
1

Convergence of Hypervolume-Based
Archiving Algorithms

Karl Bringmann and Tobias Friedrich

Abstract— Multi-objective evolutionary algorithms typically
maintain a set of solutions. A crucial part of these algorithms is
the archiving, which decides what solutions to keep. A (µ+λ)-
archiving algorithm defines how to choose in each generation
µ children from µ parents and λ offspring together. We study
mathematically the convergence behavior of hypervolume-based
archiving algorithms. We distinguish two cases for the offspring
generation.

A best-case view leads to a study of the effectiveness of
archiving algorithms. It was known that all (µ + 1)-archiving
algorithms are ineffective, which means that a set with maximum
hypervolume is not necessarily reached. We prove that for λ < µ
all archiving algorithms are ineffective. We also present upper
and lower bounds for the achievable hypervolume for different
classes of archiving algorithms.

On the other hand, a worst-case view on the offspring
generation leads to a study of the competitive ratio of archiving
algorithms. This measures how much smaller hypervolumes are
achieved due to not knowing the future offspring in advance.
We present upper and lower bounds on the competitive ratio
of different archiving algorithms and present an archiving
algorithm, which is the first known computationally efficient
archiving algorithm with constant competitive ratio.

Index Terms—Optimization methods, Multiobjective optimiza-
tion, Performance measures, Selection, Hypervolume indicator.

I. INTRODUCTION

MANY real-world optimization problems have multiple
objectives like time vs. cost. This implies that in

general there is no unique optimum, but an often very large
(or even infinite) set of incomparable solutions which form
the Pareto front. Multi-objective optimizers deal with this
by trying to find a small set of trade-off solutions which
approximate the Pareto front. They typically keep a bounded
archive of µ points (population) in order to capture the output
of the search process. In each round they generate λ new
points (offspring) by mutation and crossover. The key question
is then how to select µ individuals from a larger population.
We consider the so-called plus selection strategy, where the
next population is chosen out of the λ offspring and µ parents
together. We call a specific replacement strategy a (µ + λ)-
archiving algorithm which defines how to choose a new
population of µ children from the union of µ parents and λ
offspring.

The goal for hypervolume-based multi-objective evolution-
ary algorithms (MOEAs) is to maximize the hypervolume

Karl Bringmann is with Max Planck Institute for Informatics, 66123
Saarbrücken, Germany. E-mail: karl.lastname@mpi-inf.mpg.de

Tobias Friedrich is with Friedrich-Schiller-Universität Jena, 07743 Jena,
Germany. E-mail: lastname@uni-jena.de

Manuscript received xxx; revised xxx.

indicator of the output population, which is the volume of
the dominated portion of the objective space (see Section II
for a formal definition). For this type of MOEA, two archiving
algorithms are known in the literature:
• A locally optimal archiving algorithm returns a subset

of µ points from the given µ + λ points such that the
hypervolume indicator is maximized.

• A greedy archiving algorithm deletes a point such that the
hypervolume of the remaining points is maximal. This is
repeated until only µ points are left.

Many hypervolume based algorithms like SIBEA [17], SMS-
EMOA [1], or the generational MO-CMA-ES [10, 11] use
greedy archiving algorithms. As locally optimal algorithms
have to choose the best out of a large number,

(
µ+λ
µ

)
, of

subsets of the given points, they are generally considered
to be computationally infeasible. Note that a locally optimal
archiving algorithm in general does not maximize the hyper-
volume over multiple generations. However, it still seems to
have superior theoretical properties: It has long been known
that the resulting point sets of both algorithms differ [3], and
that the deleted hypervolume (the contribution of the deleted
points) can even be arbitrarily larger for greedy archiving
algorithms compared to locally optimal algorithms [6]. We
prove in this paper that all locally optimal and all greedy
archiving algorithms have to solve NP-hard problems (cf. The-
orem IV.1 and Observation II.8). Hence, such algorithms are
not computationally efficient unless P = NP.

We want to study the intrinsic limitations of and the po-
tential provided by hypervolume-based archiving algorithms.
Beyond the smaller classes of locally optimal and greedy
archiving algorithms we thus also consider the following two
natural classes of archiving algorithms:
• A non-decreasing archiving algorithm chooses the pop-

ulation of children such that the dominated hypervolume
does not decrease compared to the parent generation.

• An increasing archiving algorithm chooses the popula-
tion of children such that the dominated hypervolume
increases compared to the parent generation, unless there
is no subset of population and offspring with a larger
dominated hypervolume.

Both are intuitively desirable properties for hypervolume-
based archiving algorithms. We will see that there are algo-
rithms which are non-decreasing, but not increasing (cf. Algo-
rithms 4 and 5). Moreover, we prove that both classes signif-
icantly differ. There are non-decreasing archiving algorithms
which are better and faster than all increasing archiving algo-
rithms (see Sections I-B and I-C for more detailed statements).

