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Abstract

In order to allow a comparison of (otherwise incomparable) sets, many evolutionary multiobjective
optimizers use indicator functions to guide the search and to evaluate the performance of search
algorithms. The most widely used indicator is the hypervolume indicator. It measures the volume of
the dominated portion of the objective space bounded from below by a reference point.

Though the hypervolume indicator is very popular, it has not been shown that maximizing the
hypervolume indicator of sets of bounded size is indeed equivalent to the overall objective of finding a
good approximation of the Pareto front. To address this question, we compare the optimal approxima-
tion ratio with the approximation ratio achieved by two-dimensional sets maximizing the hypervolume
indicator. We bound the optimal multiplicative approximation ratio of n points by 1+Θ(1/n) for arbi-
trary Pareto fronts. Furthermore, we prove that the same asymptotic approximation ratio is achieved
by sets of n points that maximize the hypervolume indicator. However, there is a provable gap be-
tween the two approximation ratios which is even exponential in the ratio between the largest and the
smallest value of the front.

We also examine the additive approximation ratio of the hypervolume indicator in two dimensions
and prove that it achieves the optimal additive approximation ratio apart from a small ratio 6 n/(n−2),
where n is the size of the population. Hence the hypervolume indicator can be used to achieve a good
additive but not a good multiplicative approximation of a Pareto front. This motivates the introduction
of a “logarithmic hypervolume indicator” which provably achieves a good multiplicative approximation
ratio.

1. Introduction

Multiobjective problems are prevalent in many different fields like economics, engineering, man-
agement, and healthcare [15, 17, 25]. Such optimization problems with multiple objectives (like time
vs. cost) often cannot be easily described by a single objective function. This implies that there is in
general no unique optimum, but a possibly very large set of incomparable solutions which form the
Pareto front. In the area of evolutionary computation, many different multi-objective evolutionary
algorithms (MOEAs) have been developed to find a Pareto set of (small) size n which gives a good
approximation of the Pareto front. A popular way to measure the quality of a Pareto set is the hyper-
volume indicator (HYP) which measures the volume of the dominated space bounded from below by
a reference point [32]. For small numbers of objectives, MOEAs which directly use the hypervolume
indicator to guide the search are the methods of choice. These include for example the generational
MO-CMA-ES [19, 29], SMS-EMOA [5, 16], HypE [3], and variants of IBEA [31, 34].

Despite its popularity, until recently there was not much rigorously known about the distribution
of solution sets which maximize the hypervolume. Such solution sets have been described as empiri-
cally “well distributed” in [16, 20, 21]. In contrast to this, it was observed that “convex regions may
be preferred to concave regions” [24, 32] as well as that HYP is “biased towards the boundary solu-
tions” [13]. It is known that some of these statements are invalid for the number of points n→∞ [2].
Auger et al. [2] proved that in this case the density of points depends only on the gradient.

Preprint submitted to Elsevier September 11, 2012



1 INTRODUCTION 2

R

x1

x2
x3

0 1 2 3
0

1

2

3

(a) Hypervolume indicator. The
shaded area shows the portion of the
objective space which is dominated
by the solution set P = {x1, x2, x3}
up to the reference point R.
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(b) Approximation ratio. The
shaded area shows the portion of
the objective space which is approx-
imated by a factor of 1.25 by the
solution set P = {x1, x2, x3}.

Figure 1: An illustration of the hypervolume indicator (cf. Section 3.2) compared to multiplicative ap-
proximation (cf. Section 2.1) for a linear front f : [1, 2] → [1, 2] with f(x) = 3 − x. The solution set
P = {x1, x2, x3} = {(1, 2), (1.6, 1.4), (2, 1)} achieves a hypervolume of HYP(P,R) = 1.865 with respect to
the reference point R = (0.5, 0.25). The multiplicative approximation ratio of P is α∗(f, P ) = 1.25.

We are interested in the approximation quality achieved by sets maximizing the hypervolume in-
dicator. For this we have to formally define how to measure the approximation quality of solutions
for multi-objective optimization problems. In the case of only one objective, the quality is typically
measured by the (multiplicative) approximation ratio. For maximization problems this is the ratio
between the optimal value and the best found value. This notion generalizes gracefully to our multi-
objective setting. We say a Pareto set is an α-approximation if it approximately dominates the Pareto
curve, that is, if for every point on the Pareto curve, the Pareto set contains a point that is at least as
good approximately (within a factor α) in all objectives. For a sample of papers using this approach
for classic (non-evolutionary) algorithms, see [11, 12, 14, 26, 27, 30] and references therein.

The advantage of the approximation ratio is that it gives a meaningful scalar value which allows
us to compare the quality of solutions between different functions, different population sizes, and even
different dimensions. In contrast to this, the hypervolume indicator always depends on the chosen
reference point (cf. Section 3.1). A specific dominated volume does not give a priori any information
on how well a front is approximated. This (often unwanted) freedom of choice not only changes the
distribution of the points, but also makes the hypervolumes of different solutions measured relative to
a reference point very hard to compare. This is even more true for algorithms (e.g. SMS-EMOA [5, 16])
which dynamically change the reference point.

The choice by a decision maker between different Pareto fronts always remains subjective and
there is no generally accepted optimization goal. However, if we are, for example, interested in a good
multiplicative approximation, an “ideal” indicator would directly measure the approximation quality
of a solution set P by returning the smallest α ∈ R+ such that P is an α-approximation [23, 33].
This corresponds to the unary multiplicative ε-indicator [35] where the reference set is the (possibly
infinite) Pareto front. Unfortunately, such an indicator cannot be used in practice because the Pareto
front is usually unknown.

This leads to the question of how close the approximations achieved by realistic indicators such as
the hypervolume indicator come to those that could be obtained by such an “ideal” indicator. For this
we consider the approximation ratio of a solution set maximizing the hypervolume.

At first glance, it is not obvious why maximizing the hypervolume indicator should yield a good
approximation of the Pareto front. However, Friedrich, Horoba, and Neumann [18] were the first to
examine the approximation ratio of fronts maximizing the hypervolume. For linear and reciprocal
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Figure 2: Function fε(x) as defined in equation (1.1) to show that depending on the scaling A, the approx-
imation ratio of small solution sets with maximum hypervolume can be arbitrarily bad.

functions, they were able to prove that maximizing HYP achieves an optimal approximation, while
on other functions they showed empirically that the two might differ. In contrast, in this paper we
provide a rigorous analysis of the approximation quality of hypervolume maximizing sets. So far this
issue had been wide open even though it is crucial for understanding the implicit optimization goal
when using the hypervolume indicator as a quality measure for populations.

An Illustrative Example. We first give a simple example of why sets maximizing the hypervol-
ume can be very bad approximations of the front. To define this properly, let us look at a maximization
problem with a front that can be described by a monotonically decreasing function f : [a,A]→ [b, B]
with 0 < a < A, 0 < b < B. Then the approximation ratio (cf. Section 2.1) of a set of points
P := {(x1, y1), . . . , (xn, yn)} (called the solution set) is the least α > 1 such that for each x ∈ [a,A]
there is an (xi, yi) ∈ P with

x 6 αxi and f(x) 6 α yi.

The approximation ratio does not depend on the scaling of [a,A] and [b, B]. This can be seen by
observing that for fixed constants µ, ν > 0, the function f ′ : [µa, µA]→ [ν b, ν B] with f ′(x) = ν f(x/µ)
achieves the same approximation ratio α with the solution set P ′ := {(µx1, νy1), . . . , (µxn, νyn)}.
However, the approximation ratio significantly depends on the proportions A/a and B/b. To see this,
let us look at a function fε : [1, A]→ [1, A] with 0 < ε < A− 1 and

fε(x) :=

{
A for x 6 1 + ε,

A/x for x > 1 + ε.
(1.1)

A visualization of the function can be found in Figure 2. Note that A/a = B/b = A in this example. We
want to see how well a single point from the set {(x, fε(x)) | x ∈ [1, A]} can maximize the hypervolume
and/or minimize the approximation ratio. By definition, the hypervolume1 of a point (x, fε(x)) is

HYP({(x, fε(x))}) =

{
xA for x 6 1 + ε,

A for x > 1 + ε.

1We are assuming here that the size of the dominated space is measured relative to a common reference point
R = (0, 0). For the formal definition of HYP, see equation (3.2).
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while its multiplicative approximation ratio2 is

α∗(fε, {(x, fε(x))}) = max{A/x,A/fε(x)} =

{
A/x for x 6

√
A ,

x for x >
√
A .

The hypervolume is therefore maximized at exactly one point on the front, namely (1 + ε, 1). It
achieves an approximation of A/(1 + ε). The best approximation of

√
A is achieved by (

√
A ,
√
A ).

Hence for ε → 0, the approximation ratio of the solution set maximizing the hypervolume is off by a
factor of

√
A from the optimal ratio. This shows that the approximation ratio of sets maximizing the

hypervolume can be very large for small numbers of points. However, this paper proves that this is
not the case for sufficiently large solution sets.

This paper summarizes and extends our previous work presented in a sequence of three conference
papers [8–10]. The first one was [9] which examined the multiplicative approximation factor of the
hypervolume indicator. Afterwards, [8] studied the additive approximation factor and, finally, [10]
proposed the logarithmic hypervolume indicator. The conference versions only discuss one particular
aspect each and do not contain the full proofs. The majority of the material presented in Sections 4
to 6 is unpublished so far.

Our Results. We are not interested in bounds for the approximation ratio on specific functions.
Instead, we take a worst-case perspective for two objective optimization problems and look at all3

functions f : [a,A]→ [b, B] with 0 < a < A, 0 < b < B and f(a) = B, f(A) = b.
We show that for all possible Pareto fronts the multiplicative approximation ratio achieved by a

solution set of size n maximizing the hypervolume indicator is 1 + Θ(1/n) (cf. Theorem 3.1)4. This
is shown to be asymptotically equivalent to the optimal multiplicative approximation ratio (cf. Corol-
lary 2.4), which implies that the hypervolume indicator is guiding the search in the correct direction
for sufficiently large n. However, the constant factor hidden by the Θ might be larger for the set
maximizing hypervolume compared to the set with best possible approximation ratio. In fact, the
multiplicative approximation ratio depends on the ratio A/a between the largest and smallest co-
ordinate5. Using this notation, our precise result is the computation of the optimal multiplicative
approximation ratio as 1 + log(A/a)/n (cf. Corollary 2.4). We further show that the multiplicative
approximation ratio for a set maximizing the hypervolume is strictly larger, namely on the order of
at least 1 +

√
A/a /n (cf. Theorem 3.2). This implies that the multiplicative approximation ratio

achieved by a set maximizing the hypervolume can be exponentially worse in the order of the ratio
A/a. Hence for numerically very wide-spread fronts there are Pareto sets which give a much better
multiplicative approximation than Pareto sets which maximize the hypervolume.

