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Abstract. Most biobjective evolutionary algorithms maintain a popula-
tion of fixed size p and return the final population at termination. During
the optimization process many solutions are considered, but most are dis-
carded. We present two generic postprocessing algorithms which utilize
the archive of all non-dominated solutions evaluated during the search.
We choose the best p solutions from the archive such that the hypervol-
ume or e-indicator is maximized. This postprocessing costs no additional
fitness function evaluations and has negligible runtime compared to most
EMOAs.

We experimentally examine our postprocessing for four standard algo-
rithms (NSGA-II, SPEA2, SMS-EMOA, IBEA) on ten standard test
functions (DTLZ 1-2,7, ZDT 1-3, WFG 3-6) and measure the average
quality improvement. The median decrease of the distance to the optimal
e-indicator is 95%, the median decrease of the distance to the optimal hy-
pervolume value is 86%. We observe similar performance on a real-world
problem (wind turbine placement).

1 Introduction

Biobjective optimization aims at minimizing (or maximizing) a two-dimensional
fitness function f: X — R2. As the two objectives f; and f; are typically con-
tradicting, the outcome of the optimization is a set of incomparable solutions
describing a Pareto front. Multiobjective evolutionary algorithms (MOEA) typ-
ically maintain a set of solutions called population during the optimization. The
simplest MOEAs (like SEMO [12, 14, 15]) keep all non-dominated solutions in
the population. As the Pareto front of a biobjective fitness function can be ex-
ponential in the input size [10], this results in exponential runtimes of SEMO for
such fitness functions [6, 13]. More advanced MOEAs therefore avoid keeping all
non-dominated solutions in the population and assume some upper limit on the
size of the population.
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With a population of fixed maximum size, MOEAs have to decide in each step
which solutions to keep in the population and which solutions to remove. This
can be done based on various measures like the hypervolume contribution [20],
g-approximation, crowding distance, or many others. Independent of the specific
measure, the archiving algorithm of a MOEA has to solve an online problem: It
has do decide which solutions to remove without knowing what new solutions
will be generated in the future. While the MOEA has to decide ‘online’ which
solutions to keep, an ‘offline’ algorithm would have access to all points generated
during the optimization process and would just choose the best set from this
archive. It is known that a MOEA which in each iteration keeps these u solutions
in the population that maximize the hypervolume, can still only reach a final
hypervolume which is a factor p smaller than achieved by the optimal choice of
u solutions from the whole archive (in the worst case) [2].

This shows that MOEAs potentially lose a lot of information by dropping
solutions during the optimization. We suggest to make best use of the accumu-
lated information by collecting all search points seen during the optimization in
an archive. After the MOEA has stopped, we suggest to do a postprocessing that
selects the best subset (of size p) from the whole archive. This costs no additional
fitness evaluations and should not reduce the quality of the reported final pop-
ulation. Depending on the ultimate aim of the optimization the problem solved
by this postprocessing is known as the Hypervolume Subset Selection Problem
(HYPSSP) or e-Indicator Subset Selection Problem (EPSSSP). Until recently the
best known runtimes for these subset selection problems were quadratic in the
archive size n. As a single run of a MOEA can easily produce n = 10° or more
non-dominated search points, a runtime of O(n?) is prohibitively large. Our new
postprocessing therefore only becomes tractable due to two new quasi-linear
algorithms by the authors [5] published at this years GECCO, specifically, an
algorithms for HYPSSP with runtime O(n (1 +logn)) and one for EPSSSP with
runtime O(nlogn).

In this paper, we are going to investigate the effect of these two postpro-
cessing algorithms for four standard algorithms on 10 common multi-objective
optimization test functions and one real-world problem of optimizing the place-
ment of wind turbines [17, 18].

Quality measures. There are several ways to measure the quality of solution
sets. We focus on two measures. Our first metric is the hypervolume indicator.
It measures the volume of the objective space dominated by the set of solutions
relative to a reference point [20]. Its main disadvantage is its high computational
complexity in higher dimensions [1, 3].

Our second metric is the e-indicator. For measuring how well a set P ap-
proximates another set R, the (additive) e-indicator returns the minimal ¢ by
which we have to increase all points in P in all coordinates so that every point
in R is dominated by some point in P. The disadvantage of this notion is that
its computation requires knowing the Pareto front, as we would like to plug in
the Pareto front for R. In contrast to the hypervolume indicator, it can therefore
not directly be used to guide the search [4].