2

To rigorously study the impact of archiving algorithms on
convergence, we cannot concentrate only on single iterations,
but have to consider multiple generations of populations. We
model this long run behavior with the initial population being
worst-case input to the archiving algorithm, followed by some
kind of offspring generation, and we then ask whether we
arrive at a population with a large hypervolume. Note that
it makes no sense to take a best-case view on the initial
population as then the initial population already maximizes
the hypervolume. It is also not meaningful to take a best-case
view on the objective space as this implies that it contains
only the population maximizing the hypervolume. There are
two natural assumptions on the offspring generation: best-case
and worst-case. A best-case offspring generation is always
‘lucky’, that is, we ask whether there exists a sequence of
offspring sets such that the archiving algorithm ends up in a
population maximizing the hypervolume. On the other hand,
a worst-case offspring generation is always ‘unlucky’, that is,
we assume an adversary selects the offspring and ask how
close the achieved hypervolume of an archiving algorithm gets
compared to the achievable hypervolume if we had known
which offspring would come in the future.

Assuming a best-case or worst-case view allows us studying
archiving algorithms independent of specific variation oper-
ators. Both assumptions give rise to interesting results (see
Sections I-A and I-B). Negative results for the best-case are
very general as they show the limitations of all archiving
algorithms. On the other hand, an algorithm with proven worst-
case performance works for every offspring generation and
therefore has a guarantee for all possible scenarios.

We summarize our results in Sections I-A, I-B and I-C.
In Section II we introduce the basic concepts and notation.
Section III gives some technical basics regarding the hy-
pervolume. Section IV studies the computational complex-
ity of increasing archiving algorithms. The main results are
afterwards presented in Sections V and VI. In Section V
we consider a best-case choice of the offspring and analyze
which archiving algorithms are effective. In Section VI we
consider a worst-case view on offspring generation and study
the competitiveness of archiving algorithms.

This paper extends previous results of two conference
papers of the authors [8, 9] in several directions. We present
in Section III several new basic properties of the hypervolume
indicator. We also introduce in Section VI-D a new technique
for transferring approximation lower bounds to lower bounds
for competitiveness, and present a number of other new
results (e.g. Theorem V.4). Moreover, after the publication
of [8], Ulrich and Thiele [15] presented an improved upper
bound on the approximation achieved by increasing archiving
algorithms. We now prove in Theorem V.8 an upper bound
which is again stronger than the one of Ulrich and Thiele
[15].

A. Results on effectiveness

Most previous work in this setting [15, 18] assumes a best-
case perspective on the offspring generation. This means that
we ask whether, for each population, there exists a sequence

of offspring sets such that the archiving algorithm ends up
in a population maximizing the hypervolume. This can be
formalized with the notion of effectiveness: An archiving
algorithm is effective if there is a sequence of offspring such
that the algorithm reaches an optimum. Zitzler et al. [18]
proved that all non-decreasing (µ+ 1)-archiving strategies are
ineffective (cf. Theorem V.2) while there are effective non-
decreasing (µ + µ)-archiving algorithms (cf. Theorem V.3).
We additionally prove in Theorem V.4 that all increasing
(µ+µ)-archiving strategies are effective. Zitzler et al. [18] left
open what happens for general (µ+ λ)-archiving algorithms.
We answer this with Theorem V.5 and prove that all non-
decreasing (µ + λ)-archiving strategies are ineffective for
λ < µ.

In order to measure how close to an optimal set the best
reachable sets for λ < µ are, we call an archiving algorithm
α-approximate if it can always reach a set with a hypervolume
at least 1/α times the largest possible hypervolume. We prove
in Theorem V.7 that no non-decreasing (µ + λ)-archiving
algorithm can be better than

(
1 + 0.1338

(
1
λ −

1
µ

)
− ε

)
-

approximate for any ε > 0. This bound can be tightened for a
relaxed variant of the hypervolume, which is defined relative
to a reference set instead of a single reference point. For this
less restrictive setting, Ulrich and Thiele [15] showed a lower
bound of 1 + 1

2λ for λ < µ.
On the other hand, the authors [8, Thm. 4.3] showed

that every increasing (µ + λ)-archiving algorithm reaches a
(2 + ε)-approximation for any ε > 0. Using that the hy-
pervolume indicator is non-decreasing submodular, this upper
bound was improved by Ulrich and Thiele [15]. We now again
improve their results and show in Theorem V.8 that every
increasing (µ+λ)-archiving algorithm reaches a

(
2− λ

µ + ε
)
-

approximation for any ε > 0.

B. Results on competitiveness

We can also assume a worst-case perspective on both the
initial population and offspring generation. This corresponds to
the well-known concept of competitive analysis. It has already
been observed that archiving algorithms fit nicely in this
classical theory developed for online algorithms [2]. López-
Ibáñez, Knowles, and Laumanns [12, p. 59] suggested it as an
open problem “to use competitive analysis techniques from
the field of online algorithms to obtain worst-case bounds, in
terms of a measure of ‘regret’ for archivers.”