These results about the multiplicative approximation ratio can be seen as bad news for the hy-
pervolume indicator. On the other hand, we examine the additive approximation ratio and observe
that while the multiplicative approximation ratio is determined by the ratio A/a, the additive approx-
imation ratio is determined by the width of the domain A − a. We prove that the optimal additive
approximation ratio is (A−a)/n (cf. Theorem 2.8) and upper bound the additive approximation ratio
achieved by a set maximizing the hypervolume by (A − a)/(n − 2) (cf. Theorem 3.3). This is a very
strong statement, as apart from a small factor of n/(n− 2), the additive approximation ratio achieved
when maximizing the hypervolume is optimal. This shows that the hypervolume indicator yields a
much better additive than multiplicative approximation.

2For the formal definition of multiplicative approximation see Definition 2.1.
3We restrict our attention to functions where there exists a set maximizing the hypervolume indicator. For technical

details, see the definition of F at the beginning of Section 2.
4The precise statements of this and the following results are slightly more technical. For details see the respective

theorems.
5The approximation ratio depends on the ratios in both dimensions. To simplify the presentation in the introduction,

we assume that the ratio A/a in the first dimension is equal to the ratio B/b in the second dimension.
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It remains to find a natural indicator which provably achieves a good multiplicative approximation
ratio. As this paper shows that the hypervolume gives a good additive approximation, we can use this
to define an indicator which achieves a good multiplicative approximation: Logarithmize all axes before
computing the classical hypervolume. We call this indicator the logarithmic hypervolume indicator.
Note that in the setting of weighted hypervolume indicators [34] this corresponds to a reciprocal
weight function (cf. Section 3.3). We prove that the logarithmic hypervolume indicator achieves a
multiplicative approximation ratio of less than 1 + log(A/a)/(n− 2) (cf. Corollary 3.6), which is again
optimal apart from the factor n/(n−2). This indicates that as long as a multiplicative approximation
is desired, the logarithmic hypervolume indicator should be preferred over the classic hypervolume
indicator.

Outline. The outline of the paper is as follows. In Section 2 we define the notation used and
the concepts of multiplicative and additive approximation ratios. Section 3 introduces the weighted,
standard and logarithmic hypervolume indicator and presents our results on their approximation ratios.
Afterwards, Section 4 justifies why we chose the definitions as they are. Most of the proofs of the paper
are in the largest Section 5. We finally discuss how to translate our results to minimization problems
in Section 6.

2. Preliminaries

We consider only the case of maximization problems on two objectives where there is a mapping
from an arbitrary search space to an objective space which is a subset of R2. For minimization
problems, see Section 6. Throughout this paper, we will work only on the objective space. For points
from the objective space we define the following dominance relation:

(x1, y1) � (x2, y2) iff x1 6 x2 and y1 6 y2,

(x1, y1) ≺ (x2, y2) iff (x1, y1) � (x2, y2) and

(x1, y1) 6= (x2, y2).

We restrict ourselves to Pareto fronts that can be written as {(x, f(x)) | x ∈ [a,A]} where
f : [a,A] → [b, B] is a monotonically decreasing, upper semi-continuous6 function with f(a) = B,
f(A) = b for some reals a < A, b < B. We write F = F[a,A]→[b,B] for the set of all such functions f .
We will use the term front for both the set of points {(x, f(x)) | x ∈ [a,A]} and the function f .

Note that in contrast to the standard definition of a Pareto front, we consider a larger class of
functions and do not require the functions f to be strictly monotonically decreasing. This has the
advantage that we can handle step functions, as for example depicted in Figure 3. Observe that such
a function can be thought of as modeling a discrete front (namely the set of solid black points in
Figure 3). Moreover, sets maximizing the hypervolume indicator never contain points in the inner
part of a constant interval of a function. Therefore, the sets maximizing the hypervolume on the
discrete front are the same as the sets maximizing the hypervolume on the modeling step function.
Since dominated points do not contribute to the hypervolume, our results carry over to discrete fronts.

The condition of f being upper semi-continuous cannot be relaxed further as without it the front
lacks a certain symmetry in the two objectives: This condition is necessary and sufficient for the
existence of the inverse function f−1 : [b, B]→ [a,A] defined by setting

f−1(y) := max{x ∈ [a,A] | f(x) > y}.

6Semi-continuity is a weaker property than normal continuity. A function f is said to be upper semi-continuous if
for all points x of its domain, lim supy→x f(y) 6 f(x). Intuitively speaking this means that for all points x the function
values for arguments near x are either close to f(x) or less than f(x). For more details see e.g. Rudin [28].
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Without upper semi-continuity, this maximum does not necessarily exist. Furthermore, this condition
implies that there is a set maximizing the hypervolume indicator (see Section 4 for details).

Note that the set F of fronts we consider is a very general one. Most papers that theoretically
examine the hypervolume indicator assume that the front is continuous and differentiable (e.g. [1, 2,
18]), and are thus not able to give results about step functions, which we can.

Let n ∈ N. For fixed [a,A], [b, B] ⊂ R we call a set P = {p1, . . . , pn} ⊂ [a,A] × [b, B] a solution
set (of size7 n) and write P := Pn for the set of all such solution sets. A solution set P is said to be
feasible for a front f ∈ F , if y 6 f(x) for all p = (x, y) ∈ P . We write Pf := Pfn ⊆ P for the set of all
solution sets (of size n) that are feasible for f .

To increase readability we occasionally write P + r for P ∪ {r}, where P ⊂ R2 and r ∈ R2, and
similarly P − r for P \ {r}.

A common approach to measure the quality of a solution set is to use unary indicator functions [35].
They assign to each solution set a real number that somehow reflects its quality, i.e., we have a function
Ind :

⋃∞
n=1 Pn → R. As throughout the paper n ∈ N is fixed, it is sufficient to define an indicator

Ind : Pn → R. Note that as we are only working in the objective space, we slightly deviate from the
usual definition of an indicator function, where the domain is the search space, not the objective space.

In the following section we introduce notions of multiplicative and additive approximation quality.

2.1. Multiplicative Approximation

When attempting to maximize an indicator function, we actually try to find a solution set P ∈ Pfn
that constitutes a good approximation of the front f . According to the custom for approximation
algorithms, we measure the quality of a solution by its multiplicative approximation ratio. This can
be transferred to the world of multi-objective optimization. For this we use the following definition of
Papadimitriou and Yannakakis [26] which was also used in [8–10, 18, 22, 23]. Note that it is crucial to
require a, b > 0 here, as it is unclear what multiplicatively approximating a negative number should
mean. We will always assume this when talking about multiplicative approximation throughout the
paper.

Definition 2.1. Let f ∈ F and P ∈ Pfn . The solution set P is a multiplicative α-approximation of
f if for each x̂ ∈ [a,A] there is a p = (x, y) ∈ P with

x̂ 6 αx and f(x̂) 6 α y (2.1)

where α ∈ R, α > 1. The multiplicative approximation ratio of P with respect to f is defined as

α∗(f, P ) := inf{α ∈ R | P is a multiplicative

α-approximation of f}.

The quality of an algorithm which calculates a solution set of size n for each Pareto front in F has to
be compared with the respective optimal approximation ratio defined as follows.

Definition 2.2. For fixed [a,A], [b, B], and n, let

α∗OPT := sup
f∈F

inf
P∈Pf

n

α∗(f, P ).

The value α∗OPT is chosen such that every front in F can be approximated by n points to a ratio of
α∗OPT , and there is a front which cannot be approximated better. In Section 5.1 we show the following
two results.

Theorem 2.3. α∗OPT = min{A/a,B/b}1/n.

7Note that the points p1, . . . , pn are not required to be pairwise different, so a solution set of size n has between 1
and n elements. This implies Pn ⊂ Pm for n < m.
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Corollary 2.4. For all n > log(min{A/a,B/b})/ε and ε ∈ (0, 1),

α∗OPT > 1 +
log(min{A/a,B/b})

n
,

α∗OPT 6 1 + (1 + ε)
log(min{A/a,B/b})

n
.

We further want to measure the approximation of the solution set of size n maximizing an indicator
Ind . As there might be several solution sets maximizing Ind , we consider the worst case and use the
following definition.

Definition 2.5. For a unary indicator Ind and fixed [a,A], [b, B], n, and f ∈ F let

PfInd := PfInd,n :=
{
P ∈ Pfn

∣∣ P ∈ argmax
Q∈Pf

n

Ind(Q)
}

and

α∗Ind := α∗Ind,n := sup
f∈F

sup
P∈Pf

Ind,n

α∗(f, P ).

The set PfInd is the set of all feasible solution sets (of size n) that maximize Ind on f . The value α∗Ind
is chosen such that for every front f in F every solution set maximizing Ind approximates f by a ratio
of at most α∗Ind . Observe that we take a worst case viewpoint there, as we take the supremum over
all solution sets maximizing the hypervolume indicator. This may seem unfair to the hypervolume
indicator; however, Lemma 4.2 proves that it makes no difference whether we take the worst or best
case perspective at this point, i.e., whether we take the supremum or infimum over P ∈ PfInd .

Note that we assume here that there exists a solution set that maximizes the indicator, i.e., we
assume that the set PfInd is non-empty. Since we restrict the fronts to be upper semi-continuous, this
will be the case for all the indicators we consider, as shown in Lemma 4.1.

2.2. Additive Approximation

Depending on the problem at hand, one can also consider an additive approximation ratio. We use
the following definition, analogous to Definition 2.1.

Definition 2.6. Let f ∈ F and P ∈ Pfn . The solution set P is an additive α-approximation of f if
for each x̂ ∈ [a,A] there is a p = (x, y) ∈ P with

x̂ 6 x+ α and f(x̂) 6 y + α (2.2)

where α ∈ R, α > 0. The additive approximation ratio8 of P with respect to f is defined as

α+(f, P ) := inf{α ∈ R | P is an additive

α-approximation of f}.

