc+ frac(nxi/S)

|A| =
nxi
S|A| .

Let Q =
∑

j qj denote the probability of returning anything
in the first iteration of the implicit loop, i.e., the probability
of leaving the loop in the first iteration. The total probabil-
ity of sampling i with the above method is∑

t>0

qi(1−Q)t =
nxi
S|A|

∑
t>0

(1−Q)t.

On the right hand side, the only term dependent on i is xi.
Hence, the probability of sampling i is proportional to xi.
Since we only sample numbers from [n], this implies that
the probability of sampling i is xi/S, proving that the above
method is indeed an exact sampling algorithm.

To show that it is also fast, note that the probability of
leaving the loop in the first iteration is

Q =
∑
j

qj =
∑
j

nxj
S|A| =

n

|A| >
1

2
.

Hence, the expected number of iterations is constant. In
every iteration we sample uniform numbers in [n] and [S],
which can be done in O(1) expected time, and, in particu-
lar, in time independent of the sampled number. Thus, the
above sampling method needs in total O(1) expected time.

2.2 Redundancy ofO(n+ w)
A simple encoding of A as in the last section is very wasteful.
We show how to reduce the redundancy to O(n + w) bits.
For this, we construct a bit array B of length |A|. The entry
B[k] is 1 if k is the first occurrence of A[k] in A, and 0
otherwise. We store B in a data structure supporting Rank
queries, where RankB(k) :=

∑k
j=1B[k] (with summation

over the integers). Using, e.g., [11], Rank queries can be
answered in constant time using a data structure of size
(1 + o(1))|B| = O(n) bits.

Observe that we have RankB(k) = A[k]. Hence, using the
Rank data structure for B, we can simulate the query algo-
rithm from the last section and whenever it reads an array
entry A[k] we instead query RankB(k). Since we only need
to store S and the Rank data structure for B, this reduces
the redundancy to O(n+ w) bits.

2.3 Arbitrary Redundancy
We show that we can further reduce the redundancy to
O(n/k + w) bits at the cost of increasing the query time
to O(k) for any integer k > 1. Choosing k = cn/r for a
sufficiently large constant c > 0 implies Theorem 1.1.

We will partition [n] into blocks of k elements. First, we
show how to sample the block that contains the final sample.
Then we show how to sample inside a block.

For ease of readability, assume that k divides n. On input
x1, . . . , xn, consider the auxiliary instance y1, . . . , ym, where

m = n/k and yi =
∑k

j=1 xik+j . We first show how to sample
with respect to y1, . . . , ym. For this we make use of the data
structure from the last section. Since we are not given input
y1, . . . , ym, but x1, . . . , xn, we have to simulate this data
structure and whenever it reads an input number yi, we
compute yi on the fly from the input x1, . . . , xn. This incurs
an additional factor of k on both preprocessing and query
time, totaling in O(mk) = O(n) preprocessing and O(k)
query time. Moreover, we need only O(m+w) = O(n/k+w)
bits of redundancy.

Next, given i as sampled above, we show how to sample
j ∈ {ik + 1, . . . , (i + 1)k} =: J with probability xj/yi. To
do so, we use a simple linear time sampling algorithm (see,
e.g., [12, p. 120]): First we compute yi =

∑
j∈J xj . Then we

sample a uniform random integer R ∈ {1, . . . , yi}. Finally,
via linear search we determine the smallest index ` such that∑`

j=1 xik+j > R and return ik + `. This needs O(k) query
time, and no preprocessing or redundancy.

Putting both parts together, for any index j there is a block i
with j ∈ {ik+1, . . . , (i+1)k}. We have probability yi of sam-
pling i in the first part and probability xj/yi of sampling j
in the second part. In total, this yields a probability of xj
for sampling j, so we indeed described an exact sampling
algorithm. We get the desired preprocessing time O(n), ex-
pected query time O(k), and redundancy O(n/k + w).

