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Abstract. The internal diffusion limited aggregation (IDLA) process
places n particles on the two dimensional integer grid. The first particle
is placed on the origin; every subsequent particle starts at the origin
and performs an unbiased random walk until it reaches an unoccupied
position.
In this work we study the computational complexity of determining the
subset that is generated after n particles have been placed. We develop
the first algorithm that provably outperforms the naive step-by-step sim-
ulation of all particles. Particularly, our algorithm has a running time
of O(n log2 n) and a sublinear space requirement of O(n1/2 logn), both
in expectation and with high probability. In contrast to some speedups
proposed for similar models in the physics community, our algorithm
samples from the exact distribution.
To simulate a single particle fast we have to develop techniques for com-
bining multiple steps of a random walk to large jumps without hitting a
forbidden set of grid points. These techniques might be of independent
interest for speeding up other problems based on random walks.

1 Introduction

Internal diffusion limited aggregation (IDLA) is a random process that places n
particles on the two-dimensional integer grid Z2. Let A(i) ⊂ Z2 denote the set
of occupied grid points after placing i particles. The first particle is placed on
the origin, i.e., A(1) = {(0, 0)}. From there on, A(i+ 1) is constructed from A(i)
by adding the first grid point in Z2 \A(i) that is reached by a random walk on
Z2 starting at the origin.

Particle diffusion processes are of considerable significance in various branches
of science. In fact, the IDLA process was introduced by Meakin and Deutch [15],
who used it as a model to describe the dynamics of certain chemical and phys-
ical processes like corrosion or the melting of a solid around a source of heat.
Since then, the study of the typical properties of A(n), and most prominently its
“shape,” has been the topic of many works. In particular, numerical simulations
in [15] indicated that the surface of A(n) is typically extremely smooth such
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that the fluctuations from a perfect circle are only of logarithmic order. Proving
this rigorously turned out to be a difficult and challenging mathematical prob-
lem, which was resolved only recently, after many attempts by several different
authors (see e.g. [6,13,2,1]), by Jerison, Levine and Sheffield [11].

In the present paper, we try to understand IDLA from a computational
perspective by giving an efficient algorithm for determining the set A(n). This
line of research is driven by the pursuit to get efficient algorithmic tools for coping
with random walks and by the wish to speed up models from physics. The latter
allows one to run large experiments and it might also save energy and money, as
experiments on simulated models are usually carried out on expensive clusters.
Moreover, understanding such models from a computational perspective might
add to their understanding in general.

Using the aforementioned results it is easy to see that a direct simulation
of every individual step for determining A(n) is likely to require a total time
of Ω(n2), i.e., time Ω(n) per particle. Indeed, since A(n) typically resembles a
perfect circle, it has a radius of order n1/2. Moreover, the random walk of a
particle can be viewed as a combination of two independent one-dimensional
random walks, one along the horizontal and one along the vertical axis. Thus,
if a particle is placed initially at the origin, one of these two random walks has
to travel a distance of order n1/2 in some direction in order to escape A(n). A
quadratic running time then follows immediately from the well-known fact that
a one-dimensional random walk of length ` in expectation only deviates Θ(`1/2)
hops from its initial position.

The computational complexity of determining A(n) was studied by Moore
and Machta [16]. Among other results they showed that the simulation of one
particle (given a string of random bits) is complete for the class CC, which is
the subset of P characterized by circuits that are composed of comparator gates
only. Moreover in [9], Friedrich and Levine give an algorithm that samples A(n).
They do not provide an analysis of the complexity (and it seems a quite difficult
task to do so), but their experiments indicate that it scales like O(n3/2), while
they inherently use space Ω(n).

In this paper we develop a time and space-efficient algorithm for determining
the set A(n). We present the first algorithm that provably improves upon the
“naive” step-by-step simulation of the particles.

Theorem 1. IDLA can be simulated in O(n log2 n) time and O(n1/2 log n) space,
both in expectation and with high probability5.

Our algorithm simulates all particles consecutively. It crucially uses that the
shape of A(n) is almost a perfect circle, as discussed above. Let the in-circle be
the largest circle centred at the origin that contains only occupied grid points. As
long as the current particle n+1 is within the in-circle of A(n), the random walk
will typically stay in A(n) for many steps. Specifically, if the current distance of
the particle to the in-circle of A(n) is d, then typically in the next Θ(d2) random
walk steps the particle will stay in A(n). We want to utilize this fact by combining

5 With probability 1−O(n−c) for a constant c > 0 that can be made arbitrary large.
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many steps to a single jump of the particle, without simulating all of these steps
explicitly. Building on this, we use drift analysis to show that typically O(log n)
such jumps are sufficient to simulate one particle. Intuitively, such a combination
of steps to a jump simply amounts to sampling the position of the particle after
T ≈ d2 steps, which can be done by sampling two binomial random variables
Bin(T, 12 ). However, there is an obstacle to this simple intuition: Within Θ(d2)
steps we leave A(n) with positive probability, so simply jumping to the outcome
of Θ(d2) steps necessarily introduces an error. As we want to design an exact
sampling algorithm, we have to overcome this hurdle.

We present a general framework that utilizes jumps to efficiently simulate
IDLA in Section 3. Different jump procedures are discussed in Section ??, and
our best jump procedure follows in Section 4.

2 Preliminaries

2.1 Notation

We denote by Bin(n, p) a binomial distribution with parameters n and p and by
log n the natural logarithm of n. For z = (x, y) ∈ Z2 we let |z| = (x2 + y2)1/2 be
its 2-norm. For z ∈ Z2 and r > 0 we define the ball with radius r around z as
Bz(r) :=

{
w ∈ Z2 | |z − w| ≤ r

}
. We write Γ (z) for the set of grid neighbors of

z ∈ Z2, and for an arbitrary set S ⊆ Z2 we write ∂S for the set of all position
that can be reached from S, i.e.

∂S :=
{
z ∈ Z2 \ S | Γ (z) ∩ S 6= ∅

}
and S̄ := S ∪ ∂S.

Whenever it is clear from the context, which particle we are simulating, we
will write A for A(i). For an IDLA shape A let rI = rI(A) and rO = rO(A) be
its in- and outradius (rounded for technical reasons), i.e.,

rI :=
⌊

min
x∈Z2\A

|x|
⌋

and rO :=
⌊

max
x∈A
|x|
⌋

+ 1.

Moreover, we say that B0(rI) is the in- and B0(rO) the out-circle of A.

2.2 The Shape of IDLA

Recently, Jerison, Levine and Sheffield proved a long open conjecture which
stated that A(n) = B0(

√
n/π)±O(log n) with high probability.