One thing that may come to mind when reading this definition is the following. It may be that
the objectives are unbalanced, meaning that we would like to give them some kind of weight in the
approximation. A possible definition for additive approximation incorporating this kind of weight uses
weights wx, wy > 0 for the objectives and defines the point (x̂, f(x̂)) to be approximated by (x, y) ∈ P
by the ratio α iff x̂ 6 x + wxα and f(x̂) 6 y + wyα. This makes perfect sense and may be preferred
over the standard unweighted definition in certain cases. However, it is already accounted for by the
unweighted definition: After rescaling the x-axis by a factor of 1/wx and the y-axis by a factor of
1/wy we have x̂′ 6 x′ + α iff x̂ 6 x + wxα and f ′(x̂′) 6 y′ + α iff f(x̂) 6 y + wyα (where a primed

8To match the notation for multiplicative approximation, we call this value a “ratio”, although “difference” might be
a more precise term.
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Multiplicative approximation Additive approximation

OPT 1 +
log(min{A/a,B/b})

n
(Cor. 2.4)

min{A− a,B − b}
n

(Thm. 2.8)

HYP 1 +

√
A/a +

√
B/b

n− 4
(Thm. 3.1)

√
(A− a) (B − b)

n− 2
(Thm. 3.3)

logHYP 1 +

√
log(A/a) log(B/b)

n− 2
(Cor. 3.6) open

Table 1: Theoretical results for the optimal approximation ratio and upper bounds for the approximation
ratios of HYP and logHYP. See the cited theorems for the precise statements.

variable denotes the variable after rescaling). Hence, all the results in this paper do apply to the
weighted definition of additive approximation, one just has to rescale the axes correctly. Note that
this kind of weight corresponds to a weighting of the form x̂ 6 αwxx and f(x̂) 6 αwyy for multiplicative
approximation.
Going on with the definitions, we are again interested in the optimal approximation ratio for Pareto
fronts in F . We use the following definition, analogous to Definition 2.2.

Definition 2.7. For fixed [a,A], [b, B], and n, let

α+
OPT := sup

f∈F
inf
P∈Pf

n

α+(f, P ).

In Section 5.5 the following result will be proven using a relation between additive and multiplicative
approximations and Theorem 2.3.

Theorem 2.8. α+
OPT =

min{A− a,B − b}
n

.

Moreover, the analog for α∗Ind is defined similarly to Definition 2.5.

Definition 2.9. For a unary indicator Ind and fixed [a,A], [b, B], n, and f ∈ F let

α+
Ind := α+

Ind,n := sup
f∈F

sup
P∈Pf

Ind,n

α+(f, P ).

Again, Lemma 4.2 shows that it makes no difference whether we take a supremum or infimum over
P ∈ PfInd .

3. Indicators and their Approximation Quality

This section presents the majority of the results of this paper. It is structured along the different
indicators. First, we recap the general framework of the weighted hypervolume indicator. Afterwards,
the standard, logarithmic, and hybrid hypervolume indicators are introduced and our respective results
are presented. We also discuss briefly the well-known ε-indicator. The results are summarized in
Table 1. Most proofs are deferred to Section 5.

3.1. Weighted Hypervolume Indicator

The classical definition of the hypervolume indicator is the volume of the dominated portion of
the objective space relative to a fixed footpoint called the reference point R = (Rx, Ry) � (a, b). As a
general framework for our two indicators we use the more general weighted hypervolume indicator of
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Zitzler et al. [34]. It weights points with a weight distribution w : R2 → R>0 (or at least w : [Rx, A]×
[Ry, B]→ R>0), of which we require that the integral

areaw(x1, y1, x2, y2) :=

∫ x2

x1

∫ y2

y1

w(x, y) dy dx (3.1)

exists. The hypervolume HYPw(P,R) (or HYPw(P ) for short) of a solution set P ∈ P is then defined
as

HYPw(P ) := HYPw(P,R)

:=

∫∫
R2

AP,R(x, y)w(x, y) dy dx (3.2)

where the attainment function AP,R : R2 → R is an indicator function on the objective space which
describes the space above the reference point that is weakly dominated by P . Formally, AP,R(x, y) = 1
if (Rx, Ry) � (x, y) and there is a p = (px, py) ∈ P such that (x, y) � (px, py), and AP,R(x, y) = 0
otherwise.

The original purpose of the weighted hypervolume indicator was to allow the decision maker to
stress certain regions of the objective space. In this paper we unleash one of its hidden powers by
showing that one gets a better multiplicative approximation by choosing the right weight distribution.

3.2. Standard Hypervolume Indicator

If w is the all-ones functions 1 with 1(x, y) = 1 for all x, y ∈ R, the above definition matches
the standard definition of the hypervolume indicator. In this case we write HYP = HYP1 for short.
Bounds for this indicator are of particular interest. We prove in Section 5.2 an upper bound for α∗HYP .
As this is a key part of this paper, we give the precise result there in Theorem 5.4. Here we give only
the following slightly weaker, but more readable bound, which immediately follows from Theorem 5.4.

Theorem 3.1. Let f ∈ F , n > 4, and let R = (Rx, Ry) be the reference point. If we have

(n− 2)(a−Rx) >
√
Aa and

(n− 2)(b−Ry) >
√
Bb

then

α∗HYP 6 1 +

√
A/a +

√
B/b

n− 4
.

This shows that for sufficiently large n or a sufficiently far away reference point the hypervolume yields
a multiplicative approximation with optimal asymptotic behavior in n. However, the constant factor is√
A/a +

√
B/b instead of the optimal log(min{A/a,B/b}) (see Corollary 2.4), so even for A/a = B/b

it is exponentially worse than the optimal constant. The following result shows that the above bound
is more or less tight. Its proof is given in Section 5.3.

Theorem 3.2. Let n > 4, A
a = B

b > 13, and R = (Rx, Ry) � (0, 0) be the reference point. Then

α∗HYP > 1 +
2
√
A/a− 1

3(n− 1)
.

This shows that the constant factor is indeed exponentially worse.
On the other hand, the following theorem (proven in Section 5.4) shows that HYP has a close-to-

optimal additive approximation ratio.

Theorem 3.3. If n > 2 and

(n− 2) min{a−Rx, b−Ry} >
√

(A− a) (B − b)
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we have

α+
HYP 6

√
(A− a) (B − b)

n− 2
.

First note that the assumption is fulfilled if n is large enough or if the reference point is sufficiently
far away from (a, b). Hence this is no real restriction. Moreover, compare this result to the bound for
the optimal additive approximation ratio of Theorem 2.8. This shows that for A − a ≈ B − b, α+

HYP

is very close to α+
OPT . Further, for A− a� B − b (or A− a� B − b) the constant in Theorem 3.3 is

the geometric mean of A− a and B − b while in Theorem 2.8 it is instead the minimum of both. As
there is a provable gap of log vs. square root of A/a for the multiplicative approximation ratio, this
proves that HYP yields a much better additive approximation than a multiplicative one.

3.3. Logarithmic Hypervolume Indicator

Now we know an indicator yielding a good additive approximation, namely the (standard) hy-
pervolume indicator HYP. For finding a good multiplicative approximation HYP turned out to be
inapplicable, at least for large spreads A/a and B/b in the worst case. We propose the logarith-
mic hypervolume indicator to address this problem. For a solution set P ∈ P and reference point
R = (Rx, Ry) with (Rx, Ry) � (a, b), Rx, Ry > 0 we define

logHYP(P,R) := HYP1(logP, logR),

where logP := {(log x, log y) | (x, y) ∈ P} and logR := (logRx, logRy). Here, as in the standard case,
the reference point is a parameter to be chosen by the user. Note that we do not really change the
axes of the problem to logarithmic scale: We only change the calculation of the hypervolume, not the
problem itself.

The above definition is nice in that it allows logHYP to be computed using existing imple-
mentations of algorithms for HYP, only wiring the input differently, i.e., logarithmizing everything
beforehand.

It is very illustrative, though, to observe that the logarithmic hypervolume indicator fits very well
in the weighted hypervolume framework: An equivalent definition of logHYP is

logHYP(P,R) := HYPŵ(P,R),

where ŵ(x, y) = 1/(xy) is the appropriate weight distribution.

Lemma 3.4. HYP1(logP, logR) = HYPŵ(P,R).

Proof. Let {(x1, y1), . . . , (xk, yk)} ⊆ P be the points in P not dominated by any other point in P with
x1 < . . . < xk, y1 > . . . > yk. With x0 := Rx we can then compute HYP as

HYP1(logP, logR) =

k∑
i=1

∫ log xi

log xi−1

∫ log yi

logRy

1 dy dx

=

k∑
i=1

∫ xi

xi−1

∫ yi

Ry

1

xy
dy dx

= HYPŵ(P, R).

The next result, to be shown in Section 5.5, shows that the logarithmic hypervolume indicator yields a
good multiplicative approximation, just as the standard hypervolume indicator yields a good additive
approximation.

Theorem 3.5. If n > 2 and

(n− 2) log min{a/Rx, b/Ry} >
√

log(A/a) log(B/b)
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we have

α∗logHYP 6 exp

(√
log(A/a) log(B/b)

n− 2

)
.

Note that the assumption is fulfilled if n is large enough or we choose the reference point near enough
to (0, 0). This is a very good upper bound compared to α∗OPT = exp(min{log(A/a), log(B/b)}/n).
Also compare the next corollary to Corollary 2.4. Its proof is analogous to the one of Corollary 2.4.

Corollary 3.6. For ε ∈ (0, 1) and all

n > 2 +
√

log(A/a) log(B/b) /min{ε, log(a/Rx), log(b/Ry)}

we have

α∗logHYP 6 1 + (1 + ε)

√
log(A/a) log(B/b)

n− 2
.

Hence we get a much better constant factor than in the bound of α∗HYP .

3.4. Hybrid Hypervolume Indicator

The results of the preceding sections imply that guiding the search with the hypervolume indicator
is an appropriate choice if we want an additive approximation. On the other hand, guiding the search
with the logarithmic hypervolume indicator is preferable if we want a multiplicative approximation.

Of course, it may happen that one wants an additive approximation of some objectives and a
multiplicative approximation of others. We propose a simple rule of thumb for this case: Logarithmize
all objectives of the second type, i.e., those that should get multiplicatively approximated (leaving the
objectives of the first type as they are) and then compute the hypervolume indicator. This hybrid
indicator should work as intended, i.e., maximizing it should give a good additive approximation of
the objectives of the first type and a good multiplicative approximation of the objectives of the second
type.