3. ONE ADDITIONAL BIT
In this section, we show that there is a data structure for
sampling from a discrete distribution with redundancy 1, if
the input is not read-only, i.e., in the non-systematic case.
More precisely, we construct a data structure using nw + 1
bits of space in total that supports the operation Draw in
O(1) expected time and can be built in O(n) preprocessing
time. Since we prove in Section 5 that it takes at least nw
bits to describe the input, this corresponds to a redundancy
of only 1 bit.

The First Bit. Let c be a sufficiently large constant integer
to be fixed later. We start the description of the data struc-
ture by explaining the usage of the first bit of memory: In
this bit we store whether we have∑

i

xi > 2w−c−1n. (*)

Note that this can be computed in O(n) time preprocessing.
The use of the rest of the bits depends on this first bit; we
describe both cases in the next two paragraphs.

Large Sum. Assume that (*) holds, i.e., the first bit that
we have stored is 1. Then the bound xi 6 2w for all i is
on average a very tight upper bound, which is the standard
situation to apply the rejection method (see [3]).

In this case, in the remaining nw bits we simply store the
plain input x1, . . . , xn. This completes the description of
space usage and preprocessing.

To perform a Draw operation we proceed as follows.

1. Pick a uniformly random number i ∈ [n].

2. Rejection: With probability 1− xi/2w goto 1.

3. Return i.

The analysis of this sampling method is similar to the analy-
sis in Section 2.1. Note that in step 2 with some probability
we go back to step 1, so there is an implicit loop. The prob-
ability of returning i ∈ [n] in the first iteration of this loop
is xi

2wn
. Let Q denote the probability of returning anything

in the first iteration of the implicit loop, i.e., the probabil-
ity of leaving the loop in the first iteration. Then the total
probability of sampling i with above method is∑

t>0

xi
2wn

(1−Q)t.

Note that here the only term dependent on i is xi. Hence,
the probability of sampling i is proportional to xi, so it has
to be xi/S, and we indeed have an exact sampling method.

To bound the method’s expected runtime, consider the prob-
ability Q in more detail. We have

Q =
∑
i

xi
2wn

(∗)
> 2−c−1 = Ω(1).

Hence, the expected number of iterations of the implicit loop
is bounded by a constant. In every iteration we sample a
random number in [n] and in [2w], which can be done in
O(1) expected time, and, in particular, in time independent
of the sampled number. Hence, in total the above method
uses O(1) expected time.

Small Sum. Assume that we do not have (*), i.e.,
∑

i xi <
2w−c−1n and the first bit is 0. The intuition of how to
proceed is as follows. Conditioned on

∑
i xi < 2w−c−1n, the

entropy of the input is much less than nw. This allows to
compress the input to nw−Ω(n) bits, while still guaranteeing
efficient access to each input number xi. Now we use the
algorithm of Section 2, which generates O(n) redundant bits
and performs a Draw operation in O(1) expected time, if it
is given access to the input numbers. The total space usage
of writing down the compressed input and the redundant
bits is then nw−Ω(n)+O(n) bits, which is at most nw bits
after adjusting constants.

In the following, we describe the details of the compression
step. Let I := {i ∈ [n] | xi > 2w−c}. We store x1, . . . , xn
in order, using w bits if i ∈ I, and only the w − c least
significant bits otherwise. This yields a bit string B. In
order to read a value xi from B we need to know where
its encoding begins in B, and how many bits it uses. We
achieve this by storing (the characteristic bit vector of) I
in a data structure supporting Rank queries in O(1) query
time using O(n) bits of space (using, e.g., [11]). Using this
data, any value xi can be read in constant time: Given i, we
compute k = RankI(i−1). Then there are k input numbers
encoded with w bits and i − 1 − k input numbers encoded
with w−c bits preceding xi. Hence, the encoding of xi starts
at position kw + (i − 1 − k)(w − c). Moreover, the length
of its encoding is w, if i ∈ I (iff RankI(i) > RankI(i− 1)),
and w − c, otherwise.

Since this compression of the input allows us to read any
input value in constant time, we can simulate the algorithm
from Section 2 on the compressed input, decoding xi when-
ever the algorithm reads it. This produces additional data
of O(n) bits and allows us to sample from the input distri-
bution in O(1) expected time.