We consider the initial population and offspring as worst-
case input and ask again how large a hypervolume we can get.
In this case, however, the adversary, who selects the offspring,
can limit the search to a very small part of the search space,
and it is therefore impossible in general to reach the optimum
hypervolume. This motivates the following definition. We
say an archiving algorithm is α-competitive if for all initial
populations and offspring it reaches a hypervolume which is
only a factor 1/α smaller than the hypervolume of the best µ
points seen (cf. Definition VI.1).

On the negative side, we prove that all increasing archiving
algorithms are at best µ-competitive (cf. Theorem VI.3). This
means that there is a sequence of offspring such that the

3

hypervolume of the µ individuals chosen iteratively by an
algorithm which maximizes the hypervolume in each step is
µ times larger than the maximum hypervolume achievable
by another choice of µ individuals. This lower bound of
µ on the competitive ratio is in fact tight for all locally
optimal algorithms and all increasing (µ + 1)-archiving al-
gorithms (cf. Theorem VI.2). This implies that the notion of
competitiveness measures no difference between all archiving
algorithms of these two classes as they meet exactly the same
bound.

However, on the positive side, we are able to design an
archiving algorithm that is 4 + 2/µ-competitive (cf. Theo-
rem VI.4), which implies a constant competitive ratio com-
pared to the unbounded ratio of µ from above. It is a non-
decreasing archiving algorithm which is not increasing, i.e.,
there are populations and offspring where we stay with the
current population, although the offspring allows an increase in
hypervolume. This proves that significantly better competitive
ratios can be achieved for archiving algorithms which are not
increasing compared to the typically used increasing archiving
algorithms. The algorithm works as follows (for details see
Algorithm 4): It adds offspring one by one to the current
population. Considering the population and an offspring, we
compute the hypervolume for exchanging the offspring with
any other point in the population. We take the best exchange
only if it increases the population’s hypervolume by at least a
certain minimal factor.

C. Results on computational efficiency

We prove that all increasing archiving algorithms solve
an NP-hard problem (cf. Theorem IV.1), assuming that the
number of dimensions is part of the input. This implies that all
common greedy archiving algorithms are not computationally
efficient for unbounded dimension unless P = NP (cf. Obser-
vation II.8). This still allows archiving algorithms which are
not increasing to be computationally efficient. Indeed, we also
prove that a randomized variant of our aforementioned 4+2/µ-
competitive archiving algorithm can be made to run efficiently
(cf. Theorem VI.6). Note that this is in sharp contrast to the
large set of increasing archiving algorithms, which all have
a worse competitive ratio (cf. Theorem VI.3) and a worse
computational complexity (cf. Theorem IV.1) compared to the
proposed new archiving algorithm. The underlying reason why
the new algorithm can beat all increasing archiving algorithms
is that approximating the hypervolume is tractable even in high
dimensions [5] and for the new algorithm it is sufficient only
to approximate the hypervolume, as it checks only for constant
factor increases. Although the new archiving algorithm might
not be used as-is in any practical MOEAs, it is a proof
of concept that there are computationally efficient archiving
algorithms which can beat the competitive ratio of the thus far
typically used locally optimal and greedy archiving algorithms.

II. PRELIMINARIES

This section formally introduces all necessary notation. The
two most fundamental concepts are the hypervolume indicator
(Section II-A) and archiving algorithms (Section II-B). The

combination of both, i.e. hypervolume-based archiving algo-
rithms, are introduced in Section II-C.

We consider maximization problems with vector-valued
objective functions

f : X → Rd,

where X denotes an arbitrary search space. The feasible points
Y := f(X) are called the objective space. Consider the
following abstract framework of a MOEA:

Algorithm 1: General (µ+ λ)-MOEA

1 P 0 ← initialize with µ individuals
2 for i← 1 to N do
3 Qi ← generate λ offspring
4 P i ← select µ individuals from P i−1 ∪Qi

We want to make no assumptions about the specific search
space X , nor an assumption on how the points are initialized
(cf. line 1 of Algorithm 1), nor an assumption how offspring
is generated (cf. line 3 of Algorithm 1). Therefore, we assume
that both the search space and the initialization are worst-
case, and we assume that offspring generation is either best-
case (see Section V) or worst-case (see Section VI). Our main
concern is how the population of children is chosen (cf. line 4
of Algorithm 1). We will formally define and discuss different
archiving algorithms in Sections II-B and II-C.

We use the terms archive and population synonymously for
the set of current solutions P i of Algorithm 1. In concrete
MOEAs, populations are subsets of the search space. As we
do not want to assume any structural properties of the search
space, we abstract from the search space and will only work
on the objective space Y ⊆ Rd in the remainder. We therefore
also identify individuals with points in the d-dimensional
Euclidean space.

Definition II.1. A population P is a finite multiset and a
subset of Rd. If an objective space Y ⊆ Rd is fixed, we require
P ⊆ Y . We call P a µ-population if |P | 6 µ.