As an illustration, assume we have two objectives, x and y, and want to approximate x additively
and y multiplicatively. Then we use the hybrid indicator Ind(P,R) := HYP(P ′, (Rx, logRy)), where
P ′ = {(xi, log yi) | (xi, yi) ∈ P} and R is again a reference point. This indicator logarithmizes the
y-axis and applies HYP afterwards. Along the lines of the proofs in this paper one can show that
maximizing Ind on a front f yields a solution set P with the following property: For any x̂ ∈ [a,A]
there is a p = (x, y) ∈ P with

x̂ 6 x+ α+ and f(x̂) 6 y α∗,

where α∗ = expα+ and α+ 6
√

(A−a)(log(B)−log(b))
n−2 . This means, that we get an additive approxima-

tion of x and a multiplicative approximation of y, as desired.

3.5. ε-Indicator

Another important class of indicators which we want to discuss only briefly are the binary
ε-indicators [23, 33]. For two solution sets P and Q its additive version is defined as

Iε+(P,Q) := max
(x1,y1)∈P

min
(x2,y2)∈Q

max {x1 − x2, y1 − y2}

which is the smallest value ε by which we have to shift Q along both axes such that it dominates P .
This binary indicator favors P over Q if Iε+(P,Q) > Iε+(Q,P ). The multiplicative ε-indicator is
defined analogously as

Iε∗(P,Q) := max
(x1,y1)∈P

min
(x2,y2)∈Q

max

{
x1
x2
,
y1
y2

}
.
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This definition appears to be much closer to the definition of additive or multiplicative approxima-
tion (cf. Definitions 2.1 and 2.6) than the definition of the hypervolume indicator. The ε-indicator can
even be seen as a relaxation of the “ideal” indicator noted in the introduction. In light of the above
results regarding the hypervolume indicator it is natural to ask whether the ε+-indicator also yields a
good additive approximation and the ε∗-indicator also yields a good multiplicative approximation.

Unfortunately, this is not a well posed question as �Iε is not a total order. The reason for this is
that it lacks transitivity as it contains deteriorative cycles [4], i.e., an algorithm trying to maximize
based on �Iε may return to a set of search points that it has obtained before. This implies that
there is, in general, no solution set P that is maximal for the relation �Iε . Hence statements on the
approximation ratio of sets maximizing the ε-indicator are not meaningful. It is an open question how
to describe the approximation quality achieved by the ε-indicator.

4. Two technicalities

Before we prove the claims from the previous section, we consider two details of the definitions
which might look counterintuitive the first time encountered. These are (i) that we require the fronts
to be upper semi-continuous and (ii) that the definition of α∗Ind is the “worst case” approximation
ratio over all sets maximizing the indicator and not, e.g., the “best case”.

4.1. Why we need upper semi-continuity

We show that without upper semi-continuity there does not necessarily exist a solution set maxi-
mizing HYP. To see this, consider the front f : [1, 2]→ [1, 2] with

f(x) :=

{
1 for x = 2,

2 for 1 6 x < 2.
(4.1)

and reference point R = (0, 0). The one-element solution set P = {(2−ε, 2)} achieves HYP(P ) = 4−2 ε
for each ε > 0. However, no solution set P ′ can have HYP(P ′) = 4, as f(2) = 1 < 2. Thus, there
exists no solution set maximizing HYP, as there is an infinite series of solution sets with larger and
larger hypervolume indicator, but the limit supP∈Pf HYP(P ) = 4 is not taken by any solution set.

Next we prove that conditioning on fronts being upper semi-continuous implies that there are sets
maximizing the weighted hypervolume indicator. In more detail, there is a solution set P of size n
which maximizes HYP among all solution sets of size n.

Lemma 4.1. Let f ∈ F , n ∈ N, and w : R2 → R>0 be a weight function. Then there exists a (not
necessarily unique) solution set P ∈ Pfn that maximizes the weighted hypervolume indicator HYPw on
Pfn .

Proof. Consider the sets S := {(x, y) ∈ [a,A]× [b, B] | y 6 f(x)} of feasible points for the front f , and
Sn, the n-tuples of feasible points. Let us denote by π the direct mapping from Sn into Pf given by
((x1, y1), . . . , (xn, yn)) 7→ {(x1, y1), . . . , (xn, yn)}. Consider the map

φ : Sn
π

−−−−−→ Pf
HYPw(·,R)

−−−−−−−−−−→ R.

Using the notion areaw from Section 3.1, we can explicitly express the map φ for a feasible tuple
((x1, y1), ..., (xn, yn)) using an inclusion-exclusion formula,

φ((x1, y1), . . . , (xn, yn))

=
∑

∅6=M⊆{1,...,n}

(−1)|M |+1 areaw(Rx, Ry,min
i∈M

xi,min
i∈M

yi).
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Since areaw(·), as defined in equation (3.1), is continuous, this shows that the map φ is continuous
too.

We now show that S is compact. To see this, take any sequence of points (xi, yi)i∈N in S. In [a,A]×
[b, B] (which is a superset of S) this sequence has a convergent subsequence which we again call
(xi, yi)i∈N. For this convergent subsequence we have limi→∞ yi 6 limi→∞ f(xi) 6 f(limi→∞ xi),
where we used (xi, yi) ∈ S and the upper semi-continuity of f . This shows that the limit again lies
in S, and thus the compactness of S. Compactness of Sn follows trivially.

This proves that φ takes its maximum as it is a continuous function on a compact set. Moreover,
since π is surjective, HYP( · , R) takes its maximum on Pf , which is what was to be shown.

Note that assuming upper semi-continuity is sufficient for the existence of solution sets which
maximize HYP, but it is not necessary. There are fronts which are not upper semi-continuous in
general, but still have a unique HYP-maximal solution set, since they are only not upper semi-
continuous in parts where there are no HYP-maximizing points on the front (for fixed n). We need
upper semi-continuity, however, for the existence of the inverse function f−1 as defined in Section 2,
which implies symmetry of the two objectives.

4.2. Why we consider the worst-case approximation ratio

We show that in the definition of the approximation ratio of the hypervolume indicator we can
replace “worst case” by “best case” and not change the value of α∗Ind or α+

Ind .
Before doing that, we confirm that the solution set maximizing the hypervolume indicator is indeed

not unique in general. To show this, let us look again at the introductory example function fε from
equation (1.1). By choosing ε = 0 we get a front f0 : [1, A]→ [1, A] with f0(x) = A/x. With reference
point R = (0, 0), we get HYP({(x, f(x))}) = x (A/x) = A for all x ∈ [1, A]. Therefore the set of solu-

tion sets of size n = 1 which maximize HYP is far from unique as PfHYP = {{(x, f(x))} | x ∈ [1, A]}.
Moreover, this example shows that the approximation ratios of two solution sets maximizing HYP can
differ significantly as the solution set {(1, A)} achieves an approximation ratio of A, while the solution
set {(

√
A ,
√
A )} achieves an approximation ratio of

√
A . However, by taking the supremum over all

functions in F this difference is nullified as shown by the following lemma.
Here, we consider the definition of α+

HYP (cf. Definition 2.9) as the worst or best case approximation
ratio of the sets maximizing the hypervolume indicator and show that both values coincide.

Lemma 4.2. In the definition of α+
HYP it does not matter whether we take the best or worst case over

the solution sets maximizing the hypervolume, that is,

sup
f∈F

sup
P∈Pf

HYP

α+(f, P ) = sup
f∈F

inf
P∈Pf

HYP

α+(f, P ).

Proof. We show that for every front f ∈ F and solution set P ∈ PfHYP with α+(f, P ) > 1 and for
each ε > 0, there is a front f ′ ∈ F that has only one solution set P ′ maximizing the hypervolume
indicator on f ′, and we have |α+(f, P )−α+(f ′, P ′)| < ε. This means that when taking the supremum
we can restrict our attention to fronts that have only one solution set maximizing the hypervolume,
but for such fronts both definitions from above agree, which proves the claim.

Consider such f and P and a point r = (x, f(x)) that is not approximated by a ratio > α+(f, P )−ε′,
ε′ > 0. We know that such a point exists by definition of α+(f, P ). For sufficiently small ε′, r is not
dominated by any point in P , as α+(f, P )− ε′ > 1.

Now, P = {p1, . . . , pn} has n pairwise different points pi (otherwise P + r would have greater
hypervolume than P ) and there are no points pi, pj ∈ P with pi ≺ pj (otherwise P − pi + r would
have greater hypervolume), hence we can assume that pi = (xi, yi) with a 6 x1 < . . . < xn 6 A and
B > y1 > . . . > yn > b. Moreover, we have yi = f(xi) (otherwise P − pi + (xi, f(xi)) would have
greater hypervolume).
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Let us consider the step function defined by the points pi := (xi, yi), i = 0, . . . , n+ 2 where we set
(x0, y0) = (a,B), (xn+1, yn+1) = (A, b) and (xn+2, yn+2) = r. Formally, this step function is

f̂(x) = max{yi | i ∈ {0, . . . , n+ 2}, xi > x}.

We have f̂(x) 6 f(x) for all x ∈ [a,A]; therefore no solution set that is infeasible for f is feasible for f̂ .

Moreover, the solution set P is still feasible for f̂ . Hence, P still maximizes the hypervolume indicator
on f̂ .

It is easy to see that the solution sets maximizing the hypervolume indicator on f̂ are among the
sets PI := {pi | i ∈ I}, I ⊂ {0, . . . , n+ 2}, |I| = n, as any other solution set is dominated by some PI .
We need to make sure that the solution set P = P{1,...,n} has strictly greater hypervolume than any

other PI . For this we modify the front f̂ again, but do a case distinction.
Case 1: We have y1 < B or xn < A. By symmetry we have to look at only one of these cases, so

let y1 < B. We change the points pi (1 6 i 6 n) slightly by setting y′i := yi + (n + 1 − i) ε′, calling
the resulting points p′i := (x′i, y

′
i) := (xi, y

′
i) (with p′i := pi for i = 0, n + 1, n + 2) and the induced

step function of p′0, . . . , p
′
n+2 by the name f ′. Again, the solution sets maximizing the hypervolume

indicator on f ′ are among the sets P ′I := {p′i | i ∈ I}, I ⊂ {0, . . . , n + 2}, |I| = n. Now, consider
the space dominated by a solution set PI . When going from PI to P ′I this space increases in the
y-direction. Observe that at a particular point x with xi−1 < x 6 xi, the y-coordinate increases by at
most

ε′(n+ 1−min{j > i | j ∈ I ∪ {n+ 1}}),

since the only increase can come from the point pj ∈ PI with the next larger x-coordinate. Here we
add n + 1 to I so that the total term gets 0 if there is no point pi (1 6 i 6 n) with the next larger
x-coordinate. Note that the increase at a particular x can be smaller than this term, if the next larger
point is pn+2 = r, which was not increased at all. Also note that for P = P{1,...,n} this upper bound
is met with equality for all x ∈ [a,A]. Thus, we have for all I

HYP(P ′I)−HYP(PI)

6
n∑
i=1

ε′(xi − xi−1)(n+ 1−min{j > i | j ∈ I ∪ {n+ 1}}),

with equality for I = {1, . . . , n}. Now, it is easy to see that this difference has a unique maximum
for I = {1, . . . , n}, which is why P ′ := P ′{1,...,n} is the single solution set maximizing the hypervolume

indicator on f ′. Also note that for ε′ sufficiently small we changed the coordinates of the pi (1 6 i 6 n)
by less than ε/2, which implies that the additive approximation ratio α+(f ′, P ′) differs from α+(f, P )
by at most ε (recall that r is approximated by the pi (1 6 i 6 n) by a ratio of > α+(f, P )− ε′).