In total the compressed input and the auxiliary data need
nw − (n− |I|)c+O(n) bits. Since we are in the case where∑

i xi < 2w−c−1n and every i ∈ I has xi > 2w−c, we can
bound |I| 6 n/2. Thus, the total number of bits is at most
nw − n

2
c + O(n). For sufficiently large c, this is less than

nw.

In both cases we need O(n) preprocessing, O(1) query time,
and at most nw+ 1 bits of storage, which finishes the proof
of Theorem 1.4.

4. LOWER BOUNDS FOR READ-ONLY IN-
PUTS

In this section, we prove a tight lower bound on the trade-off
between redundancy and expected query time for read-only
data structures for sampling from a discrete distribution.
Throughout the section, we assume the availability of such a
data structure using r redundant bits and supporting Draw
in expected time t.

Hard Distribution. For the proof, we consider a hard dis-
tribution over input numbers. Let B > 1 be a parameter to
be fixed later and assume B divides n. We draw a random
input X = X1, . . . , Xn in the following manner: Partition
the indices {1, . . . , n} into B consecutive groups of n/B in-
dices each. For each group, select a uniform random index j
in the group and let the corresponding input number Xj

have the value 1. For all other indices in the group, we
let the corresponding input number store the value 0. This
constitutes the hard input distribution.

As a technical remark regarding our input distribution, note
that the previous work on systematic Rank and Select
structures allows access to multiple input elements by as-
suming the input is packed in machine words. Even though
our hard distribution uses only 0’s and 1’s, we assume that
the data structure may only access a single input number in
one read operation. We note that this is a completely valid
assumption, since we could just replace all 1’s with 2w − 1
(or some other very large number) to enforce this restriction.
Also, assuming that only one input number can be accessed
with one read operation is more appropriate for situations,
in which the input numbers are given implicitly, i.e., have
to be computed when requested. Finally, we note that the
tight lower bound for range minimum by Brodal et al. [2]
also assumes that only one input element may be read in
one operation.

For an intuition on why the above input distribution is hard,
think of B as being a sufficiently large constant times r.
Running Draw on such an input must return an index j
for which Xj = 1. Furthermore, the index returned is uni-
formly random among the indices having the value 1. Thus,
the Draw operation must find the location of a 1 inside a

random block. Since there are so few redundant bits, we
have less than 1 bit of information about each block on av-
erage, thus the only way to locate a 1 inside a block is to
perform a linear scan, costing Ω(n/B) = Ω(n/r) time. We
prove that this intuition is correct in the rest of the section.

Note that

H(X) = B lg(n/B)

bits, where H(·) denotes binary Shannon entropy. This
is easily seen since X contains B 1’s, each uniformly dis-
tributed inside a range of n/B indices.

An Encoding Proof. We prove our lower bound using an
encoding argument. More specifically, we show that if a
sampling data structures exists that is too efficient in terms
of redundancy r and expected query time t, then we can
use this data structure to encode (and decode) the random
input X in less than H(X) bits in expectation. This is an
information theoretic contradiction.

The basic idea in the encoding procedure is to implement
the claimed data structure on the input X and then run
Draw for k = B/2 times. We will then write down the in-
put numbers Xj that the data structure reads during these
executions along with the redundant bits. This will (essen-
tially) be enough to recover the entire input X and thus we
derive a contradiction if these numbers Xj and the redun-
dant bits can be described in much less than H(X) bits.
Since the number of read operations depends on the query
time, we derive lower bounds on the trade-off between the
redundant bits and the query time.

As a last technical detail before we present the encoding
and decoding procedures, we assume that on each invoca-
tion of Draw, the sampling data structure is given access
to a finite stream of uniform random bits that it uses to
determine the index to return. Thus, if we fix the stream
of random bits given to the data structure, the latter be-
comes completely deterministic and always returns the same
index on the same input. The encoding and decoding proce-
dures will share such random streams, thus they both know
what “randomness” was used by the data structure when
performing the k Draws. More formally, let R1, . . . , Rk be
k finite sequences of uniform random bits. Both the en-
coding and decoding procedure are given access to these
sequences. Since X is independent of R1, . . . , Rk, we have
H(X | R1 · · ·Rk) = H(X), i.e., we still derive a contradic-
tion if the encoding uses less than H(X) bits in expectation
when the encoder and decoder share R1, . . . , Rk. We are
finally ready to present the encoding procedure.