A. Hypervolume indicator

The hypervolume indicator HYP(P) [16] of a finite set P ⊂
Rd is the volume of the union of regions of the objective space
which are dominated by P and bounded by a reference point
r = (r1, . . . , rd). More precisely, for p = (p1, . . . , pd) ∈ P
define box(p) := [r1, p1]× . . .× [rd, pd] (which is only defined
if pi > ri for all i). Then

HYP(P) := VOL

(⋃
p∈P

box(p)

)
,

where VOL is the usual Lebesgue measure in Rd. Computing
HYP(P) requires time nΩ(d) [4] (unless the exponential time
hypothesis fails), but can be approximated very efficiently in
polynomial time [5].

We fix the reference point w.l.o.g. to r = 0d, since
translations do not change any of our results. This means that
the reference point is globally fixed and known to the archiving
algorithm. Additionally, HYP is now defined for any finite

4

point set P ⊂ Rd+. Here and throughout the paper, we denote
by R+ the positive real numbers, and we will assume that the
objective space Y is a subset of Rd+ from now on.

The aim of a hypervolume-based MOEA is to find a set P ∗

of size µ which maximizes the hypervolume, that is,

HYP(P ∗) = maxHYPµ(Y)

where we define for all Y ⊆ Rd+,

maxHYPµ(Y) := sup
P⊆Y
|P |6µ

HYP(P).

In the remainder of the paper, the set Y will often be finite. In
these cases, the supremum in the definition of maxHYPµ(Y)
becomes a maximum. However, for infinite sets the supremum
is necessary in general.

The contribution of a point p to a population P is

CONP (p) := HYP(P + p)− HYP(P − p).

Here and throughout the paper, we use the notation P + p
for P ∪ {p} and P − p for P \ {p}. Note that this definition
of the contribution makes sense for p ∈ P (in which case it
is the hypervolume we lose by deleting p from P) as well
as for p 6∈ P (in which case it is the hypervolume we gain
by adding p to P). Also note that according to the definition
of CONP (p), the contributing hypervolume of a dominated
individual is zero. We further generalize CON for any finite
P,Q ⊂ Rd+ by setting

CONP (Q) := HYP(P ∪Q)− HYP(P \Q).

B. Archiving algorithms

We now specify more formally how to choose the µ indi-
viduals of the succeeding population in line 4 of Algorithm 1.
For this, we consider the following general framework of an
archiving algorithm.

Algorithm 2: General (µ+ λ)-archiving algorithm
input : µ-population P , λ-population Q
output: µ-population P ′ with P ′ ⊆ P ∪Q

Note that any (µ+λ)-archiving algorithm is also a (µ+λ′)-
archiving algorithm for any λ′ < λ, as we then allow
only a subset of the inputs, namely with smaller offspring
population Q. We do not make any assumptions on the runtime
of an archiving algorithm. In fact, as hypervolume computation
is #P-hard [5], most hypervolume-based archiving algorithms
are not computable in polynomial time in the number of
objectives d. We will use the following notation to describe
an archiving algorithm.

Definition II.2. A (µ+λ)-archiving algorithm A is a partial
mapping A : 2R

d
+×2R

d
+ 7→ 2R

d
+ such that for a µ-population P

and a λ-population Q, A(P,Q) is a µ-population and
A(P,Q) ⊆ P ∪Q.

For convenience, we sometimes drop the prefix (µ+λ) and
just refer to an archiving algorithm (or even shorter: algorithm)
without specifying µ and λ. With this notation, we can now

formally describe the generation process of Algorithm 1 as
follows.

Definition II.3. Let P 0 be a µ-population and Q1, . . . , QN a
sequence of λ-populations. Then we set

P i := A(P i−1, Qi) for all i = 1, . . . , N .

With slight abuse of notation we also set

A(P 0, Q1, . . . , Qi) := P i for all i = 1, . . . , N .

C. Hypervolume-based archiving algorithms

We now specify four classes of hypervolume-based archiv-
ing algorithms. The first one only requires the archiving algo-
rithms to never return a solution with a smaller hypervolume:

Definition II.4. A (µ + λ)-archiving algorithm A is non-
decreasing, if for all inputs P and Q we have

HYP(A(P,Q)) > HYP(P).

Most hypervolume-based archiving algorithms are non-
decreasing. However, the class also contains ineffective algo-
rithms like the algorithm which always returns P .

The second, slightly smaller class of hypervolume-based
archiving algorithms is defined as follows.

Definition II.5. A (µ+λ)-archiving algorithm A is increasing,
if it is non-decreasing and for all inputs P and Q with

maxHYPµ(P ∪Q) > HYP(P)

we have
HYP(A(P,Q)) > HYP(P).

Moreover, we define locally optimal and greedy archiving
algorithms. Note that for both classes there is more than one
archiving algorithm fulfilling the respective definition, as ties
may be broken arbitrarily.

Definition II.6. A (µ + λ)-archiving algorithm A is locally
optimal, if for all inputs P and Q we have

HYP(A(P,Q)) = maxHYPµ(P ∪Q).