Case 2: We have y1 = B and xn = A. Then either p0 = p1 or p0 ≺ p1 and there is no solution
set maximizing the hypervolume indicator that includes p0. A similar statement holds for pn+1, so we

can discard p0 and pn+1, meaning that the solution sets maximizing the hypervolume indicator on f̂
are among the PI with I ⊂ {1, . . . , n, n + 2}, |I| = n. We make r = pn+2 slightly worse by setting
y′n+2 := yn+2 − ε′. For ε′ sufficiently small r is still not dominated by any other point pi. We call the

resulting point again r = pn+2 and the induced step function f ′. Going from f̂ to f ′ the hypervolume
decreases for solution sets containing r. Hence, P{1,...,n} is the single solution set maximizing the
hypervolume indicator on f ′. Moreover, for ε′ sufficiently small we changed the coordinates of r by at
most ε/2, which implies that the additive approximation ratio α+(f ′, P ′) differs from α+(f, P ) by at
most ε.

Note that the same proof works in the multiplicative instead of the additive setting. Hence the same
result holds for α∗HYP . Also note that the relation between multiplicative and additive approximation
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Figure 3: Front f used for the lower bound construction in the proof of Theorem 2.3 in Section 5.1. Note
that f is not only the black points, but the whole piecewise defined curve.

from Section 5.5 carries the above result over to α∗logHYP .

5. Proofs for the approximation ratio

5.1. Tight bound for α∗OPT

In this section we examine the optimal approximation ratio α∗OPT . Recall that no set of n points
can achieve a better approximation ratio than α∗OPT . This is the reason why bounds for α∗OPT are
important for comparison before examining α∗HYP in Section 5.2.

Proof of Theorem 2.3. We want to show α∗OPT = min{(A/a)1/n, (B/b)1/n}. For this, we first show
α∗OPT 6 (A/a)1/n. Let α := (A/a)1/n and xi := aαi−1 for i ∈ {1, . . . , n}. The solution set
{(xi, f(xi)) | i ∈ {1, . . . , n}} is an α-approximation of f as we have x 6 αxi, f(x) 6 f(xi) for
any xi 6 x 6 αxi. Hence, α∗OPT 6 α = (A/a)1/n.

To show that analogously α∗OPT 6 (B/b)1/n, let α := (B/b)1/n and xi := f−1(Bα−i) for i ∈
{1, . . . , n}. Then f(xi) > Bα−i and no point (x, f(x)) has f(xi) > f(x) > Bα−i. Hence, we have
x 6 xi, f(x) 6 αf(xi) for any x with Bα−i 6 f(x) 6 Bα−i+1. Thus, we get α∗OPT 6 α = (B/b)1/n.

It remains to prove the lower bound α∗OPT > min{A/a,B/b}1/n. For this, we set f(x) :=
B(B/b)−i/n for a(A/a)(i−1)/n < x 6 a(A/a)i/n and i ∈ {0, . . . , n}. Then f is a front which con-
sists of (n + 1) levels. It is illustrated in Figure 3. Let us now consider a solution set (x1, . . . , xn)
consisting of n points. As f has n+1 levels, the pigeonhole principle gives that there is at least one level
having none of the n points. This implies that the rightmost point in this level is only approximated
by a ratio of min{(A/a)1/n, (B/b)1/n}.

Proof of Corollary 2.4. Both inequalities follow directly from Theorem 2.3. For the first inequality
note that ex > 1 + x for all x ∈ R. For the second we upper bound ex with 0 6 x 6 ε by

ex =

∞∑
k=0

xk

k!
6 1 +

∞∑
k=1

xk

2k−1
6 1 + x

∞∑
k=0

εk

2k

= 1 + x
1

1− ε/2 6 1 + (1 + ε)x,
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as (1 + ε) (1− ε/2) > 1.

5.2. Upper bound for α∗HYP

In this section we give bounds on the multiplicative approximation ratio achieved by the sets
maximizing the hypervolume indicator.

Let P be a solution set maximizing HYP on a front f ∈ F , i.e., P ∈ PfHYP , and let n > 4 be
fixed. Assume that there are points p, q ∈ P with p ≺ q. Such a “redundant” set can maximize HYP
only on degenerate fronts: If there is a point r = (x, f(x)) on the front which is not dominated by any
point in P , then P ′ := P + r − p would have HYP(P ′) > HYP(P ), as it dominates all the space P
dominates united with the space r dominates. Thus, there is no such point r and P already dominates
the whole front. In this case the approximation ratio α∗(f, P ) = 1 and the inequality we want to show
holds trivially. This can only happen for f being a step function with less than n steps. In the same
way we can exclude P = {p1, . . . , pn} having less than n pairwise different points.

Hence, for the rest of the proof we can assume that there are no points p, q ∈ P with p ≺ q. Then
we can write P = {p1, . . . , pn}, pi = (xi, yi) with a 6 x1 < . . . < xn 6 A and B > y1 > . . . > yn > b.
Furthermore, we can assume that yi = f(xi) as otherwise P − pi + p′i with p′i = (xi, f(xi)) would have
a larger hypervolume than P .

Now recall that the contribution of a point p ∈ P to the hypervolume of a solution set P ∈ P is
the volume dominated by p and no other element of P (see, e.g., [6]). More formally, the contribution
of a point p is

ConP (p) := HYP(P,R)−HYP(P − p,R).

In the following we mainly deal with the minimal contribution defined as

MinCon(P ) := min
26i6n−1

ConP (pi)

= min
26i6n−1

(
xi − xi−1

) (
f(xi)− f(xi+1)

)
.

Figure 4 gives an illustration of MinCon. Note that the above definition of MinCon(P ) is independent
of the reference point R, as it only considers the minimal contribution of any of the points p2, . . . , pn−1.
Restricted to these (n− 2) inner points, it corresponds to the definition of MinCon(P ) in [7].

We first show the following upper bound for MinCon(P ).

Lemma 5.1. We have

MinCon(P ) 6
(xn − x1) (f(x1)− f(xn))

(n− 2)2
.

Proof. Let ai := xi − xi−1 for 2 6 i 6 n and bi := f(xi) − f(xi+1) for 1 6 i 6 n − 1. This gives
MinCon(P ) = min26i6n−1 aibi and

ai > MinCon(P )/bi for all 2 6 i 6 n− 1.

This implies

n−1∑
i=2

MinCon(P )/bi 6
n−1∑
i=2

ai 6
n∑
i=2

ai

=

n∑
i=2

xi −
n−1∑
i=1

xi = xn − x1,

and therefore

MinCon(P ) 6
xn − x1∑n−1
i=2 1/bi

.
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f(x3)

f(x2)

f(x1)

MinCon(X)

Figure 4: The minimal contribution MinCon(X) of a solution set X = {p1, p2, . . . , p6} is defined to be the
least hypervolume contribution HYP(P )−HYP(P − p) for p ∈ {p2, p3, p4, p5}.

We can now use the fact that the harmonic mean is less than the arithmetic mean, that is,

n− 2∑n−1
i=2 1/bi

6

∑n−1
i=2 bi
n− 2

to obtain

MinCon(P ) 6
(xn − x1)

∑n−1
i=2 bi

(n− 2)2

6
(xn − x1) (f(x1)− f(xn))

(n− 2)2
.

To upper bound α∗HYP we first calculate the approximation ratio of the “inner points”, i.e., points
x ∈ [x1, xn]. In a second step we determine how well the “outer points” x with x < x1 or x > xn are
approximated.

Lemma 5.2. The solution set P achieves a

1 +

√
A/a +

√
B/b

n− 4

multiplicative approximation of all points (x, f(x)) with x ∈ [x1, xn].

Proof. Assume there is a point r = (x, f(x)) which is not approximated by a ratio of

α := 1 +

√
A/a +

√
B/b

n− 4
. (5.1)

Let i be such that xi < x < xi+1 and therefore

x > αxi,

f(x) > αf(xi+1),
(5.2)

because r is approximated by neither pi nor pi+1.
Let pj be a point contributing MinCon(P ) to P . As P maximizes the hypervolume indicator, we

have

HYP(P ) > HYP(P − pj + r)
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= HYP(P )−ConP (pj) + ConP−pj+r(r)

> HYP(P )−ConP (pj) + ConP+r(r),

so we have
(x− xi) (f(x)− f(xi+1)) = ConP+r(r) 6 MinCon(P ). (5.3)

As equation (5.2) is equivalent with x − xi > (α − 1)xi and f(x) − f(xi+1) > (α − 1) f(xi+1),
equation (5.3) gives

MinCon(P ) > (α− 1)2 xi f(xi+1). (5.4)

For 3 6 i 6 n − 1 we can upper bound the minimal contribution using Lemma 5.1 on the points
p1, . . . , pi by

MinCon(P ) 6 MinCon({p1, . . . , pi})
6 (xi − x1) (f(x1)− f(xi))/(i− 2)2

6 xiB/(i− 2)2. (5.5)

Analogously, for 1 6 i 6 n− 3 we can upper bound the minimal contribution using Lemma 5.1 on
the points pi+1, . . . , pn by

MinCon(P ) 6 Af(xi+1)/(n− i− 2)2. (5.6)

Combining equation (5.4) with equations (5.5) and (5.6), it follows for 3 6 i 6 n− 3 that

(α− 1)2 xi f(xi+1) < min

{
xiB

(i− 2)2
,
A f(xi+1)

(n− i− 2)2

}
(5.7)

or, equivalently,

α < 1 + min

{√
B/f(xi+1)

i− 2
,

√
A/xi

n− i− 2

}
which yields with xi > a and f(xi+1) > b that

α < 1 + min

{√
B/b

i− 2
,

√
A/a

n− i− 2

}
(5.8)

for 3 6 i 6 n− 3.
Now, the right hand side of equation (5.8) becomes maximal if the two terms are equal since one

of them is monotonically increasing in i and the other one is monotonically decreasing in i. As this

happens exactly for i = 2 +
(n−4)

√
B/b√

A/a+
√
B/b

, we get the upper bound

α < 1 +

√
A/a +

√
B/b

n− 4

for 3 6 i 6 n − 3. This contradicts equation (5.1) and proves that every point (x, f(x)) with x ∈
[x3, xn−2] is multiplicatively approximated by a ratio of α.