Theorem 2 (Theorem 1 in [11]). For every γ > 0 exists a constant α =
α(γ) <∞ such that for sufficiently large r

Pr
[
B0(r − α log r) ⊂ A(bπr2c) ⊂ B0(r + α log r)

]
≥ 1− r−γ . (1)

Additionally using rO ≤ n, this theorem implies that rO − rI = O(log n), both
in expectation and with high probability.
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2.3 Random Walks on Z and Z2

Let z = z0, z1, z2, . . . be a random walk starting in z ∈ Z2. Here we always
consider the standard random walk on Z2 that chooses each adjacent grid point
with probability 1/4. We write RWT (z) = zT for the outcome of a random
walk of length T starting in z and abbreviate RWT (0) = RWT . Note that
RWT (z) ∼ z + RWT .

We also reach each adjacent grid point with probability 1/4 by flipping two
coins c1, c2 ∈ {1,−1} and choosing the next position to be

z + c1 · (1/2, 1/2) + c2 · (−1/2, 1/2).

This yields the following reformulation of a 2-dimensional random walk as a lin-
ear combination of two independent 1-dimensional random walks. In particular,
the following Lemma allows us to quickly sample from RWT (if one can sample
binomial random variables quickly, we refer to the full version of this paper for
a thorough discussion of this assumption).

Lemma 1. Let z ∈ Z2 and T ∈ N. Let ST be the sum of T independent uniform
{1,−1} random variables, ST ∼ 2Bin(T, 1/2)− T , and let X,Y be independent
copies of ST . Then

RWT (z) ∼ z +X · (1/2, 1/2) + Y · (1/2,−1/2).

Note that our random walks are “bipartite” in the sense that in even timesteps
one can reach only the “even” positions of the grid {(x, y) ∈ Z2 | x + y ≡ 0 (
mod 2)}, and similarly for odd timesteps. We write z≡T x if z can be reached
from x by a walk of length ` ∈ N with ` ≡ T (mod 2).

The outcome of a one-dimensional random walk of length T has standard
deviation Θ(

√
T ). Intuitively, this implies that with at least constant probability

the two-dimensional random walk RWT is further than
√
T away from the origin.

Moreover, in any direction ξ the expected jump length is large.

Lemma 2. For any T ∈ N we have Pr[|RWT | ≥
√
T ] ≥ Ω(1).

Moreover, let τ be a symmetric stopping time, i.e., for all z ∈ Z2 we have
Pr[RWτ = z] = Pr[RWτ = z′] where z′ is obtained from z by rotating it by 90◦.
Then for any ξ ∈ R2 with |ξ| = 1 we have

E[|ξ ·RWτ |] = Ω(Pr[|RWτ | ≥
√
T ] ·
√
T ).

2.4 Drift Analysis

Let Ω be some state space, Yk ∈ Ω (k ∈ N) a stochastic process and g : Ω → R≥0
a function on Yk. Let the hitting time τ be the smallest k such that g(Yk) = 0.
We say that g(Yk) has an additive drift of at least ε if for all 0 ≤ k < τ

E [g(Yk+1)− g(Yk) | Yk] < −ε. (2)

The following theorem bounds the expected hitting time by the inverse of the
additive drift.

Theorem 3 ([10]). In the situation of this section we have E[τ ] ≤ g(Y0)
ε .
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3 A General Framework

The main idea of our algorithms is to combine many steps of a particle’s random
walk to a jump as long as the current particle n+1 is in the in-circle of A = A(n).
In this section, we first formalize the notion of a jump. After that we provide a
framework that yields an IDLA simulation algorithm for any given jump proce-
dure. Throughout this paper a step refers to a single step in a particle’s random
walk and a jump refers to several steps at once.

3.1 The Concept of a Jump

Ideally, a jump does multiple steps of a random walk at once to save the effort
of simulating every single step. Jumps should be concatenable to form longer
portions of a random walk. More formally, let z = z0, z1, . . . be a random walk
starting in z and τ = τ(A, z) a stopping time of this random walk. Then z 7→ zτ
defines a jump procedure, and the concatenation of two such jumps is again the
outcome of a random walk at a certain stopping time. This concatenation prop-
erty allows us to add up jumps until we finally hit the boundary ∂A. A jump
should make at least one single step of the random walk in order to have guaran-
teed progress, i.e., we require τ ≥ 1 (with probability 1). Moreover, in order to
have a correct simulation of IDLA, jumps must stop at the latest when the ran-
dom walk leaves A, since then the particle’s simulation is complete. Additionally,
all jump procedures considered in this paper are symmetric around z.

There are two important goals for the design of a jump procedure. First,
the (expected) runtime to compute the outcome of a jump should be as small
as possible. In particular, it should be faster than simulating the random walk
step-by-step. Second, intuitively a jump should be the combination of as many
single steps as possible. This can be formalized by requiring the expected jumping
distance to be large. The following definition captures this concept of a jump.

Definition 1. A jump procedure is a randomized algorithm J with input (an
IDLA structure) A ⊂ Z2 and a point z ∈ A and output J(A, z) = zτ , where
z = z0, z1, . . . is a random walk and τ = τJ(A, z) is any stopping time. We
require the jump to make at least one single step of a random walk and to stop
at the latest when leaving A for the first time, i.e., Pr[1 ≤ τ ≤ τ∂A] = 1,where
τ∂A = min{t | zt ∈ ∂A} is the hitting time of ∂A. Additionally, J shall be
symmetric around z, i.e., Pr[J(A, z) = z + w] = Pr[J(A, z) = z − w] for all
w ∈ Z2.

We say that J has runtime bound tJ if J(A, z) can be computed in time tJ in
expectation and with high probability. Moreover, we define the expected jumping
distance ∆J : A→ R≥0 by

∆J(z) := min
|ξ|=1

E[|ξ · (J(A, z)− z)|].

When A is clear from the context we also write J(z) for J(A, z).
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3.2 From Jumps to IDLA

Any jump procedure can be iterated to find the point where the random walk
first leaves the IDLA structure A. Let z0 := (0, 0) and zi+1 := J(A, zi), for
every i = 0, 1, 2, . . . as long as zi is still in A. Moreover, let τ∗ = τ∗(J,A) :=
min{i | zi ∈ ∂A} and J∗ = J∗(A) := zτ∗ . Note that since J is a randomized
algorithm, J∗ and τ∗ are random variables. Clearly, J∗ is distributed exactly as
the endpoint of an IDLA particle. This way, any jump procedure gives rise to a
simulation algorithm for IDLA.

The following theorem gives an upper bound on the running time of an IDLA
simulation with jump procedure J .

Theorem 4. Let J be a jump procedure with runtime bound tJ . Let ∆J be its
expected jumping distance, cJ > 0 some constant, BI := B0(rI − cJ log n), set

δJ(A) := max
z∈BI

rO − |z|
∆J(z)

and assume that δJ(A) ≤ δ̄J in expectation and with high probability over A.
Then we can construct an algorithm for simulating IDLA with runtime

O(n · tJ · log n · (δ̄2J + log n))

and space usage6 O(n1/2 log n), both in expectation and with high probability.

To see that O(n1/2 log n) bits are sufficient (in expectation) to store A(n),
note that by Theorem 2 we have with high probability B0(

√
n − O(log n)) ⊆

A(n) ⊆ B0(
√
n+O(log n)), and B0(

√
n+O(log n))\B0(

√
n−O(log n)) contains

O(n1/2 log n) grid cells, for each of which we can store whether it is occupied in
1 bit.