Definition II.7. A (µ+λ)-archiving algorithm A is greedy, if
there are functions A′, a′, A′(P) = P − a′(P) with a′(P) ∈
argminp∈P CONP (p) such that for all inputs P and Q we
have

A(P,Q) = A′ ◦ . . . ◦ A′︸ ︷︷ ︸
λ times

(P ∪Q).

The rest of the paper focuses on increasing and non-
decreasing archiving algorithms. Their relation to locally op-
timal and greedy archiving algorithms is as follows.

Observation II.8. Greedy (µ + 1)-archiving algorithms and
locally-optimal (µ + λ)-archiving algorithms are increasing
archiving algorithms. Greedy (µ + λ)-archiving algorithms
are not necessarily non-decreasing archiving algorithms for
λ > 1.

This observation allows us to translate all forthcoming
bounds for increasing (or non-decreasing) archiving algorithms

5

to locally-optimal archiving algorithms and greedy (µ + 1)-
archiving algorithms. Moreover, since the computational hard-
ness (cf. Theorem IV.1) and the lower bound for the com-
petitive ratio (cf. Theorem VI.3) apply to the restriction of
a greedy algorithm to λ = 1, they also apply to greedy
algorithms in general. However, some of our results do not
hold for greedy algorithms when λ > 1.

Consider the following variant of greedy algorithms. A
non-decreasing greedy archiving algorithm takes the output
P ′ = A(P,Q) of a greedy archiving algorithm A and returns
either P ′ or P , whichever set has higher hypervolume (where
ties may be broken arbitrarily). This postprocessing makes
much sense, as it prohibits decreasing the hypervolume of
our population. In fact, all of our results for increasing
or non-decreasing archiving algorithms also hold for such
non-decreasing greedy archiving algorithms, except for the
upper bounds in Theorems V.3, V.4 and V.8. Since we are
more interested in lower bounds for (non-decreasing) greedy
algorithms, we did not try to reprove these upper bounds.

III. TECHNICAL BASICS

In this section we show basic properties of HYP and CON
that will be used in later proofs. We start with some very basic
facts.

Lemma III.1. For any finite P ⊆ P ′ ⊂ Rd+ we have
1) (non-negativity) HYP(P) > 0,
2) (monotonicity) HYP(P) 6 HYP(P ′),
3) (empty set) HYP(∅) = 0.

Proof. Recall that HYP(P) = VOL(
⋃
p∈P box(p)). Since

volume in Rd is non-negative, so is HYP. Moreover, for
P ⊆ P ′ we have

⋃
p∈P box(p) ⊆

⋃
p∈P ′ box(p), so that

HYP(P) 6 HYP(P ′). Lastly, HYP(∅) = VOL(∅) = 0.

From the above facts and the definition of CON we directly
obtain similar facts about CON.

Lemma III.2. For any finite Q,P ⊂ Rd+ we have
1) CONP (Q) > 0,
2) CONP (∅) = 0 and CON∅(Q) = HYP(Q),
3) CONP (Q) = CONP∪Q(Q) = CONP\Q(Q).

Proof. For CONP (Q) = HYP(P ∪Q) − HYP(P \Q) non-
negativity follows from P \Q ⊆ P ∪Q and monotonicity of
HYP.

Note that CONP (∅) = HYP(P ∪ ∅) − HYP(P \ ∅) = 0.
Furthermore, CON∅(P) = HYP(∅ ∪ P) − HYP(∅ \ P) =
HYP(P).

Lastly, since P∪Q = (P∪Q)∪Q = (P \Q)∪Q and P \Q =
(P ∪Q) \Q = (P \Q) \Q we have CONP (Q) = HYP(P ∪
Q)− HYP(P \Q) = CONP∪Q(Q) = CONP\Q(Q).

We will often make use of telescoping sums such as the
following.

Lemma III.3. Let P = {p1, . . . , pµ} ⊂ Rd+ and set Pi :=
{p1, . . . , pi}. Then we have for any 0 6 i 6 µ

HYP(P) = HYP(Pi) +

µ∑
j=i+1

CONPj (pj).

Proof. Follows from CONPj
(pj) = HYP(Pj + pj) −

HYP(Pj − pj) = HYP(Pj)− HYP(Pj−1).

One of the most fundamental facts about HYP is that it is
submodular [13], as has been observed by Ulrich and Thiele
[15, Thm. 1]. The following Lemma III.4 presents a short
proof of this property.

Lemma III.4. (Submodularity) For any finite P ⊆ P ′ ⊂ Rd+
and Q ⊂ Rd+ we have

CONP (Q) > CONP ′(Q).