Encoding Procedure. Upon receiving the input numbers
X = X1, . . . , Xn, we first implement the claimed data struc-
ture on X. Then we run Draw for k times, using Ri as the
source of randomness in the i’th invocation. We now do the
following:

1. We write down the r redundant bits stored by the data
structure on input X.

2. Now construct an initially empty set of indices C and
an initially empty string z. For i = 1, . . . , k we exam-
ine the input numbers Xj read during the i’th Draw
operation. For each such number Xj , in the order in
which they are read, we first check whether j ∈ C.
If not, we add j to C and append the value Xj (just
a bit) to z. Otherwise, i.e., if j is already in C, we
simply continue with the next number read. For each
i = 1, . . . , k, if the query algorithm is about to append
the (4t + 1)’st bit to z, we terminate the procedure
for that i and continue with the next Draw. Also,
if the i’th Draw operation terminates before 4t bits
have been appended to z, we pad with 0s such that
a total of 4t bits are always appended to z. Letting
Y denote the number of 1s in z, the next part of the
encoding consists of lgB bits specifying Y , followed
by lg

(
4tk
Y

)
bits specifying z (there are

(
4tk
Y

)
strings of

length |z| = 4tk having Y 1s).

We note that the reason why we maintain C and only
encode each Xj at most once, is that this forces Y to be
proportional to the number of distinct 1s that we have
seen. Since each distinct 1 reveals much information
about X, this will eventually give our contradiction.

3. Finally, collect the set D containing all indices i for
which Xi = 1 and where either i ∈ C (it was read
by one of the Draws), or the corresponding index was
returned as the result of one of the Draws that termi-
nated without appending more than 4t bits to z dur-
ing step 2 (the data structure might return an index
without reading the corresponding input number). For
each j = 0, . . . , B−1 (in this order), let ij be the index
of the 1 in X which is stored in the j’th group (num-
bers Xj(n/B), . . . , X(j+1)(n/B)−1). If ij is not contained
inD, we write down the offset of ij within its group, i.e.
we write down the value ij − j(n/B). Since |D| > Y ,
this part of the encoding costs at most (B−Y) lg(n/B)
bits.

Before analysing the expected size of the encoding, we present
the decoding procedure:

Decoding Procedure. Recall we are given access to the
random streams R1, . . . , Rk during the decoding, i.e., we
conditioned on these variables. To recover X from the above
encoding, we now do the following:

1. First initialize an empty set C̄, which eventually will
contain pairs (i,∆i), where i is an index into X =
X1, . . . , Xn and ∆i is the value stored at that index, i.e.
∆i = Xi. Now for i = 1, . . . , k, start running the query
procedure for Draw using Ri as the source of random-
ness. While running the i’th Draw, we maintain a
pointer pi into the string z which was constructed in
step 2 of the encoding procedure. When starting the
i’th Draw, pi points to the first bit that was appended
by the i’th Draw during step 2 of the encoding pro-
cedure. This bit is exactly the ((i − 1)4t)’th bit of z
(counting from 0).

When running the i’th Draw operation, the query pro-
cedure starts by requesting either some of the redun-

dant bits or some input number. If it requests some
of the redundant bits, we have those bits immediately
from step 1 of the encoding procedure and can con-
tinue with the next step of the Draw procedure. If
on the other hand it requests the number Xj , we first
check whether there is a pair (j,∆j) in C̄ for some ∆j .
If so, ∆j equals Xj and we can continue the procedure.
If not, we know from step 2 of the encoding procedure
that the bit pointed to by pi stores the value Xj and
we can again continue the procedure after increment-
ing pi ← pi + 1 and adding the pair (j,Xj) to C̄. If at
any step we are about to increment pi for the (4t+1)’st
time, we simply abandon the i’th Draw and continue
with the next. Clearly these k invocations of Draw
allow us to recover the set D.