In Section 4 we present a jump procedure with tJ = O(1) and δ̄2J = O(log n),
and thereby provide a proof for Theorem 1.

In order to run efficient IDLA simulations, we need a data structure that has
the following properties.

Lemma 3. We can construct a data structure for A that allows to
– query rI and rO in O(1) time,
– check z ∈ A in O(1) time, and
– add z ∈ Z2 to A.

Adding the n particles of an IDLA simulation one-by-one to this data structure
overall needs O(n) time and O(n1/2 log n) space, both in expectation and with
high probability.

In this extended abstract we omit the description of the data structure and the
proof of Lemma 3. In the following section, we analyse the expected number of
jumps that we need to simulate. Then, Theorem 4 is merely a consequence of
Theorem 2, Lemma 3 and Lemma 4 below, and we therefore omit its proof.

6 Not including the space used by the jump function.
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3.3 Number of Jumps

To bound the expected runtime of the simulation of a particle using a jump
procedure J , we only have to bound the hitting time τ∗ of ∂A. The following
lemma provides such a bound.

Lemma 4. With the notation of Section 3.2 for any IDLA structure A and
k > 0 we have Pr[τ∗ ≥ k (δ2J log n+ (rO − rI + log n)2)] ≤ exp(−Ω(k)).

In particular, we have E[τ∗] ≤ O
(
δ2J log n+ (rO − rI + log n)2

)
.

Proof. Consider again the stochastic process z0 = (0, 0), and zk+1 = J(A, zk)
for k > 0. Set σ :=

√
2(rO − rI + cJ log n). We analyze this process in phases.

The process starts in phase 1 and changes to phase 2 the first time it reaches
a position zk 6∈ BI . For the next σ2 jumps the process stays in phase 2. After
that it returns to phase 1, except if we are again outside BI , then we directly
start another phase 2. This repeats until we hit ∂A. For these phases we prove
the following.

(1) Starting phase 1 anywhere in BI , we stay in this phase for at most O(δ2J log n)
jumps in expectation.

(2) Starting phase 2 anywhere outside BI , the probability of hitting ∂A before
the end of the phase is Ω(1).

Using Markov’s inequality, (1) implies that after at most O(δ2J log n) jumps we
leave phase 1 with probability Ω(1). Together with (2) we obtain that, wherever
we start, within O(δ2J log n+σ2) jumps we hit ∂A with probability Ω(1). Hence,
within O(k(δ2J log n + σ2)) jumps we hit ∂A with probability 1 − exp(−Ω(k)),
yielding both expectation and concentration of the hitting time.

The proof of (2) follows by Lemma 2 and standard calculations and we there-
fore omit it in this extended abstract.

To show (1) we apply additive drift analysis to prove that the stochastic
process z0, z1, . . . , zτ (for z0 ∈ BI and τ := min {k | zk /∈ BI}) has an expected
hitting time as claimed. In order to apply Theorem 3 we need a suitable distance
function g : Z2 → R≥0. We let

g(z) :=

{
log(rO + 2− |z|), z ∈ BI
0, z ∈ Z2 \BI

.

In the following we will show that g has an additive drift of minz∈BI

(∆J (z))
2

2(rO+2−|z|)2
for all 0 ≤ k < τ , i.e., for any zk ∈ BI

E [g(zk+1)− g(zk) | zk] ≤ − min
z∈BI

(∆J(z))2

2(rO + 2− |z|)2
. (3)

Applying Theorem 3 together with g(z) ≤ O(log n) then yields an expected
hitting time of Z2 \BI of O(δ2J log n).
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Whenever zk ∈ A we know that zk+1 ∈ Ā ⊆ B0(rO + 1). In this case we
can bound g(zk+1) ≤ log(rO + 2 − |zk+1|). Hence, the expectation of g(zk+1)
conditioned on zk, zk ∈ BI , is at most7

∑
x∈Z2

Pr [zk+1 = x | zk]·log(rO+2−|x|) ≤
∑
x∈Z2

Pr [zk+1 = x | zk]·log

(
rO + 2− x zk

|zk|

)
,

since the length of the projection of x is bounded by |x| in any direction. Using
the transformation yx := x − zk and the symmetry of jump procedures we can
rewrite this as

∑
x∈Z2

Pr [zk+1 = x|zk] · log

(
rO + 2− |zk| − yx

zk
|zk|

)
=

1

2

∑
x∈Z2

Pr [zk+1 = x|zk] ·
(

log

(
rO + 2− |zk| − yx

zk
|zz|

)
+ log

(
rO + 2− |zk|+ yx

zk
|zk|

))
,

(4)

where |yx zk
|zk| | ≤ rO + 1− |zk| for all x with Pr [zk+1 = x|zk] > 0.

Now we use the following estimate that holds for any a, b ∈ R with a > 0
and |b| ≤ a:

log(a+ b) + log(a− b) ≤ 2 log(a)− b2

a2
. (5)

Combining (4) and (5) yields

E [g(zk+1)|zk] ≤1

2

∑
x∈Z2

Pr [zk+1 = x|zk] ·
(

2 log(rO + 2− |zk|)−
(yx · zk/|zk|)2

(rO + 2− |zk|)2

)

=g(zk)−
E
[
(yzk+1

· zk/|zk|)2
∣∣zk]

2(rO + 2− |zk|)2
= g(zk)−

E
[
|(zk+1 − zk) zk

|zk| |
2
∣∣∣zk]

2(rO + 2− |zk|)2

≤g(zk)−
E
[
|(zk+1 − zk) zk

|zk| |
∣∣∣zk]2

2(rO + 2− |zk|)2
(6)

where the last inequality follows from Jensen’s inequality. Considering the def-
inition of the expected jumping distance ∆J (Definition 1) with ξ = zk

|zk| we

obtain

E [g(zk+1)|zk] ≤ g(zk)− (∆J(zk))2

2(rO + 2− |zk|)2

which proves the drift inequality (3) and, thus, the lemma. ut

7 Here we define the corresponding summand to be 0 whenever the log is undefined.
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4 Long Jumps

Consider a particle at position z ∈ BI = B0(rI − cJ log n) (for some sufficiently
large constant cJ > 0) and consider the ball S := Bz(σ) with midpoint z and
radius σ := rI − |z|, so that S is contained in B0(rI) ⊆ A. Let z0, z1, . . . be a
random walk starting in z0 = z, let τ∂S := min{i | zi ∈ ∂S} be its hitting time
of the boundary of S, and similarly let τ∂A := min{i | zi ∈ ∂A}. Our procedure
will directly jump to Jlong(z) := zτ with

τ := min{τ∂S , T} and T :=
⌊ σ2

cJ ln(n/e)

⌋
.