Proof. Recall that HYP(T) = VOL(
⋃
p∈T box(p)) for any

finite T ⊂ Rd+. Let BT :=
⋃
p∈T box(p) so that HYP(T) =

VOL(BT). Using the definitions of CON and BT and the facts
BP\Q ⊆ BP∪Q and (P ∪Q) \ (P \Q) = Q we obtain

CONP (Q) = HYP(P ∪Q)− HYP(P \Q)

= VOL(BP∪Q)− VOL(BP\Q)

= VOL(BP∪Q \BP\Q)

= VOL(BQ \BP\Q),

and similarly for P ′. Now, since P ⊆ P ′ we have
BP\Q ⊆ BP ′\Q, so that BQ \ BP\Q ⊇ BQ \ BP ′\Q. Hence,
CONP (Q) > CONP ′(Q).

We need a simple lower bound for HYP in terms of CON.

Lemma III.5. For any finite P ⊂ Rd+ we have

HYP(P) >
∑
p∈P

CONP (p).

Proof. Follows from Lemma III.6 below by setting λ = 1.

More generally, we have the following lower bound.

Lemma III.6. For any P ⊂ Rd+ of size µ and λ 6 µ we have

HYP(P) >
1(
µ−1
λ−1

) ∑
T⊆P
|T |=λ

CONP (T).

Proof. For ε > 0 and x̄ = (x1, . . . , xd) ∈ Nd0 let Aεx̄ :=
[x1ε, (x1 + 1)ε]× . . .× [xdε, (xd + 1)ε]. We call Aεx̄ (or x̄) an
atom. For p ∈ P let Iε(p) := {x̄ ∈ Nd0 | Aεx̄ ⊆ box(p)} and for
T ⊆ P let Iε(T) :=

⋃
p∈T I

ε(p). Since (the indicator function
of) a box is Riemann-integrable and since VOL(Aεx̄) = εd we
have

VOL(box(p)) = lim
ε→0

VOL

(⋃
x̄∈Iε(p)

Aεx̄

)
= lim
ε→0

εd|Iε(p)|.

For the same reasons, we have

HYP(P) = lim
ε→0

εd|Iε(P)|,

which implies for any T ⊆ P

CONP (T) = lim
ε→0

εd|Iε(P) \ Iε(P \ T)|.

Hence, it suffices to show

|Iε(P)| > 1(
µ−1
λ−1

) ∑
T⊆P
|T |=λ

|Iε(P) \ Iε(P \ T)|, (1)

6

then the claim follows by letting ε→ 0. To this end, consider
any atom x̄ ∈ Iε(P). Note that all atoms that are counted in
any term of inequality (1) are in Iε(P). Let Z = {p ∈ P |
x̄ ∈ Iε(p)}. Then x̄ ∈ Iε(P)\Iε(P \T) if and only if T ⊇ Z
(since x̄ ∈ Iε(p) ⊆ Iε(P \ T) for any p ∈ Z \ T). Hence,
Aεx̄ appears in

(
µ−|Z|
λ−|Z|

)
6
(
µ−1
λ−1

)
summands on the right hand

side of inequality (1), while it appears exactly once on the left
hand side. This proves the claim.

We remark that instead of using atoms one could also phrase
this proof using volume elements known from mathematical
analysis.

Alternatively, we can bound HYP from above in terms of
the hypervolumes of the single points.

Lemma III.7. For any finite P ⊂ Rd+ we have

HYP(P) 6
∑
p∈P

HYP({p}).

Proof. Follows from Lemma III.8 below if we set A = ∅.

We can slightly generalize the above bound as follows.

Lemma III.8. Let A,B ⊂ Rd+ be finite and set P := A ∪B.
Then we have

HYP(P) 6 HYP(A) +
∑
b∈B

CONA(b).

Proof. Follows from Lemma III.9 below by setting λ = 1.

Even more general, we can prove an upper bound as follows.

Lemma III.9. Let A,B ⊂ Rd+ be finite and set P := A ∪B.
Let |B| = µ and λ 6 µ. Then we have

HYP(P) 6 HYP(A) +
1(
µ−1
λ−1

) ∑
T⊆B
|T |=λ

CONA(T).

Proof. Since HYP(P) − HYP(A) = HYP(A ∪ (B \ A)) −
HYP(A \ (B \ A)) = CONA(B \ A), we may prove instead
the equivalent statement

CONA(B \A) 6
1(
µ−1
λ−1

) ∑
T⊆B
|T |=λ

CONA(T). (2)

As in the proof of Lemma III.6 we use atoms as follows. For
ε > 0 and x̄ = (x1, . . . , xd) ∈ Nd0 we let Aεx̄ := [x1ε, (x1 +
1)ε] × . . . × [xdε, (xd + 1)ε] be an atom. For p ∈ P we let
Iε(p) := {x̄ ∈ Nd0 | Aεx̄ ⊆ box(p)} and for T ⊆ P we let
Iε(T) :=

⋃
p∈T I

ε(p). As in the proof of Lemma III.6, we
obtain for any T ⊆ B

CONA(T) = lim
ε→0

εd|Iε(A ∪ T) \ Iε(A \ T)|.

Since (A ∪ T) \ (A \ T) = T , this can be simplifed to

CONA(T) = lim
ε→0

εd|Iε(T) \ Iε(A \ T)|.