It remains to show a contradiction to equation (5.1) for i = 1, 2 and i = n− 2, n− 1. For i = 1, 2
we get from equations (5.4) and (5.6)

α < 1 +

√
A/a

n− i− 2
6 1 +

√
A/a

n− 4
.

which contradicts equation (5.1).
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Finally, for i = n− 2, n− 1 we get from equations (5.4) and (5.5)

α < 1 +

√
B/b

i− 2
6 1 +

√
B/b

n− 4
.

which also contradicts equation (5.1) and finishes the proof.

It remains to examine the approximation ratio of the “outer points” x with x < x1 or x > xn.

Lemma 5.3. The solution set P achieves a

1 +
A

(a−Rx) (n− 2)2

multiplicative approximation of all points (x, f(x)) with x < x1, and a

1 +
B

(b−Ry) (n− 2)2

multiplicative approximation of all points (x, f(x)) with x > xn.

Proof. We show only the statement for x 6 x1. The case x > xn follows by symmetry in the two
objectives.

The approximation ratio of any x 6 x1 is exactly min{x/x1, f(x)/f(x1)} = f(x)/f(x1). This is
maximized for x = a, so that the approximation ratio of any x 6 x1 is at most B/f(x1). We show
that B/f(x1) is less than 1 + A

(a−Rx) (n−2)2 .

Using Lemma 5.1 on the points p1, . . . , pn we get

MinCon(P ) 6 (xn − x1) (f(x1)− f(xn))/(n− 2)2

6 Af(x1)/(n− 2)2. (5.9)

Let pj be a point contributing MinCon(P ) to P and consider P ′ := P − pj + q with q = (a,B). We
have

HYP(P ′)

= HYP(P )−ConP (pj) + ConP−pj+q(q)

> HYP(P )−ConP (pj) + ConP+q(q)

= HYP(P )−MinCon(P ) + (a−Rx) (B − f(x1)).

Together with HYP(P ) > HYP(P ′) this yields

MinCon(P ) > (a−Rx) (B − f(x1)). (5.10)

Combining equations (5.9) and (5.10), we finally get the desired

B

f(x1)
6 1 +

A

(a−Rx) (n− 2)2
.

Together Lemmas 5.2 and 5.3 directly imply the following theorem.

Theorem 5.4. Let f ∈ F , n > 4, and let R = (Rx, Ry) be the reference point. Then

α∗HYP 6 1 + max

{√
A/a +

√
B/b

n− 4
,
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A

(a−Rx) (n− 2)2
,

B

(b−Ry) (n− 2)2

}
.

For sufficiently large n or sufficiently small coordinates of the reference point, the two last terms
in Theorem 5.4 are less than the first one. This proves the slightly simplified Theorem 3.1.

5.3. Lower Bound for α∗HYP

In this section we show that the upper bound of Theorem 3.1 is nearly tight. We restrict ourselves

to the case of A
a = B

b . We show that in this situation we have α∗HYP > 1 +

√
A/a

cn for some small

constant c. Thus, the bounds are tight if A
a ≈ B

b , except for the factor 2c.

Proof of Theorem 3.2. As rescaling does not change any multiplicative approximation, we can assume
w.l.o.g. that a = b = 1 and A = B > 13.

We set k := dn/2e and define x0, . . . , xn as follows,

xi := 1 +
i

2(k − 1)
for i = 0, . . . , k − 1,

xi :=
i− k

n− k − 1
· A

2
+
n− i− 1

n− k − 1

(
3

2
+

√
A− 1

n− 2

)
for i = k, . . . , n− 1,

xi := A for i = n.

To simplify the notation we further set x−1 := 0. With this we can calculate that

xi − xi−1 = 1 for i = 0,

xi − xi−1 =
1

2(k − 1)
for i = 1, . . . , k − 1,

xi − xi−1 =

√
A− 1

n− 2
for i = k,

xi − xi−1 =
1

n− k − 1

(
A

2
− 3

2
−
√
A− 1

n− 2

)
for i = k + 1, . . . , n− 1,

xi − xi−1 =
A

2
for i = n.

This implies x0 6 . . . 6 xn. To confirm this for i = k + 1, . . . , n− 1, observe that

3

2
+

1

n− 2

√
A− 1 6

3

2
+

1

2

√
A− 1 6

A

4
, (5.11)

as n > 4 and A > 13.
Moreover, we define, for xi−1 < x 6 xi,

f(x) :=

∑i−1
j=0 1/(xj − xj−1) +A

∑n−1
j=i 1/(xj − xj−1)∑n−1

j=0 1/(xj − xj−1)
.

This way, f(x0) = A = B, f(xn) = 1 = b and all other function values are in between. We
define solution sets Pi := (p0, . . . , pi−1, pi+1, . . . , pn), i = 0, . . . , n with n points in each solution set,
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pi = (xi, f(xi)). We further define a solution set P := (p0, . . . , pn) which has n + 1 points and is
therefore not among the possible solution sets maximizing HYP on f that we consider.

Let Q = (q1, . . . , qn) be a solution set of n points which maximizes HYP. As P contains all
non-dominated points, it also dominates Q. Moreover, by the pigeonhole principle there must be an
0 6 i 6 n such that no qj is contained in the set (xi−1, xi] × (f(xi+1), f(xi)] (where we set f(xn+1)
to a). But then Pi dominates Q, which implies Pi = Q, as otherwise HYP(Pi) would be greater than
HYP(Q). Hence, the solution sets maximizing HYP are among the Pi.

We will determine the solution sets maximizing HYP by comparing Con(pi) := ConP (pi). The
solution sets Pi minimizing Con(pi) are the sets maximizing HYP. We show that min06j6nCon(pj) =
Con(pi) for 1 6 i < n. To see this, we first examine Con(pi) for 1 6 i < n:

Con(pi) = (xi − xi−1) (f(xi)− f(xi+1))

=
A− 1∑n−1

j=0 1/(xj − xj−1)
(5.12)

<
A− 1∑k−1

j=0 1/(xj − xj−1)

=
A− 1

1 + 2(k − 1)2
< A/2

Note that equation (5.12) is independent of i. We can further bound Con(p0) by

Con(p0) = (x0 −Rx) (f(x0)− f(x1))

> (x0 − 0) (f(x0)− f(x1))

= (x0 − x−1) (f(x0)− f(x1))

=
A− 1∑n−1

j=0 1/(xj − xj−1)
.

Hence Con(p0) > Con(pi) for 1 6 i < n. For Con(pn) we get

Con(pn) = (xn − xn−1) (f(xn)−Ry)

=
(
A− A

2

)
(b−Ry) > A/2.

Therefore also Con(pi) < Con(pn) for 1 6 i < n.
This shows that the sets Pi, 1 6 i < n, and maybe P0 maximize HYP on the front f . We now

slightly adjust f such that the solution set maximizing HYP is Pk. For this we define f̂ to be

f̂(x) :=

{
f(x)− ε for xk−1 < x 6 xk

f(x) otherwise

for a small ε > 0. If we go from f to f̂ , then only Con(pk) decreases and thus Pk is the solution set

maximizing HYP for f̂ .
Now we consider the approximation ratio α(f̂ , Xk). It yields a lower bound for α∗HYP . We have

α(f̂ , Xk) > min

{
xk
xk−1

,
f̂(xk)

f̂(xk+1)

}
.
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The latter term goes to f(xk)
f(xk+1)

for ε→ 0. Hence, we have

α∗HYP > min

{
xk
xk−1

,
f(xk)

f(xk+1)

}
. (5.13)

By definition of xi, the first term is

xk
xk−1

= 1 +
2
√
A− 1

3 (n− 2)
. (5.14)

The second term of equation (5.13) is

f(xk)

f(xk+1)
(5.15)

=

∑k−1
j=0 1/(xj − xj−1) +A

∑n−1
j=k 1/(xj − xj−1)∑k

j=0 1/(xj − xj−1) +A
∑n−1
j=k+1 1/(xj − xj−1)

= 1 +
(A− 1)/(xk − xk−1)∑k

j=0 1/(xj − xj−1) +A
∑n−1
j=k+1 1/(xj − xj−1)

.

The nominator of the last fraction is
√
A− 1 (n− 2). The denominator can be bounded by

1 + 2(k − 1)2 +
n− 2√
A− 1

+A

(
(n− k − 1)2

A/2− 3
2 −

√
A−1
n−2

)
6 1 + 2(k − 1)2 + (n− 2)/

√
A− 1

+ 4 (n− k − 1)2 (5.16)

where the last inequality is based on equation (5.11).
Note that k = dn/2e is either n/2, or (n+ 1)/2. In both cases,

2(k − 1)2 + 4(n− k − 1)2 6 3
2 (n− 2)2,

as n > 4.
With this we can upper bound equation (5.16) by

(5.16) 6 1 + (n− 2)/
√
A− 1 + 3

2 (n− 2)2

6 3
2 (n− 1) (n− 2)

where the last inequality uses n > 4 and A > 13. Plugging these bounds into equation (5.15), we get

f(xk)

f(xk+1)
> 1 +

√
A− 1 (n− 2)

3
2 (n− 1) (n− 2)

= 1 +
2
√
A− 1

3(n− 1)
.

Plugging this and equation (5.14) in equation (5.13) gives

α∗HYP > 1 +
2
√
A− 1

3 (n− 1)
,

which proves the claim.
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5.4. Upper bound for α+
HYP

Having shown in the the previous section that sets maximizing the hypervolume indicator have
a suboptimal multiplicative approximation ratio in the worst case, we now analyze their additive
approximation properties by proving an upper bound for α+

HYP .

Proof of Theorem 3.3. We want to prove that α+
HYP 6

√
(A−a) (B−b)

n−2 for n > 2 and (n − 2) min{a −
Rx, b−Ry} >

√
(A− a) (B − b) .

Let P ∈ PfHYP . As in the beginning of Section 5.2, we can assume that there are no points p, q ∈ P
with p ≺ q and that we can write P = {p1, . . . , pn}, pi = (xi, f(xi)) with a 6 x1 < . . . < xn 6 A and
B > f(x1) > . . . > f(xn) > b, as otherwise we have α+(f, P ) = 1.