Whenever z 6∈ BI , we simply make one step of the random walk, i.e., τ := 1. This
way we make sure that τ ≥ 1 (for all z ∈ A). Note that here we use τ∂S to ensure
τ ≤ τ∂S ≤ τ∂A, meaning that we stop at the latest when leaving A. Since τ is a
stopping time and Jlong is symmetric, this is a valid jump procedure according
to Definition 1. It is not clear at first sight that Jlong can be sampled efficiently
for all z ∈ BI . However, we present an algorithm in the next section and and
prove in Section 4.2 that its expected runtime is constant. Finally, we determine
the expected jumping distance of Jlong in Section 4.3. Overall, we obtain the
following result, which together with Theorem 4 proves our main result.

Lemma 5. The jump procedure Jlong has runtime bound tJlong
= O(1) and for

any z ∈ BI an expected jumping distance of ∆Jlong
(z) = Ω(

√
T ) = Ω

(
rI−|z|√
logn

)
.

Furthermore, it has a space usage of O(1) memory cells (in expectation and with
high probability).

4.1 An Algorithm for Sampling Long Jumps

Observe that with high probability a random walk of length T starting in z does
not leave S. Hence, the minimum of τ∂S and T is typically obtained at T . We
will design an algorithm that samples the position of zT (restricted to a certain
subset) very efficiently. Additionally, we have to patch this approximate algo-
rithm by a second (slow) algorithm that is executed only with small probability
and that compensates for the mistake we make by sampling only zT .

First consider Algorithm 1, which does not yet correctly sample a jump
according to the distribution of Jlong(z). It simply draws a point z′ = RWT (z)
(by sampling from a binomial random variable, see Lemma 1) and rejects as long
as z′ 6∈ 1

2S (where 1
2S is the ball with midpoint z and radius 1

2σ).
For w ∈ Z2 let PJ(w) := Pr[Jlong(z) = w] and denote the probability of

Algorithm 1 to return w by PAlg1(w). To patch Algorithm 1 we choose a failure
probability pfail (to be fixed later). Then, with probability 1 − pfail we run
Algorithm 1, but with probability pfail we patch the algorithm by exhaustively
computing the probabilities PJ(w) and PAlg1(w) for all w ∈ S̄ and returning
w ∈ S̄ with probability Prest(w), where

(1− pfail) · PAlg1(w) + pfail · Prest(w) = PJ(w). (7)
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Algorithm 1 Algorithm Long-Jump-Incomplete
repeat

z′ := RWT (z)
until z′ ∈ 1

2
S

return z′.

The above equation ensures that overall we draw w ∈ Z2 according to the right
probability distribution PJ . The approach is summarized in Algorithm 2.

Algorithm 2 Algorithm Long-Jump-Complete

choose p uniformly at random from [0, 1].
if p < pfail then

calculate PJ(w) and PAlg1(w) for all w ∈ S̄
compute Prest(w) according to equation (7)
return w ∈ S̄ drawn according to the distribution Prest(w)

else
run Algorithm 1

end if

This algorithm is correct if pfail can be chosen in such a way that Prest is
a probability distribution. The following lemma states for which values of pfail
this is the case.

Lemma 6. The values Prest(w) for w ∈ S̄ form a probability distribution if we
choose pfail ≥ 28ecJ/2n−min{cJ/8,5cJ/16−1}.

In this extended abstract we omit the technical proof of Lemma 6. In the re-
mainder of this section we analyze the runtime of our algorithm and prove a
lower bound on the expected jump length.

4.2 Runtime of the Algorithm

In the fail compensation part of our algorithm we have to compute PAlg1 and
PJ exactly. In this section we discuss how to do this efficiently, which yields a
bound on the runtime of our algorithm.

Observe that for PRW (w) := Pr[RWT (z) = w] we have for all w ∈ 1
2S that

PAlg1(w) = PRW (w)/
∑
w∈ 1

2S

PRW (w).

This reduces the calculation of PAlg1 to the calculation of PRW (w) for all w ∈
1
2S. For w 6≡T z we have PRW (w) = 0, so let w ≡T z. Then we can write
w = x · (1/2, 1/2) + y · (1/2,−1/2) with x, y ∈ Z. With the notation of Lemma 1
we have

PRW (w) = Pr[X = x] · Pr[Y = y] = 2−T
(

T
T+x
2

)
· 2−T

(
T
T+y
2

)
.
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Note that this probability has denominator 4T , so it can be stored using O(T )
bits. Moreover, as

(
T
i

)
can be computed in O(T ) multiplications and divisions

of a O(T ) bit number by a O(log T ) bit number, we can calculate PRW (W )
in time O(T 2 log T ). The total running time for calculating PAlg1 is therefore
O(σ2T 2 log T ) and the occupied space is O(σ2T ).

For computing PJ we use a simple iterative scheme. We recursively define
Xt
w for 0 ≤ t ≤ T and w ∈ S̄. For t = 0 we set

X0
w =

{
1 if w = z,

0 otherwise,

while for t > 0 we set

Xt
w =

{∑
v∈Γ (w)∩S

1
4X

t−1
v if w ∈ S,

Xt−1
w +

∑
v∈Γ (w)∩S

1
4X

t−1
v if w ∈ ∂S.

Observe that XT
w is equal to PJ(w) for every w ∈ S̄, and each probability Xt

w can
be stored using O(T ) bits. The total running time to calculate PJ is therefore
O(σ2T 2) and the space usage is O(σ2T ) bits.

As the ball S is completely filled with particles, we have n ≥ σ2. Using
T = Θ(σ2/ log n) we get a runtime of O(n3) and a space usage of O(n2) for
computing PJ and PAlg1.

Clearly, Algorithm 1 runs in expected constant time. Moreover, as the prob-
ability of RWT 6∈ 1

2S is small (smaller than pfail, as chosen in the last section),
it even runs in O(1) time with high probability. In total, the expected runtime of
our algorithm for sampling long jumps is O(1 +pfail ·n3), and the probability of
having runtime larger than O(1) is at most O(pfail). Hence, for sufficiently large
constant cJ , so that Lemma 6 allows to choose pfail sufficiently small, we obtain
a runtime of tJlong

= O(1), both in expectation and with high probability. This
proves the first part of Lemma 5.

4.3 Expected Jumping Distance

In this section we analyze the expected jumping distance ∆Jlong
(z) of long jumps,

proving the second part of Lemma 5.
Recall that the expected jumping distance at z ∈ BI is defined as

∆Jlong
(z) = min

|ξ|=1
E[|ξT (Jlong(z)− z)|].

Since the stopping time τ of Jlong is symmetric, we can use the second part

of Lemma 2 to obtain ∆Jlong
(z) = Ω(Pr[|Jlong(z) − z| ≥

√
T ] ·
√
T ). Observe

that we have Pr[|Jlong(z) − z| ≥
√
T ] ≥ Pr[|RWT | ≥

√
T ], and note that the

inequality is because of some walks in RWmin{τ∂S ,T}(z) that end prematurely
(when τ∂S ≤ T ). Together with the first part of Lemma 2, this shows ∆Jlong

(z) ≥
Ω(
√
T ) = Ω((rI − |z|)/

√
log n).
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A Proofs and Lemmas omitted from Section 2

A.1 Random Walks

In this section we present several easy or known facts about random walks that
are used throughout this paper. For some of these facts we need explicit constants
in the error terms. Thus, although variants incorporating O-notation could be
found, e.g, in [14], we need to reprove them with explicit constants.