Hence, it suffices to show

|Iε(B \A) \ Iε(A \ (B \A))| =

|Iε(B \A) \ Iε(A)| 6 1(
µ−1
λ−1

) ∑
T⊆B
|T |=λ

|Iε(T) \ Iε(A \ T)|,

(3)

then statement (2) follows by letting ε → 0. Consider any
atom x̄ ∈ Iε(B \ A) \ Iε(A) (i.e., that appears on the left
hand side of inequality (3)) and let b ∈ B \A with x̄ ∈ Iε(b).
Then for any T with b ∈ T ⊆ B and |T | = λ we have
x̄ ∈ Iε(T) \ Iε(A) ⊆ Iε(T) \ Iε(A \ T). As there are

(
µ−1
λ−1

)
such sets T , the atom Aεx̄ is counted at least

(
µ−1
λ−1

)
times on

the right hand side of inequality (3). This proves inequality (3)
and, thus, the claim.

IV. COMPUTATIONAL COMPLEXITY

We first study the computational complexity of the large
class of increasing archiving algorithms. This includes locally
optimal and greedy archiving algorithms (cf. Observation II.8).
We prove that all increasing archiving algorithms solve an
NP-hard problem and are thus not computationally efficient
unless P = NP. By reduction from the known hardness of
computing a least contributor of a set of points, we show the
following theorem.

Theorem IV.1. All increasing archiving algorithms solve an
NP-hard problem (if d is part of the input).

Proof. We reduce from the problem of computing a least con-
tributor of a set of points: Given P ⊆ Rd+ of size n, compute
a point p ∈ P with CONP (p) minimal (see Section II-A for
the definition). This problem is NP-hard according to [7].

Let P be an instance to the least contributor problem, and let
A be an increasing archiving algorithm. We compute A(p) :=
P \A(P−p, {p}) for each p ∈ P . This is the point with which
the archiving algorithm A exchanges p given population P−p
and offspring {p}.

Consider the graph with vertex set P and directed edges
(p,A(p)) for each p ∈ P . This graph may have self-loops.
It includes a directed cycle as a subgraph: Starting at any
point and always following the unique out-edge we will at
some point see an already visited point again; this means we
traversed a cycle (after some initial path).

Let (p0, . . . , pk−1) be such a cycle. It can have length k = 1,
if the cycle is a self-loop. Since A(pi) = pi+1 (with indices
modulo k) and the archiving algorithm is increasing — thus
also non-decreasing — we have HYP(P −pi+1) > HYP(P −
pi) for all i ∈ {0, . . . , k − 1}. Hence, all HYP(P − pi)
are equal; in particular HYP(P − p0) = HYP(P − A(p0)).
Since the archiving algorithm is increasing, this means that no
increase was possible given population P − p0 and offspring
{p0}, and, hence, that HYP(P−p0) = HYP(P)−CONP (p0)
is maximal among all HYP(P−p). In other words, CONP (p0)
is minimal and p0 is a least contributor. The same holds for
all other points p ∈ P that lie on a directed cycle in the
constructed graph. Thus, we can compute a least contribu-
tor using any increasing archiving algorithm. This reduction

7

proves that all increasing archiving algorithms solve an NP-
hard problem.

Theorem IV.1 above shows that only archiving algorithms
which are not increasing in the meaning of Definition II.5
might be computationally efficient (unless P = NP). In Sec-
tion VI-C we indeed present such a non-decreasing archiving
algorithm, which is not increasing, but has a polynomial
runtime.

V. EFFECTIVENESS

Without any additional assumptions on the specific MOEA
and problem at hand, we can only assume the initial population
to be worst-case. A best-case view makes no sense, as then the
initial population already maximizes the hypervolume. On the
other hand, there are two possible ways to choose offspring:
worst-case and best-case. In this section we consider the best-
case choice of the offspring and analyze which archiving
algorithms are effective, that is, are able to reach the optimum.
This is complemented by a worst-case perspective on the
choice of the offspring in Section VI.

More formally, this section elaborates whether for a given
archiving algorithm A and all finite objective spaces Y and
initial populations P 0 ⊆ Y , there is a sequence of offspring
such that the archiving algorithm runs on P 0 and the sequence
of offspring generates a population maximizing the hypervol-
ume on Y . As discussed above, this corresponds to a worst-
case view on the problem (i.e., objective space Y and initial
population P 0), but a best-case view on the drawn offspring.
This is summarized in the following definition.

Definition V.1. A (µ+ λ)-archiving algorithm A is effective,
if for all finite sets Y ⊂ Rd+ and µ-populations P 0 ⊆ Y
there exists an N ∈ N and a sequence of λ-populations
Q1, . . . , QN ⊆ Y such that

HYP(A(P 0, Q1, . . . , QN)) = maxHYPµ(Y).

Here, we require the objective spaces Y to be finite, as
infinite objective spaces do not necessarily have a hypervolume
maximizing µ-population. This is no real restriction as for
infinite objective spaces the following negative result of Zitzler
et al. [18] remains valid.