Let r = (x, f(x)), x ∈ [a,A] be an arbitrary point and let α > 0 be such that r is not additively
approximated by α. We make a case distinction depending on the position of r. Let us first assume
that r is an “inner point”, i.e., there is an i ∈ {1, . . . , n−1} with xi 6 x < xi+1. As r is not additively
approximated by α, we have

x > xi + α and f(x) > f(xi+1) + α. (5.17)

As P maximizes the hypervolume indicator on f , replacing the point p ∈ P contributing
MinCon(P ) to P with the point r must not increase the hypervolume. Therefore,

HYP(P ) > HYP(P + r − p)
= HYP(P )−ConP (p) + ConP+r−p(r)

> HYP(P )−ConP (p) + ConP+r(r).

This in turn implies

MinCon(P ) = ConP (p) > ConP+r(r)

= (x− xi) (f(x)− f(xi+1))
(5.17)
> α2.

Using Lemma 5.1 and taking square roots on both sides gives the desired

α <

√
(A− a) (B − b)

n− 2
.

It remains to study the case where r = (x, f(x)) is an “outer point” with x 6 x1 or x > xn. It suffices
to examine x 6 x1, as then the case x > xn follows by symmetry in the two objectives.

As r is not approximated by a ratio of α we have f(x) > f(x1) + α. Additionally, replacing the
point p ∈ P contributing MinCon(P ) to P by r must not increase the hypervolume, so we have

MinCon(P ) > ConP+r−p(r) > ConP+r(r)

> (a−Rx) (f(x)− f(x1))

> (a−Rx)α.

We use Lemma 5.1 again and get

α 6
(A− a) (B − b)

(a−Rx) (n− 2)2
6
√

(A− a) (B − b) /(n− 2),

where the second inequality follows from the assumption of the theorem.

Closely examining the above proof of Theorem 3.3, we see that it also gives an upper bound on the
additive approximation ratio for solution sets P that are a local maximum for HYP, that is, where for
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all points p ∈ P and q = (x, y) ∈ [a,A]× [b, B] with y 6 f(x), we have HYP(P + q − p) 6 HYP(P ).

5.5. Tight bound for α+
OPT

In this section we describe a relation that allows us to transfer results on multiplicative approxi-
mation into results on additive approximation and the other way around. This proves Theorems 2.8
and 3.5 and gives the intuition behind the logarithmic hypervolume indicator, as it is the standard
hypervolume indicator transferred into the world of multiplicative approximation.

Consider a front9 f∗ ∈ F[a∗,A∗]→[b∗,B∗] and a solution set P ∗ ∈ Pf∗
that is a multiplicative

α∗-approximation of f∗. This means that we have for any x̂∗ ∈ [a∗, A∗] a point (x∗, y∗) ∈ P ∗ with

x̂∗ 6 α∗ x∗ and f∗(x̂∗) 6 α∗ y∗.

Logarithmizing both inequalities gives

log x̂∗ 6 log x∗ + logα∗ and log f∗(x̂∗) 6 log y∗ + logα∗.

This corresponds to an additive approximation. We set x+ := log x∗, y+ := log y∗, x̂+ := log x̂∗, α+ :=
logα∗ and f+ := log ◦f∗ ◦ exp and get

x̂+ 6 x+ + α+ and f+(x̂+) 6 y+ + α+.

This means that P+ := {(log x, log y) | (x, y) ∈ P ∗} is an additive α+-approximation of the front
f+ ∈ F[a+,A+]→[b+,B+] with a+ = log a∗, A+ = logA∗, b+ = log b∗, B+ = logB∗. Observe that this
corresponds to logarithmizing both axes.

All operations we used above are invertible, so that we can do the same thing the other way round:
Having a solution set P+ on a front f+ achieving an additive α+-approximation, we get a solution
set P ∗ = {(expx, exp y) | (x, y) ∈ P+} on a front f∗ = exp ◦f+ ◦ log achieving a multiplicative
α∗-approximation, with α∗ = expα+. Thereby the interval bounds like a+ are also exponentiated and
we get a∗ = exp a+.

Hence, we have a bijection10 F∗ → F+, f∗ 7→ f+ and for any f∗ ∈ F∗ a bijection Pf∗ →
Pf+

, P ∗ 7→ P+ that satisfies α+(f+, P+) = logα∗(f∗, P ∗).
This allows us to prove Theorem 2.8 by transferring Theorem 2.3 to the world of additive approx-

imation:

Proof of Theorem 2.8. We want to prove α+
OPT = min{A+ − a+, B+ − b+}/n. By definition and the

above bijection (∗) we know that

α+
OPT = sup

f+∈F+

inf
P+∈Pf+

α+(f+, P+)

(∗)
= sup

f+∈F+

inf
P+∈Pf+

logα∗(f∗, P ∗)

(∗)
= sup

f∗∈F∗
inf

P∗∈Pf∗
logα∗(f∗, P ∗)

= log sup
f∗∈F∗

inf
P∗∈Pf∗

α∗(f∗, P ∗).

9In this section we will mark every variable with a + or ∗ depending on whether it belongs to the additive or
multiplicative approximation.

10We write for short F∗ = F[a∗,A∗]→[b∗,B∗] and F+ = F[a+,A+]→[b+,B+].
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The last expression matches the definition of α∗OPT . We replace α∗OPT using Theorem 2.3 and a∗ by
exp a+ etc. and get

α+
OPT = logα∗OPT

= log
(

min{A∗/a∗, B∗/b∗}1/n
)

= min{logA∗ − log a∗, logB∗ − log b∗}/n
= min{A+ − a+, B+ − b+}/n.

5.6. Upper bound for α∗logHYP

With similar reasoning we can now also prove Theorem 3.5.

Proof of Theorem 3.5. We want to show that

α∗logHYP 6 exp

(√
log(A∗/a∗) log(B∗/b∗)

n− 2

)
.

For a solution set P ∗ ∈ P∗ and a reference point R∗ = (R∗x, R
∗
y), R∗x, R

∗
y > 0 we defined logHYP

by setting logHYP(P ∗, R∗) = HYP1(logP ∗, logR∗) with logP ∗ = {(log x, log y) | (x, y) ∈ P ∗}
and logR∗ = (logR∗x, logR∗y). This logP ∗ is exactly P+ as defined above. Writing R+ := logR∗

we thus have logHYP(P ∗, R∗) = HYP(P+, R+). Now, consider a solution set P ∗ maximizing
logHYP(P ∗, R∗), thus also maximizing HYP(P+, R+). We know that P+ is an α+

HYP -approximation
of the front f+, so using Theorem 3.3 and above bijections we get

α∗(f∗, P ∗) = expα+(f+, P+)

6 exp
(√

(A+ − a+) (B+ − b+) /(n− 2)
)

= exp
(√

log(A∗/a∗) log(B∗/b∗) /(n− 2)
)
.

The observation that the assumption of Theorem 3.3 transforms directly into the assumption of The-
orem 3.5 concludes the proof.

Note that we could also have proceeded the other way round: proving a bound for α∗logHYP and

transforming it into a result for α+
HYP . The above proof also makes clear why we defined logHYP

as we did, as maximizing HYP(P+, R+) gives a good additive approximation which transforms into
a good multiplicative approximation going back to P ∗.

6. Minimization Problems

All previous results a priori hold only for maximization problems. In this section we sketch how to
adjust the definitions of Section 2 to minimization problems and what bounds hold in this case. Note
that minimization and maximization are not isomorphic regarding multiplicative approximation.

6.1. Changes in the definitions and results

The main change in the definitions is reversing the direction of several inequalities. First, in
Section 2 we have to require the fronts we consider to be lower semi-continuous instead of upper semi-
continuous. We then set f−1(y) = min{x ∈ [a,A] | f(x) 6 y}. Moreover, a solution set P is called
feasible for the front f if y > f(x) for any (x, y) ∈ P .

For the definition of multiplicative and additive approximation in Sections 2.1 and 2.2 we have to
change the inequalities 2.1 and 2.2 to

x̂ > x/α and f(x̂) > y/α, and

x̂ > x− α and f(x̂) > y − α,
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respectively. The remainder of Sections 2.1 and 2.2 also holds for minimization problems as it is
written there. This is even the case for the results on α∗OPT (Theorem 2.3 and Corollary 2.4) and
α+
OPT (Theorem 2.8). The following Section 6.2 describes how to derive these results.

Let us now go through the results presented in Section 3 for maximization problems and translate
them to minimization. In Section 3.1 in the definition of the weighted hypervolume indicator, we
now require the reference point to lie above all feasible points, i.e., R � (A,B) instead of R � (a, b).
If we then define the attainment function AP,R by AP,R(x, y) = 1, if (Rx, Ry) � (x, y) and there is
a p = (px, py) ∈ P such that (x, y) � (px, py), and AP,R(x, y) = 0 otherwise, we get a meaningful
definition of the weighted hypervolume indicator.

The results for the standard hypervolume indicator from Section 3.2 change slightly. In the upper
bound for α∗HYP the assumption changes and we get the following analog of Theorem 3.1. It is proven
in Section 6.3.

Theorem 6.1. Let f ∈ F , n > 4, and let R = (Rx, Ry) be the reference point. If we have

(n− 2)(Ry −B) > B

√
A

a
and

(n− 2)(Rx −A) > A

√
B

b
.

then

α∗HYP 6 1 +

√
A/a +

√
B/b

n− 4
.

For the lower bound of α∗HYP (Theorem 3.2) the proof has to be redone. We give a different
construction than in the proof of Theorem 3.2, which gives a slightly better result (in terms of the
constant factor). It has the additional assumption that n is even, which is not essential but simplifies
the construction. The following theorem is proven in Section 6.4.

Theorem 6.2. Let n > 4 be even, A/a = B/b > 4 and R = (Rx, Ry) be the reference point satisfying
Rx > A+ 2A

n−2 and Ry > B + 2B
n−2 . Then we have

α∗HYP > min

{
A

4a
, 1 +

√
A/a√

2 (n− 2)

}
.

In the bound for α+
HYP (Theorem 3.3) the assumption changes also. For minimization problems

we get the following analog result. Its proof can be found in the following Section 6.2.

Theorem 6.3. If n > 2 and

(n− 2) min{Rx −A,Ry −B} >
√

(A− a) (B − b)

we have

α+
HYP 6

√
(A− a) (B − b)

n− 2
.