First, we need bounds for the probability of RWT to end up in a particular
point z ∈ Z2. A proof of this statement amounts to Stirling’s approximation on
binomial coefficients with explicitly bounding the error term constants.

Lemma 7. Let T ∈ N and z ∈ Z2 with |z| ≤ 1
2T and z ≡T (0, 0). Then we have

Pr[RWT = z] ≤ 2

T
exp

(
− |z|

2

2T

(
1− 2|z|

T

))
,

Pr[RWT = z] ≥ 1

3T
exp

(
− |z|

2

2T

(
1 +
|z|
T

))
.

Proof. Let z = x · (1/2, 1/2) + y · (1/2,−1/2). Without loss of generality we can
assume that x, y ≥ 0. With the notation of Lemma 1 we have

Pr[RWT = z] = Pr[X = x] · Pr[Y = y].

Counting the number of paths on Z from 0 to x (or y) yields

Pr[RWT = z] = 2−T
(

T
T+x
2

)
· 2−T

(
T
T+y
2

)
. (8)

Using Stirling’s approximation

n! = r1
√

2πn
(n

e

)n
with 1 ≤ r1 ≤ 1.1

yields after some simplifications

2−T
(

T
T+x
2

)
= r2

√
2T

π(T 2 − x2)

(
1− x2

T 2

)−T/2(
1 +

x

T

)−x/2(
1− x

T

)x/2
,

with (1.1)−2 ≤ r2 ≤ 1.1. Note that by assumption x, y ≤ |z| ≤ T/2. This
allows to bound T 2 ≥ T 2 − x2 ≥ 3

4T
2. Furthermore, for a ≥ − 1

2 we have
exp(a(1− a)) ≤ 1 + a ≤ exp(a). Together we get

2−T
(

T
T+x
2

)
≤ 1.1

√
8

3πT
exp

(
x2

2T

(
1 +

x2

T 2

)
− x2

2T

(
1− x

T

)
− x2

2T

)
≤ 1.1

√
8

3πT
exp

(
− x2

2T

(
1− 2x

T

))
,
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and, analogously,

2−T
(

T
T+x
2

)
≥ (1.1)−2

√
2

πT
exp

(
− x2

2T

(
1 +

x

T

))
.

Plugging this into equation (8), using |z|2 = x2+y2 and x3+y3 ≤ (x2+y2)3/2 =
|z|3, and rounding the factors, in total we obtain

Pr[RWT = z] ≤ (1.1)2
8

3πT
exp

(
− x2 + y2

2T
+
x3 + y3

T 2

)
≤ 2

T
exp

(
− |z|

2

2T

(
1− 2|z|

T

))
,

and, analogously,

Pr[RWT = z] ≥ 1

3T
exp

(
− |z|

2

2T

(
1 +
|z|
T

))
,

Proof (Lemma ??). For any small constant T the claim clearly holds. In the
remaining cases we proceed as follows. For any d ≥ 1 the slice S := {z ∈ Z2 |
d ≤ |z| < 2d} contains Ω(d2) grid points. Using Lemma 7 this yields

Pr[RWT ≥ d] ≥ Pr[RWT ∈ S] ≥ Ω
(
d2

T
exp

(
− (2d)2

2T

(
1 +

2d

T

)))
.

For d =
√
T the right hand side is Ω(1).

For the second statement, let w1, . . . , w4 be symmetric points around the
origin, i.e., w1, . . . , w4 form a square with midpoint the origin. Then there is a
point wi which forms an angle of at most 45 degrees with ξ, so that we have
|ξ · wi| = Ω(|wi|). Thus, we have

4∑
i=1

|ξ · wi| = Ω(|wi|) = Ω

( 4∑
i=1

|wi|
)
.

As the stopping time is symmetric, we can use the above symmetry argument
as follows,

E[|ξ ·RWτ |] =
∑
w∈Z2

Pr[RWτ = w] · |ξ · w|

=
∑
w∈Z2

Pr[RWτ = w] ·Ω(|w|).

A rough upper bound now yields the claim,

E[|ξ ·RWτ |] ≥ Ω
( ∑

w∈Z2

|w|≥
√
T

Pr[RWτ = w] ·
√
T

)

= Ω
(

Pr[|RWτ | ≥
√
T ] ·
√
T
)
.
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Finally, the Chernoff bound yields a tail bound for the probability of RWT

to end up too far away from the origin. Together with the reflection principle
(see [14]) this yields a tail bound for the probability of being too far away from
the origin at any time 0 ≤ t ≤ T .

Lemma 8. For any T, k ∈ N we have

Pr[|RWT | > k] ≤ 4e−
k2

2T .

Moreover, let 0 = z0, z1, . . . be a random walk and set τ := mint≥0{|zt| > k}.
Then

Pr[τ ≤ T ] ≤ 8e−
k2

2T .

Proof. Let X1, X2, . . . be independent copies of a uniform {1,−1} random vari-

able and let Si :=
∑i
j=1Xi. By Lemma 1 we have RWT ∼ X · (1/2, 1/2) +

Y · (1/2,−1/2), where X,Y are independent copies of ST . Since |RWT | =
(X2 + Y 2)1/2/

√
2, if |RWT | > k then in particular one of |X| and |Y | is larger

than k. Hence, we have

Pr[|RWT | > k] ≤ 2 Pr[|ST | > k] = 2 Pr[|Bin(T, 1/2)− T/2| > k/2].

With a Chernoff bound we obtain

Pr[|RWT | > k] ≤ 4e−
k2

2T .

The second claim now follows from the reflection principle (see [14]) which states
that

Pr[τ ≥ T ] ≤ 2 Pr[|RWT | > k].

A.2 Sampling Binomial Random Variables

In this paper we assume that a binomial random variable Bin(T, 12 ) can be
sampled in constant time. Together with Lemma 1 this allows to sample the
outcome of a random walk RWT in constant time. In this section we discuss
whether this assumption is justified.

The trivial algorithm to sample Bin(T, 12 ) performs T coin flips, which takes
timeΘ(T ). The literature on sampling contains a large amount of algorithms that
sample binomial random variables much faster, namely in constant time (see,
e.g., [5]), and implementations of these algorithms are readily available. However,
all these algorithms are exact only in the Real RAM model of computation,
where a memory cell can store a real number and operations on real numbers
take constant time - on real-life computers these algorithms are not exact.