2 Preliminaries

We consider biobjective minimization problems, where a vector-valued function
f = (f1,f2): X = R? is minimized with respect to the weak Pareto dominance
relation <. We will mainly work in the objective space f(X) and say that a point
p = (p1,p2) € R? weakly dominates another point ¢ = (q1,q2) € R? (denoted as
p =< q) iff p1 < ¢ and py < go. The aim of most MOEAs is to approximate the

Pareto front F={f(z) |z € X: Py X: f(y) = f(z) A f(z) £ f(v)}.

Hypervolume indicator. For a set of points P C R?, the hypervolume indi-
cator is defined as the volume of the set of points that are weakly dominated
by solutions in P and at the same time weakly dominate a given reference point
r € R?, that is, Tnyp(P) := Inyp(Pyr) == AN{z € R? | 3a € P:a < 2 < r}),
where A is the Lebesgue measure.

The Hypervolume Subset Selection Problem (HYPSSP) is then defined as
follows: Given a set P C R? of size n, r € R?, and p € IN, compute a subset
P* C P of size at most p that maximizes Zyyp, (P*, 7). We write the result of this
problem as HYPSSP (P, r, u).

e-Indicator. How well a point p = (p1, p2) € R? approximates another point
r = (r1,72) € R? in the objective space can be measured by the minimal num-
ber € by which we have to decrease p in both coordinates so that it dominates
g. More formally, we set Zeps(p,7) := max{p1 — r1,p2 — r2}. This can be used
to define how well a set P C R? approximates a set R C R?: The e-indicator
is defined as Zeps (P, R) := max,c g minye p Zeps(p, r). This denotes the minimal
number ¢ by which we have to decrease all points in P in both coordinates so
that every point in R is dominated by some point in P.

The e-Indicator Subset Selection Problem (EPSSSP) is defined as follows:
Given a set P C R? of size n, R C R of size m, and u € IN, compute a subset
P* C P of size at most  that minimizes Zeps(P*, R). We write the result of this
problem as EPSSSP(P, R, p).

3 Postprocessing

Consider any EMOA with population size p running until it performed n fitness
evaluations. Let P be the final population after n fitness evaluations and A be
the archive of all n solutions that were evaluated during the run. We describe
our postprocessing in the objective space, i.e., we let P, A C R?.

Hypervolume. For Ty, we may pick any reference point 7 € R%. The general
optimization goal is then to find a population P* of p Pareto optimal points
that maximize the hypervolume, i.e., P* = HYPSSP(F,r, u). Unfortunately, the
Pareto front is unknown. To overcome this problem, we introduce the assumption
that the archive converges to the Pareto front (as has been done in AGE [4] and is



implicit in the design of most EMOAs). Thus, our Zy,y,-postprocessing computes
the set of p points maximizing the hypervolume among all points in the archive,

PPuyp(A, 1) := HYPSSP (A, r, p).

Typically the hypervolume of PPy, (A, ) should be larger than the hypervol-
ume of P, so that our postprocessing improves the quality. In Section 5 we
will see an experimental evaluation of this claim. In any case, since P C A we
have Znyp (PPhyp(A, 1)) > Znyp(P), so our postprocessing does not decrease the
quality of the result.

e-Indicator. In case of Z.,s the general optimization goal is to find a popu-
lation P* of p Pareto optimal points that optimally approximate the Pareto
front, i.e., P* = EPSSSP(F, F, u). Again, F is unknown and we assume that the
archive converges to the Pareto front. Thus, our Ze,s-postprocessing computes
the set of p points among all points in the archive that best approximate the
archive,

PPeps(A, ,U) = EPSSSP/(A7 A, /J,)

Here, the prime in EPSSSP’ hides a minor modification that improves the ex-
perimental results, namely that we choose a population P among all p-subsets
of A that include the leftmost point of A and the bottommost point of A, i.e.,
the single-objective optima. Intuitively, this is necessary since these extrema are
needed to cover the boundaries of the Pareto front. We remark that one can
compute EPSSSP’(A, A, u) with a minor modification of [5].

Again, typically Zeps(PPeps(A, u), F) should be smaller than Ze,s(P, F), so
that our postprocessing improves the quality, and we will examine this claim
experimentally. A noteworthy difference to the hypervolume case is that our
postprocessing for Z.ps does not come with the guarantee that quality cannot
deteriorate, in fact, we will see in Section 5 that worsenings can happen but are
rare.