2. From the set D recovered above, we can deduce the
groups in X for which the index of the corresponding 1
is not in D. It finally follows that we can recover X
from D and the bits written down during step 3 of the
encoding procedure.

What remains is to analyse the size of the encoding and
derive the lower bound.

Analysis. The number of bits in the encoding, denoted
by K, is precisely

K = r + lgB + lg

(
4tk

Y

)
+ (B − Y) lg(n/B)

6 r + lgB + Y lg(4etk/Y) + (B − Y) lg(n/B)

= H(X) + r + lgB − Y lg(nY/4etkB)

= H(X) + r + lgB − Y lg(nY/2etB2).

The only random variable in the above is Y and since

Y lg(nY/2etB2) = Y lg Y + Y lg(n/2etB2)

is convex, we get from Jensen’s inequality that

E[K] 6 H(X) + r + lgB − E[Y] lg(nE[Y]/2etB2).

Now observe that each of the k = B/2 calls to Draw returns
an element not returned in any of the other Draws with
probability at least 1/2. Furthermore, we get from Markov’s
inequality that each Draw terminates within the first 4t
steps with probability at least 3/4. From a union bound, we
conclude E[Y] > B/8. Inserting this in the above, we have

E[K] 6 H(X) + r + lgB −B lg(n/16etB)/8.

Choosing B = 8r, we get (using r + lg(8r) 6 4r):

E[K] 6 H(X) + 4r − r lg(n/25etr),

from which we conclude that the claimed data structure
must satisfy

4r > r lg(n/25etr)⇒
4 + lg(25e) > lg(n/tr)⇒

tr = Ω(n).

This completes the proof of Theorem 1.2.

5. SPACE LOWER BOUND
In this section, we prove that the information theoretic min-
imum number of bits needed to sample from a discrete dis-
tribution is nw bits for any 1 6 w = o(n) and n suffi-
ciently large. For this, observe that two inputs x1, . . . , xn
and x̂1, . . . , x̂n represent the same probability distribution
only if there exists a value α > 0 such that xi = αx̂i for all
1 6 i 6 n. We want to show that there are not too many
pairs of inputs for which this is true. To prove this, define
an input set of w-bit integers x1, . . . , xn to be irreducible if
for all 0 < α < 1, there is at least one i ∈ {1, . . . , n} for
which αxi is not an integer. Clearly, any two distinct and
irreducible inputs represent two distinct probability distri-
butions. First, we prove that the following condition is suf-
ficient to guarantee irreducibility:

Lemma 5.1. An input set of w-bit integers x1, . . . , xn is
irreducible if there are at least two distinct primes among
x1, . . . , xn.

Proof. Assume xi = p and xj = q for some i 6= j and
some primes p 6= q. Assume also that x1, . . . , xn is not
irreducible. This implies the existence of a value 0 < α < 1
such that αp = cp and αq = cq for some integers cp, cq > 1.
Now since α < 1, we have cp < p and hence p is not a prime
factor in cp. But cq = αq = cpq/p and it follows that p is
not a prime factor in cpq, thus cq cannot be integer, i.e., a
contradiction.

For the remaining part of the proof, consider drawing each xi
as a uniform random integer in [2w]. The probability that
a particular xi is prime is Ω(1/w). Thus, for 2 6 w = o(n)
and any sufficiently large n, the number of distinct primes
in the randomly chosen x1, . . . , xn is at least two with high
probability, certainly with probability at least 3/4. Since
we chose x1, . . . , xn uniformly at random, we conclude that
at least (3/4)2nw of the 2nw possible inputs are irreducible.
Therefore, any sampling data structure must use at least

dlg ((3/4)2nw)e = nw

bits of space. In the case w = 1, the result follows immedi-
ately.

Acknowledgment
The authors wish to thank the China Theory Week 2012
Workshop for initiating the collaboration leading to the re-
sults of this paper.