A more realistic machine model is the Word RAM, where each cell can store
a w-bit integer, called word, and typical operations (arithmetic operations, bit
operations, ...) on words take constant time. For sampling it makes sense to
assume that one also can generate a random word in constant time. Usually
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one assumes w ≥ Ω(log T ). Until recently there was no algorithm known that
samples Bin(T, 12 ) on the word RAM faster than the trivial coin flipping. The
first algorithm with sublinear preprocessing and polylogarithmic sampling time
was proposed in [8]. We improve upon this algorithm here and show that constant
expected sampling time is possible, even without any preprocessing. We remark
that this is in line with a similar result for geometric random variables [4].

Theorem 5. On the Word RAM, a binomial random variable Bin(T, 12 ) can be
sampled in expected time O(1). Moreover, it can be sampled in a runtime that is
larger than t > 0 with probability exp(−tΩ(1)).

In the remainder of this section we prove the above theorem.
We may assume that T is even, say T = 2n, otherwise we split into Bin(T −

1, 12 ) + Bin(1, 12 ) and sample the latter in constant time. We may also assume
n ≥ 2, otherwise we sample Bin(2n, 12 ) as a sum of 2n random bits in constant
time.

Upper bound for binomial coefficients. Let m ∈ N be an approximation of
√

2n
with m ∈ [

√
2n,
√

2n+3]. We obtain such an approximation by using any (rough)
approximation of the function

√
x, yielding m′ ∈ [

√
2n − 1,

√
2n + 1], and con-

sidering m := dm′e+ 1.

Lemma 9. In the above situation we have for any k ∈ Z(
2n

n+ k ·m

)
≤ 22n

4

2|k|m
.

Proof. Since
(

2n
n+i

)
=
(

2n
n−i
)

we may assume k ≥ 0. For 0 ≤ i ≤ n, standard
calculations yield(

2n

n+ i

)/(
2n

n

)
=

i∏
j=1

n+ 1− j
n+ j

≤
i∏

j=1

(
1− j

n+ 1

)

≤ exp

− i∑
j=1

j

n+ 1

 = exp
(
− i(i+1)

2(n+1)

)
≤ exp

(
− i2

2n

)
.

A well-known bound following from Stirling’s approximation is(
2n

n

)
≤ 22n√

πn
,

so that we get (
2n

n+ i

)
≤ 22n√

πn
exp

(
− i2

2n

)
.

For i = k ·m and m ≥
√

2n we have

exp
(
− i2

2n

)
≤ exp(−k2) ≤ 21−k.

Finally, for m ≤
√

2n + 3 and n ≥ 2 we have
√
πn ≥ m/2, which yields the

claim.
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Partition Z into buckets ofm consecutive numbers,Bk := {km, km+1, . . . , km+
m− 1} for k ∈ Z. Let

f(i) :=
4

2max{k,−k−1}m

for any i ∈ Bk, k ∈ Z. Moreover, set

p(i) :=

(
2n

n+ i

)
/22n,

with p(i) := 0 for |i| > n. Note that we have Pr[Bin(2n, 12 ) = n+ i] = p(i).

Lemma 10. We have

1. f(i) ≥ p(i) for all i ∈ Z and
2.
∑
i∈Z f(i) = 16.

Proof. The first statement follows from Lemma 9 and monotonicity of binomial
coefficients: For i ∈ Bk with k ≥ 0 we have i ≥ km so that

(
2n
n+i

)
≤
(

2n
n+km

)
,

which yields p(i) ≤
(

2n
n+km

)
/22n. Together with Lemma 9 this proves p(i) ≤ f(i).

For k < 0 we argue similarly using i ≤ (k + 1)m ≤ 0.
For the second statement we use symmetry of f around 0 and |Bk| = m to

obtain ∑
i<0

f(i) =
∑
i≥0

f(i) =
∑
k≥0

|Bk|
4

2km
= 4

∑
k≥0

2−k = 8.

Note that the above Lemma implies that f̄(i) := f(i)/16 gives a probability
distribution.

Rejection sampling. We use rejection sampling with the function f to sample
from Bin(2n, 12 ) as follows. We first sample i ∈ Z with probability distribu-
tion f̄ (where f̄(i) = f(i)/16). Then we sample a Bernoulli random variate
Ber(p(i)/f(i)) (which is 1 with probability p(i)/f(i)). If it turns out 1 then we
return n+i and are done. Otherwise we reject i, i.e., we throw away i and repeat
the whole process.

1. Sample i ∈ Z with probability distribution f̄ .
2. With probability p(i)/f(i): Return n+ i.
3. Otherwise: Reject i and goto 1.

Let us first argue about correctness and runtime of this algorithm and then
fill in the details of how to implement steps 1 and 2. Note that the probability of

returning n+ i in a particular iteration of this algorithm is f̄(i) · p(i)f(i) = p(i)/16.

Thus, the probability of returning n+i is proportional to p(i) = Pr[Bin(2n, 12 ) =
n + i], so that we have an exact sampling algorithm. Moreover, since p(i) is a
probability distribution we have

∑
i∈Z p(i)/16 = 1/16 = Ω(1). Hence, in every

iteration the stopping probability of the algorithm is constant, so that the ex-
pected number of iterations of this algorithm is constant, and the number of
iterations has an exponential tail.
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To implement step 1 of this algorithm, we first flip a random bit whether
i ≥ 0 or i < 0 (making use of the fact

∑
i<0 f(i) =

∑
i>0 f(i)). Without loss

of generality let i ≥ 0 so that f(i) = 4
2km

for i ∈ Bk, k ≥ 0. The block Bk
containing i is distributed geometrically, so we can draw random bits X1, X2, . . .
and let k ≥ 0 maximal with X1 = . . . = Xk = 1. Finally, we pick i uniformly
at random in block Bk. This runs in expected constant time (with exponential
tail).

To implement step 2, we have to sample Ber(p(i)/f(i)) in expected constant
time. In general, to sample a Bernoulli random variate Ber(p) it suffices to
be able to compute an additive 2−L-approximation of p in time LO(1) (see,
e.g., [4]). Indeed, we can draw Ber(p) by taking a uniformly random number
R ∈ [0, 1) and returning whether R ≤ p. We perform this check by computing
2−L-approximations p̃ of p and R̃ of R (by taking its first L random bits) and
checking whether these approximations allow to decide whether R ≤ p (which
is possible if |R̃− p̃| ≥ 21−L). If the decision is not possible, we increase L by 1
and repeat. Since R is uniformly random in [0, 1), this procedure stops after an
expected constant number of iterations (with exponential tail). With the L-th
iteration taking time LO(1), the total runtime is larger than t with probability
exp(−tΩ(1)), as promised.

Note that since 0 ≤ p(i)/f(i) ≤ 1 it suffices to compute a relative 2−Ω(L)-
approximation of p(i)/f(i) in time LO(1).