It remains to translate the logarithmic hypervolume indicator as introduced in Section 3.3. In
order to adjust the definition of the logarithmic hypervolume indicator to minimization, we require
R � (A,B), but do not have to change anything besides that. Lemma 3.4 still holds; however, the
proof has to be changed slightly, as we now have to integrate over the space above the solution set and
not below. The upper bounds for α∗logHYP (Theorem 3.5 and Corollary 3.6) still hold; we only have to
change a/Rx to Rx/A and b/Ry to Ry/B in the assumptions.

We remark that the results of Section 4 on (i) why upper (lower) semi-continuity is important and
(ii) why it does not matter if we take worst or best case in the definition of α∗HYP , also translate to
the minimization setting. However, for reasons of brevity, we omit these details.
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6.2. Bounds for α+
OPT , α∗OPT , α+

HYP , α∗logHYP (Minimization)

This section sketches how the analogous results stated above can be proven based on the corre-
sponding maximization results.

Let us start with the results on additive approximation ratios. Consider the bijection F[a,A]→[b,B] →
F[−A,−a]→[−B,−b] we get by negating both axes, i.e., f 7→ f− with f−(x) := −f(−x). Moreover, let
P 7→ P− with P− = {(−x,−y) | (x, y) ∈ P} for P ∈ P. Then P− is a feasible solution set for f− in
the minimization setting iff P is feasible for f in the maximization setting. Additionally, P maximizes
the hypervolume indicator on f iff P− maximizes the (minimization) hypervolume indicator on f−,
and the additive approximation ratio of P equals the (minimization) additive approximation factor
of P−. This map gives the desired relation between maximization and minimization problems, as
long as we are dealing with additive approximation only (since the requirement a, b > 0 does not
hold for f or f−). Using it we can easily show the analogous results on α+

OPT (Theorem 2.8) and
α+
HYP (Theorem 3.3), similar to the way we used the relation between multiplicative and additive

approximation in Section 5.5.
For the results on α∗OPT and α∗logHYP (Theorems 2.3 and 3.5) we use the relation between multi-

plicative and additive approximation again: The bijection works word by word the same way in the
minimization setting and the proof of it works as in Section 5.5 with some minor changes like swap-
ping inequality signs. Having this, we can proceed as in Section 5.5 to show the bounds for α∗OPT and
α∗logHYP from the bounds for α+

OPT and α+
HYP .

These correspondences do not help to prove Theorems 6.1 and 6.2 (which are the minimization
analogs of Theorems 3.1 and 3.2). The following two sections redo their proofs for minimization
problems.

6.3. Upper bound for α∗HYP (Minimization)

Let f ∈ F and P be a solution set maximizing the hypervolume indicator on f . As in the proof
of Theorem 3.1 we can assume that P = {p1, . . . , pn} with pi = (xi, f(xi)), a 6 x1 < . . . < xn 6 A,
B > f(x1) > . . . > f(xn) > b.

We define Con and MinCon the same way as before. Lemma 5.1 still holds, i.e.,

MinCon(P ) 6
(xn − x1)(f(x1)− f(xn))

(n− 2)2
.

This can be proven by redoing the proof of Lemma 5.1 or by reducing the statement to Lemma 5.1
using the maximization-minimization bijection of the preceding Section 6.2 (mapping f to f−(x) :=
−f(−x)).

We first calculate the approximation ratio of the “inner points” x ∈ [x1, xn] analogously to
Lemma 5.2.

Lemma 6.4. The solution set P achieves a

1 +

√
A/a +

√
B/b

n− 4

multiplicative approximation of all points (x, f(x)) with x ∈ [x1, xn].

Proof. We have to change only a few lines of the proof of Lemma 5.2. Equation (5.2) now gives

x < xi/α,

f(x) < f(xi+1)/α,

equation (5.3) gives

(xi+1 − x) (f(xi)− f(x)) = ConP+r(r) 6 MinCon(P ),
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equation (5.4) gives
MinCon(P ) > (α− 1)2 x f(x),

and equation (5.7) gives

(α− 1)2 x f(x) < min

{
xiB

(i− 2)2
,
A f(xi+1)

(n− i− 2)2

}
.

As xi 6 x and f(xi+1) 6 f(x) this implies equation (5.7) and the rest of the proof works as before.

For the outer points with x < x1 or x > xn we proceed as in Lemma 5.3.

Lemma 6.5. The solution set P achieves a

1 +
AB

(Ry −B) a (n− 2)2

multiplicative approximation of all points (x, f(x)) with x < x1, and a

1 +
AB

(Rx −A) b (n− 2)2

multiplicative approximation of all points (x, f(x)) with x > xn.

Proof. We show only the statement for x 6 x1. The case x > xn follows by symmetry in the two
objectives.

The approximation ratio of any x 6 x1 is exactly min{x1/x, f(x1)/f(x)} = x1/x. This is maxi-
mized for x = a, so that the approximation ratio of any x 6 x1 is at most x1/a. We show that x1/a
is less than 1 + AB

(Ry−B) a (n−2)2 .

Using Lemma 5.1 on the points p1, . . . , pn we get

MinCon(P ) 6 (xn − x1) (f(x1)− f(xn))/(n− 2)2

6 AB/(n− 2)2. (6.1)

Let pj be a point contributing MinCon(P ) to P and consider P ′ := P − pj + q with q = (a,B). We
have

HYP(P ′) = HYP(P )−ConP (pj) + ConP−pj+q(q)

> HYP(P )−ConP (pj) + ConP+q(q)

= HYP(P )−MinCon(P ) + (x1 − a) (Ry −B).

Together with HYP(P ) > HYP(P ′) this yields

MinCon(P ) > (x1 − a) (Ry −B). (6.2)

Combining equations (6.1) and (6.2), we finally get the desired

x1/a 6 1 +
AB

(Ry −B) a (n− 2)2
.

After Lemmas 6.4 and 6.5, it is now an easy calculation that the approximation ratio for the outer

points is smaller than 1 +

√
A/a+

√
B/b

n−4 if we have

(n− 2)(Ry −B) > B

√
A

a
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and

(n− 2)(Rx −A) > A

√
B

b
.

This proves Theorem 6.1.

6.4. Lower bound for α∗HYP (Minimization)

Proof of Theorem 6.2. Let n > 4 even and set m = n/2. After rescaling we can assume that A = B
and a = b. We set pi := (xi, yi) with

xi := a+ (i− 1) ε,

yi := A− i− 1

m− 1
(A− 2αa), for i = 1, . . . ,m,

xi := yi := 2a, for i = m+ 1,

xi := yn+2−i,

yi := xn+2−i, for i = m+ 2, . . . , n+ 1.

There, α is the approximation factor we will have in the end and we set ε := 4 a2 (α−1)2(m−1)
A−2αa . Of these

points we want a 6 x1 < . . . < xn+1 6 A and A > y1 > . . . > yn+1 > a. For this to hold, the following
inequalities have to be fulfilled:

ε > 0,

2a > a+ (m− 1)ε,

2αa < A,

α > 1.

For later use we require, additionally, 4αa < A. Plugging in the definition of ε and m these inequalities
simplify to

n > 2,

1 < α <
A

4a
,

A− 2αa > 4 a (α− 1)2(m− 1)2.

Using the second inequality, the third is fulfilled if we have

A/2 > 4 a (α− 1)2(m− 1)2,

which simplifies to

α < 1 +

√
A/a√

2 (n− 2)
.

Now we take the step function f defined by the points (xi, yi) as a front, i.e., we set

f(x) := min{yi | i ∈ {1, . . . , n+ 1}, xi 6 x}.

On this front the solution sets maximizing the hypervolume indicator are among the sets Pi := {pj |
1 6 j 6 n+1, j 6= i}. We set P := {pj | 1 6 j 6 n+1} and compare the values ConP (pi) to determine
the set Pi maximizing the hypervolume indicator. We have ConP (pi) = ε · A−2αam−1 for 1 < i < n+ 1,

i 6= m + 1 and ConP (pm+1) = (2αa − 2 a)2 = 4 a2 (α − 1)2. By the definition of ε both values are
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equal. Moreover, by the choice of the reference point we have ConP (p1) = ε · (Ry − A) 6 ConP (pi)
for any 1 < i < n+ 1 and ConP (pn+1) = ε · (Rx −A) 6 ConP (pi) for any 1 < i < n+ 1.

Hence, Pm+1 maximizes the hypervolume indicator of f , as ConP (pm+1) is minimal. The approx-

imation ratio of this solution set is min
{

ym
ym+1

, xm+2

xm+1

}
, which is exactly α.

By the above inequalities we can make α as large as min
{
A
4a , 1 +

√
A/a√

2 (n−2)

}
− ε′ for any ε′ > 0,

so by taking the supremum it follows that α∗HYP is greater than equal to this value for ε′ = 0, which
proves the claim.

7. Conclusion

We examined to what extent the goal of getting a “good approximation” of the Pareto front is
reached when optimizing the hypervolume indicator. This has been done by theoretical considera-
tions of the additive and multiplicative approximation ratio of sets of fixed size that maximize the
hypervolume indicator in two dimensions on worst-case fronts. We proved that maximizing the hy-
pervolume indicator gives a close-to-optimal additive, but no good multiplicative approximation ratio.
Additionally, we introduced the logarithmic hypervolume indicator, which yields a close-to-optimal
multiplicative approximation ratio.

Our results indicate for two dimensions that guiding the search with the hypervolume indicator is
the right choice if one wants an additive approximation, while guiding the search with the logarithmic
hypervolume indicator is the right choice if one wants a multiplicative approximation of the Pareto
front. We expect similar results for higher dimensions, but a rigorous proof of this remains an open
problem. The difficult part of the proof for higher dimensions will be controlling the outer points.
However, the provable bounds on the approximation ratio will depend on the choice of the reference
point R even more than in the two-dimensional case. Simple assumptions on R as in Theorems 3.1, 3.3
and 3.5 will not give general bounds on the approximation factor of sets maximizing the hypervolume
independent of R. For an illustration on what sort of results we expect in higher dimensions, compare
the assumptions and bounds of Theorems 3.1 and 5.4. We believe results like Theorem 5.4 are possible
while more readable simplifications like Theorem 3.1 seem unlikely.

It is also an interesting open problem whether the approximation quality achieved by the ε-indicator
can be measured in a similar manner (cf. Section 3.5). The same question can be asked for other
indicator functions. This might allow a rigorous comparison between different indicators. For the
weighted hypervolume indicator [34] it is obvious that regions with higher weights will be better
approximated. A formal study how the weight function corresponds to the achieved approximation is
another direction for future research.
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