References
[1] K. Bringmann and K. Panagiotou. Efficient sampling

methods for discrete distributions. In Proc. 39th In-
ternational Colloquium on Automata, Languages, and
Programming (ICALP’12), pages 133–144. Springer,
2012.

[2] G. S. Brodal, P. Davoodi, and S. S. Rao. On space
efficient two dimensional range minimum data struc-
tures. In Proc. 18th Annual European Symposium on
Algorithms (ESA’10), volume 6347 of Lecture Notes in
Computer Science, pages 171–182. Springer, 2010.

[3] L. Devroye. Nonuniform random variate generation.
Springer, New York, 1986.

[4] Y. Dodis, M. Pǎtraşcu, and M. Thorup. Changing base
without losing space. In Proc. 42nd ACM Symposium
on Theory of Computing (STOC’10), pages 593–602,
2010.

[5] J. Fischer and V. Heun. A new succinct represen-
tation of RMQ-information and improvements in the
enhanced suffix array. In Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, volume
4614 of Lecture Notes in Computer Science, pages 459–
470. Springer, 2007.

[6] P. Flajolet, M. Pelletier, and M. Soria. On buffon ma-
chines and numbers. In Proc. 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’11), pages
172–183. SIAM, 2011.

[7] P. Flajolet and N. Saheb. The complexity of gener-
ating an exponentially distributed variate. Journal of
Algorithms, 7(4):463–488, 1986.

[8] A. Golynski. Optimal lower bounds for rank and select
indexes. Theoretical Computer Science, 387(3):348–359,
Nov. 2007.

[9] A. Golynski, R. Raman, and S. S. Rao. On the redun-
dancy of succinct data structures. In Proc. 11th Scan-
dinavian Workshop on Algorithm Theory (SWAT’08),
pages 148–159, 2008.

[10] T. Hagerup, K. Mehlhorn, and J. I. Munro. Main-
taining discrete probability distributions optimally. In
Proc. 20th International Colloquium on Automata,
Languages and Programming (ICALP’93), pages 253–
264. Springer, 1993.

[11] G. Jacobson. Space-efficient static trees and graphs. In
Proc. 30th Annual Symposium on Foundations of Com-
puter Science (FOCS’89), pages 549–554. IEEE Com-
puter Society, 1989.

[12] D. E. Knuth. The Art of Computer Programming. Vol.
2: Seminumerical Algorithms. Addison-Wesley Pub-
lishing Co., Reading, Mass., third edition, 2009.

[13] D. E. Knuth and A. C. Yao. The complexity of nonuni-
form random number generation. In Algorithms and
Complexity: New Directions and Recent Results, pages
357–428. Academic Press, 1976.

[14] R. A. Kronmal and A. V. Peterson. On the alias method
for generating random variables from a discrete dis-
tribution. The American Statistician, 33(4):214–218,
1979.

[15] Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic genera-
tion of discrete random variates. Theory of Computing
Systems, 36(4):329–358, 2003.

[16] M. Pǎtraşcu. Succincter. In Proc. 49th IEEE Sympo-
sium on Foundations of Computer Science (FOCS’08),
pages 305–313, 2008.

[17] M. Pǎtraşcu and E. Viola. Cell-probe lower bounds
for succinct partial sums. In Proc. 21st ACM-SIAM
Symposium on Discrete Algorithms (SODA’10), pages
117–122, 2010.

[18] M. Pătraşcu. Webdiarios de motoci-
cleta, sampling a discrete distribution.
http://infoweekly.blogspot.de/2011/09/follow-up-
sampling-discrete.html, 2011.

[19] R. Raman, V. Raman, and S. R. Satti. Succinct in-
dexable dictionaries with applications to encoding k-ary
trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4), 2007.

[20] A. J. Walker. New fast method for generating discrete
random numbers with arbitrary distributions. Elec-
tronic Letters, 10:127–128, 1974.

[21] A. C. Yao. Context-free grammars and random num-
ber generation. In Combinatorial algorithms on words,
volume 12, pages 357–361. Springer, 1985.