Approximate Calculations on the Word RAM. On the Word RAM we can per-
form usual logical and arithmetic operations on two w-bit integers in constant
time. We can compute with longer integers by representing them as lists of words.
This allows, e.g., to add two L-bit integers in time O(1 + L/w). In general, a
usual logical or arithmetic operation on two L-bit integers can be performed in
time O(1 + (L/w)O(1)). Moreover, we can use floating-point approximations of
reals by storing both mantissa and exponent as long integers. This allows to per-
form typical operations on two floating-point numbers with L-bit mantissas and
E-bit exponents in time O(1 + ((L+ E)/w)O(1)). For the numbers that we will
consider, the exponents are O(L + log n)-bits numbers. If L ≤ log(n) the usual
Word RAM assumption of w ≥ Ω(log n) implies that we can compute with these
exponents in constant time. In any case, the runtime for handling the exponents
is bounded by LO(1). For this reason, we will only discuss the mantissa in the
following.

Observe that once we have a floating-point approximation of p(i) with pre-
cision 2−Θ(L), we easily obtain a floating point approximation of p(i)/f(i) with
precision 2−Θ(L), since f(i) is build of elementary functions. Moreover, to ap-
proximate p(i) =

(
2n
n+i

)
/22n it suffices to be able to approximate factorials.

Hence, we are left with the following problem. Given n and L, compute a
floating-point approximation of n! with precision 2−L (i.e., with relative error
2−L). Note that the standard Stirling’s approximation only allows to approx-
imate n! with fixed precision (depending on n). Classic formulas that allow
arbitrary precision approximations of n! are Lanczos approximation [12] and
Spouge’s approximation [17]. A fixed precision version of the former is, for in-
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stance, implemented in the GNU Scientific Library8. These classic formulas allow
to approximate n! up to precision 2−L in time LO(1). The only possible obsta-
cle for us using these approximations is that they are typically analyzed on the
Real RAM model of computation, where we can compute with real numbers in
constant time and do not have to worry about floating-point approximations.
In the following we go through Spouge’s approximation to check that it indeed
works on the Word RAM.

Spouge’s approximation [17] states that for any n,L ∈ N, L > 2,

n! ≈ (n+ L)n+1/2e−(n+L)

[
c0 +

L−1∑
k=1

ck
n+ k

]
,

where

c0 =
√

2π, ck =
(−1)k−1

(k − 1)!
(L− k)k−1/2eL−k,

with a relative error that is bounded by

L−1/2(2π)−(L+1/2) ≤ 2−L−1.

To evaluate this formula, it suffices to be able to compute (floating-point ap-
proximations of) π and the functions ex and

√
x. The standard algorithms for

this also work on the Word RAM.
It remains to show that it suffices to compute all terms of the formula with

precision 2−Θ(L) in order to obtain n! with precision 2−L = 2−L−1 + 2−L−1 (the
error from Spouge’s approximation plus the error of floating-point approxima-
tion). Note that this requires an argument, since the terms ck/(n+ k) change in
sign and could cancel, making very high precision necessary. However, it is not
hard to bound ∣∣∣ ck

n+ k

∣∣∣ ≤ 2`1

with `1 = O(L). Moreover, Spouge’s approximation guarantee and n! = Θ((n/e)n+1/2)
(by Stirling’s approximation) imply

c0 +

L−1∑
k=1

ck
n+ k

≥ (1− 2−L−1)
n!

(n+ L)n+1/2e−(n+L)
≥ 2−`2 ,

with `2 = O(L). Together, these inequalities show that `1 + `2 + C · L = O(L)
bits of precision for a summand ck

n+k (or c0) yield a precision of C ·L bits relative

to the sum c0 +
∑L−1
k=1

ck
n+k . For C a sufficiently large constant, this precision

suffices for the sum to have a precision of L + 1 bits so that we compute a
relative 2−L−1-approximation of n!, as desired. Since there are LO(1) terms in
Spouge’s approximation, we obtain a total runtime of LO(1) to compute n! with
precision 2−L. This finishes the proof of Theorem 5.

8 http://www.gnu.org/software/gsl/
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Remark. We remark that Theorem 5 implies that m samples from Bin(T, 12 )
take total time O(m), both in expectation and with high probability in m (we
will show the latter in Lemma 11). Hence, the runtime bound of our main theo-
rem is valid in expectation and with high probability using the above sampling
algorithm for Bin(T, 12 ). However, for the sake of readability we prefer to assume
that we can sample Bin(T, 12 ) in constant time in the remainder of this paper.

B Proofs and Lemmas omitted from Section 3

B.1 Data Structure

Jump procedures need access to the IDLA structure A = A(n) in some way. In
this section we describe a data structure for storing A that fits the needs of our
jump procedures.

The most natural solution for storing the shape of A is a 2n× 2n matrix in
which each element contains the information whether the corresponding posi-
tion is occupied. The size of this matrix is Θ(n2) and already its initialization
would therefore exceed our desired running time. As we have rO− rI = O(log n)
with high probability, an O(

√
n) × O(

√
n) matrix is sufficient (in most simula-

tions). However, in this case A contains the whole center B0(rI), so most of the
information stored in the matrix is still redundant.

To save space we split the grid in slices S0, S1, . . ., where slice Si contains
all z ∈ Z2 with i ≤ |z| < i + 1. We store rI and rO, as well as A ∩ Si for all
rI ≤ i < rO. This is sufficient information to reconstruct A, as A ∩ Si = Si for
i < rI and A ∩ Si = ∅ for i ≥ rO.

We would like to store each set A ∩ Si by a bit array, however, the natural
index set Si is not a range of integers. As a workaround, we first construct a
perfect hash function hi : Si → [ni] to map Si to a range of integers of length
ni = O(|Si|) = O(i) without collision. See, e.g., [3] for a construction of a
perfect hash function with O(n) construction time, O(n) space usage and O(1)
evaluation time9. Additionally, we store a bit array Bi[1..ni] with Bi[hi(z)] =
[z ∈ A], i.e., for each z ∈ Si the bit Bi[hi(z)] stores whether z is in A. In total
this yields O(1) time to access/modify [z ∈ A] with space requirement O(i). Note
the similarities to storing a bit array for A ∩ Si, only that this is not directly
possible.

To allow for efficient updates of our data structure after placing a particle,
we also store |Si| and |A ∩ Si| for each rI ≤ i < rO. Then whenever a new grid
point z is occupied (in slice Si), we do the following. If slice Si is not yet built,
i.e., if rO was at most i, then we increase rO and initialize the data structure for
A∩Si = {z}. Specifically, we enumerate Si, compute |Si| and |A∩Si| = |{z}| = 1,
build the perfect hash function hi and initialize the bit array Bi. Otherwise, if
the slice Si was already built, then we simply update Bi[hi(z)] := 1 and |A∩Si|.
Whenever the slice SrI becomes full (i.e., |A∩ SrI | = |SrI |) we trash everything

9 We remark that it is an easy exercise to explicitly construct a perfect hash function
in our situation, simply based on the angles of the grid points inside a slice.
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we stored for this slice (hrI , BrI , |SrI |, |A∩SrI |) and increase rI . We repeat this
as long as SrI is full. This way we satisfy an invariant of SrI being the innermost
non-full slice and SrO being the lowest empty slice. In particular, rI and rO are
always the correct in- and out-radius.