Complexity. For a population size of p and n fitness evaluations, NSGA-II,
SPEA2, and IBEA have a running time of O(nulog 1), while SMS-EMOA has
a running time of O(nu?). Our postprocessing takes time O(n (u + logn)) for
Thyp and O(nlogn) for Zeps [5], which is comparable to the runtime of typical
EMOAs. In our experiments, the postprocessing tends to be even faster, since
we only have to store the non-dominated points of the archive, which are much
less than n.

4 Experimental Setup

Implementation and hardware. All presented algorithms have been imple-
mented in Java using the jMetal framework [9] and run on a compute cluster
with 128 nodes, each having two Intel Xeon E5620 @ 2.40GHz. The code will is
available on http://docs.theinf.uni-jena.de/code/ssp.zip.
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Benchmark problems and EMOAs. We compared the improvement gained
by the postprocessing for the well established EMOAs NSGA-II [7], SPEA2 [22],
SMS-EMOA [11], and IBEA [19]. As test functions we used DTLZ1, DTLZ2,
DTLZ7 from DTLZ [8] with 7 variables, ZDT1-3 from ZDT [21] with 30 vari-
ables, and WFG3-6 from the [16] with 4 variables. We chose these benchmarks,
because explicit expressions for their Pareto fronts are readily available. For
measuring the hypervolume, we choose the reference point » = (11,11).

Additionally to the standard test functions, we used a simulation of a wind
turbine placement function [17], which optimizes for the maximum power and
the minimum perimeter of the convex hull formed by the turbine positions with
30 turbines on a discrete area of size 3000 x 3000.

All experimental results (medians, quartiles, ...) that we will report in the
next section are based on 700 independent runs for the benchmark problems and
100 independent runs for the turbine. As population size we used 100 for the
benchmark problems and 10 for the turbine.

Quality Evaluation. We want to compare the quality Zyy,(P,7) of a pop-
ulation P with the optimal hypervolume OPTyy,, := HYPSSP(F, 1) of any u
points on the Pareto front. For measuring the proximity to the front, we measure
IhAyp(R 1) := OPThyp — Znyp(P, ) in our experiments. However, as F is infinite
it seems impossible to compute OPT}y,. Instead of F we therefore consider a
set 7' C F of m points placed equidistantly along the front, which we can com-
pute because we know an explicit expression for F for the chosen benchmark
problems. Now we simply replace F by F” in the definition of OP T}y, to obtain
an approximation.

In case of Zcps, for the same reasons we cannot directly compute OP Ty 1=
EPSSSP(F, F, ). Moreover, we have the additional difficulty that we cannot
evaluate the quality Zeps(P, F) of a population P. Again, we replace F by its
finite approximation F’ and obtain approximations for the optimum and the
quality of a population. We use IeApS(P, F) = OPTeps — Zeps(P, F) as quality
measure.

In our experiments we choose m = 106, which makes the error smaller than
any of our reported values, and we ignore this error from now on. Note that
it is infeasible to make m much larger, since the runtime for computing the
approximation of, e.g., OPT1y,, is O(m (u + logm)).

Statistics. Additionally to calculating the (median) quality with and without
postprocessing, we also perform a non-parametric test on the significance of the
observed behavior. For this, we use the Wilcoxon-Mann-Whitney two-sample
rank-sum test at the 95% confidence level.

5 Experimental Results

Test functions. The results of our experimental study on standard test func-
tions are presented in Figure 1. The tables show the median of the indicators
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Fig. 1: Medians after 100000 evaluations. We show the value of the respective indi-
cator before and after the postprocessing. We also give the factor by which the in-
dicator got smaller (=better). Improvements of less than 0.01% are treated as equal
and marked with “—=”. The value in the brackets gives the p-value for the one-tailed
Mann-Whitney U-test. If the p-value is larger or equal 0.95, our postprocessing yields a
statistically significant improvement at the 95% confidence level. For each test function
we marked the best indicator values before and after postprocessing in blue.

IhAyp and Iés after 100000 fitness evaluations. Our postprocessing improves (or
does not worsen) the hypervolume and e-indicator for all functions and algo-
rithms. In all but six (out of 80 combinations) the improvement is statistically
significant at the 95% confidence level. In fact, the median hypervolume is always
increased and the distance to the optimal hypervolume IhAyp therefore decreased.

In 37 out of 40 cases the median IhAyp decreases by more than 0.01%. The median

reduction of IhAyp for all 40 combinations of algorithms and functions is —85.6%
(mean —60.5%). On the other hand, the median Z2, could be decreased by more

eps

than 0.01% in 36 out of 40 cases. The median reduction of Z5 is —95.2% (mean
—73.4%).