It is not hard to see that, when starting from the empty set, the updates of
our data structure take time O(r2O) in total, and that it uses O(rO(rO−rI)) bits
of space. Since rO − rI (and, thus, also rO) is bounded both in expectation and
with high probability, we get Lemma 3.

B.2 Proof of Theorem 4

Theorem 4 is a consequence of Theorem 2, Lemma 4 and Lemma 3.

Proof (Theorem 4). We simulate the first
√
n particles in the naive step-by-

step way in expected time O(n). For all the remaining particles we use the
jump procedure. Since Theorem 2 together with rO ≤ n implies E[(rO − rI)2] ≤
O(log2 n), we can read off Lemma 4 an expected number of jumps of O(log n(δ̄2J+
log n)), yielding an expected time of O(tJ log n(δ̄2J + logn)) to simulate the i-th
particle. Adding the runtime of our data structure (Lemma 3), in total over all
particles we obtain an expected time as claimed. Lemma 3 also directly implies
the statement about space usage.

Arguing about the concentration of the runtime requires some more work.
Note that rO − rI = O(log n) for all

√
n < i ≤ n with high probability. If

this is the case then the number of jumps needed for particle
√
n < i ≤ n

is more than k log n(δ̄2J + log n) with probability exp(−Ω(k)) by Lemma 4.
By the following lemma, the total number of jumps for all these particles is
O(n log n(δ̄2J + log n)) with high probability. Moreover, the runtime of the jump
procedure is bounded by O(tJ) with high probability, therefore it is also bounded
by O(tJ) for all O(n log n(δ̄2J +log n)) jumps with high probability (adjusting the
constant in the exponent of the high probability). In total, the claimed runtime
bound O(tJ log n(δ̄2J + log n)) also holds with high probability for the particles√
n < i ≤ n. For the naive simulation of the first

√
n particles we are in a

similar situation. With high probability A(i) is contained in B0(O(n1/4)) for
all 1 ≤ i ≤

√
n (Theorem 2). If this is the case, then the simulation of one of

the first
√
n particles takes time larger than k

√
n with probability exp(−Ω(k))

for any k ≥ 1, since after each block of Θ(
√
n) steps we leave the ball with

radius Θ(n1/4) with constant probability (Lemma 2). Again using the following
lemma, we obtain that this naive simulation takes time O(n) in total with high
probability, finishing the proof.

Lemma 11. Let X1, . . . , Xm be independent positive random variables with Pr[Xi >
kv] ≤ exp(−Ω(kε)) for some v > 0 and ε > 0 and all k ≥ 1. Then we have

m∑
i=1

Xi ≤ O(mv)

with probability at least 1− exp(−mΩ(1)).
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Proof. Without loss of generality we can assume v = 1. Assume that all Xi are
at most M > 0 to be fixed later. By a union bound this happens with probability
at least 1 −m exp(−Ω(Mε)). This assumption means that we instead consider
bounded random variables Yi with Pr[Yi ≤ k] = Pr[Xi ≤ k]/Pr[Xi ≤ M ] for
any k ≤ M . Using the Azuma-Hoeffding bound (see for example Chapter 5 in
[7]) we obtain

Pr
[ m∑
i=1

(Yi − E[Yi]) > t
]
≤ exp

(
−t2

2mM2

)
.

Hence, for sufficiently large constant c > 0 we have

Pr
[ m∑
i=1

Yi > cm
]
≤ exp(−Ω(m/M2)),

and in total we get

Pr
[ m∑
i=1

Xi > cm
]
≤ exp(−Ω(m/M2)) +m exp(−Ω(Mε)).

Choosing M = m1/(2+ε) this error is exp(−Ω(mε/(2+ε))) = exp(−mΩ(1)) as
claimed.

C Proofs and Lemmas omitted from Section 4

Proof (Lemma 6).
Because of equation (7) and

∑
w PJ(w) =

∑
w PAlg1(w) = 1 we have

∑
w Prest(w) =

1. However, we have to prove that we can choose pfail (and cJ) in such a way
that Prest(w) is non-negative for all w ∈ S̄. It suffices to choose pfail such that
for all w ∈ S̄

(1− pfail)PAlg1(w) ≤ PJ(w),

since then Prest(w) ≥ 0 according to equation (7). Without loss of generality we
consider w ∈ 1

2S with w ≡T z, as otherwise we have PAlg1(w) = 0.
We abbreviate PRW (w) := Pr[RWT (z) = w]. Since Algorithm 1 returns the

endpoint of a random walk of length T conditioned on being contained in 1
2S,

we clearly have

PAlg1(w) =
PRW (w)

1− Pr[RWT (z) 6∈ 1
2S]

. (9)

Since Pr[RWT (z) 6∈ 1
2S] = Pr[|RWT | > 1

2σ] and T ≤ σ2

cJ log(n/e) we can apply

Lemma 8 to get

PAlg1(w) ≤ PRW (w)

1− 4(n/e)−cJ/8
. (10)
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For PJ(w), any walk of length T starting in z and ending in w is counted,
except if it hits ∂S. Hence, we have

PJ(w) ≥ PRW (w)− Pr[τ∂S ≤ T ].

We want to write the right hand side of this as PRW (w)·(1−ρ), so that combined
with equation (10) we obtain PJ(w) ≥ PAlg1(w) · (1 − ρ′). For this we need an
upper bound for Pr[τ∂S ≤ T ] (provided by Lemma 8) and a lower bound for
PRW (w) (provided by Lemma 7). Combining the two yields (after some technical
simplifications that we postpone)

Pr[τ∂S ≤ T ]

PRW (w)
≤ 24ecJ/2n1−5cJ/16. (11)

Thus,

PJ(w) ≥ PRW (w)(1− 24ecJ/2n1−5cJ/16),

and together with equation (10) we obtain

PJ(w) ≥ (1− 24ecJ/2n1−5cJ/16 − 4(n/e)−cJ/8)PAlg1(w).

Thus, we can safely set pfail ≥ 28ecJ/2n−min{cJ/8,5cJ/16−1}.
In the following we show inequality (11). First note that by the definition of

T and σ ≥ cJ log n we have

T ≥ σ2

cJ log(n/e)
− 1 ≥ σ2

cJ log n
·
(

1 +
1

log n

)
− 1 ≥ σ2

cJ log n
+ cJ − 1 ≥ σ2

cJ log n
,

for cJ ≥ 1. Thus, |w| ≤ 1
2σ, |w|/T ≤ 1

2 and σ2

T ≤ cJ log n. Using this, we can
combine Lemmas 8 and 7 to obtain

Pr[τ∂S ≤ T ]

PRW (w)
≤ 8(n/e)−cJ/2

1
3T exp

(
− |w|

2

2T

(
1 + |w|

T

)) ≤ 24T (n/e)−cJ/2 exp

(
3σ2

16T

)
≤ 24ecJ/2Tn−5cJ/16.

Note that as S is completely filled with particles we have n ≥ σ2 ≥ T , finally
yielding

Pr[τ∂S ≤ T ]

PRW (w)
≤ 24ecJ/2n1−5cJ/16.
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