Figure 2 gives a more detailed view on how the indicators IhAyp and Zcps de-
crease over time for some exemplary combinations of MOEAs and test functions.
Shown are box-and-whisker plots that specify the median, quartiles, and whiskers
from minimum to maximum. Figures 2a and 2b show the typical behaviour of
our postprocessing for NSGA-IL. It is interesting to compare Figure 2b with Fig-
ure 3a, which shows the size of the population and of the archive over time. This
shows that our postprocessing starts to “kick in” at the time we are starting to
throw away points, where the archive size diverges from the population size.
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Figure 2c shows the visually largest improvement that our Zyyp-
postprocessing was able to achieve for any benchmark problem and MOEA.
Note that SPEA2 without postprocessing converges to a suboptimal hypervol-
ume, but our Zy,yp-postprocessing is able to correct this. Figure 2d shows a similar
profitable situation for Z.,s-postprocessing.

Since SMS-EMOA is hypervolume driven, one expects that Zjyp-
postprocessing is less effective for this algorithm compared to other EMOAs.
Indeed, Figure 1 confirms this expectation, specifically, the median improve-
ment of IhAyp for SMS-EMOA is only —6.1% (mean —20.8%). However, Figure 2e
shows that even the hypervolume driven SMS-EMOA can benefit a lot from our
Tnyp-postprocessing in some situations.

In contrast to the Zpyp-postprocessing, the Z.ps-postprocessing can (at least
theoretically) make Ze,s worse. However, Figure 2f shows the only case where
we observed that the Z.,s-postprocessing visually worsens the algorithm at some
time, namely in a thin region from 2500 to 5000 fitness evaluations. After that
point, the Z,ps-postprocessing gives again a huge improvement.

Figure 3b shows the total runtime up to n fitness evaluations of NSGA-II, the
runtime of the other algorithms is similar (with SMS-EMOA being somewhat
slower). Moreover, the runtime of the postprocessing when started after n fit-
ness evaluations is plotted. This shows that the runtime of both postprocessing
algorithms is negligible compared to the runtime of the MOEA.

Additionally, we examined whether
a hypervolume-based algorithm (like 555
SMS-EMOA) achieves more hypervol- %6 | ll%#%%ﬁﬁ%ﬁ?ﬁﬁ |
ume than a non-hypervolume-based al- 0.4 - ; %%%TT e
gorithms (like NSGA-II, SPEA2) with l%ﬁ |
TIhyp-postprocessing. To this end, we T
compared SMS-EMOA without post- Ll v ol o)
processing to the other three algorithms
with post.processmg. The Wilcoxon- Fig. 4: Experimental results for turbine:
Mann-Whitney U-test at 95% confi- Thyp (not IhAyp!) over time (evaluations)
dence level showed that NSGA-II with o SMS-EMOA before (in red) and after
Thyp-postprocessing outperforms SMS-  (in ) postprocessing.
EMOA without postprocessing on 7 out
of 10 test functions. The same holds for SPEA2, but not for IBEA. This shows
that our Zy,yp-postprocessing makes algorithms that do not aim at maximizing
Tyyp very competitive, even compared to algorithms that directly optimize Zy,yp.
As one might expect, we no longer observe this behavior if SMS-EMOA is also
allowed postprocessing: SMS-EMOA with Zyyp-postprocessing achieves higher
hypervolumes than all other algorithms with Zy,y,-postprocessing (on more than
half of the test functions).

Figure 4 shows an exemplary result for the turbine problem for SMS-EMOA.
Note that we cannot plot IhAyp as OPTyyp, is not known. We observe a signif-
icant improvement also for this real-world problem. Specifically, after 300000
evaluations our Zy,,-postprocessing increased Zyy, by 14%.
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6 Conclusion

We studied two generic postprocessing methods which have the potential to
improve the final output of any EMOA on any biobjective optimization prob-
lem. These methods choose the optimal subset of u solutions from the archive
of all solutions seen during the run of an EMOA such that the hypervolume
or e-indicator is optimized. This requires no additional fitness evaluations and
therefore zero additional ‘optimization time’. Moreover, the computation time of
our postprocessing methods is negligible compared to the computation time of
typical EMOAs. We experimentally evaluated the quality of our postprocessing
on four standard EMOAs and ten standard test functions and one real-world
problem. This showed that our postprocessing typically returns a set of solu-
tions which is about 90% closer to the optimum than the regular outcome of the
EMOAs.
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