Theorem V.2. There is no effective non-decreasing (µ + 1)-
archiving algorithm (for µ > 1).

Note that we have reformulated the statement of [18,
Cor. 4.6] in our notation defined above. We do not give a
separate proof for Theorem V.2 as it directly follows from
Theorem V.5 below. Theorem V.2 assumes λ = 1. The
corresponding result for λ = µ follows from [18, Thm. 4.4]:

Theorem V.3. There is an effective non-decreasing (µ + µ)-
archiving algorithm.

We do not give a direct proof for Theorem V.3 as it follows
from Theorem V.4 below. In order to show Theorem V.3,
observe that there is an increasing (µ+µ)-archiving algorithm.
Theorem V.4 below shows that this increasing (µ + µ)-
archiving algorithm is also effective. As every increasing

archiving algorithm is also non-decreasing, this proves Theo-
rem V.3.

Since Theorem V.3 is only an existential statement, it is
natural to ask what effective non-decreasing (µ+µ)-archiving
algorithms look like. The authors showed in [8, Thm. 3.4] that
all (µ + µ)-archiving algorithms A with HYP(A(P,Q)) >
HYP(Q) for all P,Q are effective. This implies that all
locally optimal (µ + µ)-archiving algorithms are effective.
The following Theorem V.4 shows another generalization of
Theorem V.3, which also implies that all locally optimal
(µ+ µ)-archiving algorithms are effective.

Theorem V.4. All increasing (µ+µ)-archiving algorithms are
effective.

Proof. Let Y be any finite objective space and P 0 ⊂ Y of
size µ. Moreover, let P ∗ maximize the hypervolume on Y ,
i.e., HYP(P ∗) = maxHYPµ(Y). We set Qi := P ∗ for
i = 1, . . . , N and N sufficiently large. Then all populations
satisfy P i ⊆ P 0 ∪ P ∗ for i = 0, . . . , N . Note that as long
as HYP(P i) < HYP(P ∗) we have maxHYPµ(P i ∪Qi+1) =
HYP(Qi+1) = HYP(P ∗) > HYP(P i), so an improvement
is possible. Hence, any increasing archiving algorithm will
choose a subset P i+1 ⊆ P i ∪ Qi+1 with HYP(P i+1) >
HYP(P i). Since there are at most

(
2µ
µ

)
different subsets

of P 0 ∪ P ∗, at the latest after N =
(

2µ
µ

)
iterations we

reach PN = P ∗.

Note that Theorem V.4 for finite objective spaces also holds
for infinite objective spaces that have a hypervolume maximiz-
ing µ-population. In general, however, there is no µ-population
maximizing the hypervolume on an infinite objective space.
Hence Theorem V.4 does not hold for all infinite objective
spaces.

Zitzler et al. [18, p. 71] pointed out that it is open whether
there are effective non-decreasing (µ+λ)-archiving algorithms
for 1 < λ < µ. We answer this question in the negative and
prove the following theorem.

Theorem V.5. There is no effective non-decreasing (µ + λ)-
archiving algorithm for λ < µ.

Again, we do not give a separate proof for Theorem V.5 as
it follows from its stronger counterpart Theorem V.7 below. In
order to prove Theorem V.5 directly, one would construct an
objective space and a suboptimal initial population P 0 such
that any change of less than µ points of P 0 decreases the
hypervolume indicator. However, the populations constructed
that way have a hypervolume which is very close to the
optimal one. Hence, the question arises of whether we at least
arrive at a good approximation of the maximum hypervolume.
We study this question in the following Section V-A.

A. Approximate Effectiveness

The above negative results on the effectiveness raise the
question of approximate effectiveness. To study this, we apply
the following definition.

Definition V.6. Let α > 1. A (µ + λ)-archiving algorithm
A is α-approximate if for all sets Y ⊂ Rd+ with finite

8

maxHYPµ(Y) and µ-populations P 0 ⊆ Y there is an N ∈ N
and a sequence of λ-populations Q1, . . . , QN ⊆ Y such that

HYP(A(P 0, Q1, . . . , QN)) >
1

α
maxHYPµ(Y).

We first examine what is the best approximation ratio we
can hope for and prove a lower bound for the approximation
ratio of all non-decreasing algorithms. Note that this also
implies that there is no effective non-decreasing (µ + λ)-
archiving algorithm for λ < µ as stated in Theorem V.5.
In the proof we explicitly construct an objective space with
two unconnected local maxima that have sufficiently different
hypervolume.

Theorem V.7. There is no
(
1 + 0.1338

(
1
λ −

1
µ

)
− ε
)
-

approximate non-decreasing (µ + λ)-archiving algorithm for
any ε > 0.

Proof. Let µ, λ ∈ N, λ < µ. We construct an objective
space Y and initial population P 0 as follows. Set Y =
{p1, . . . , p2µ+1} with pi = (xi, yi) and

xi = αi − 1, for i even,

yi = α2µ+2−i − 1, for i even,

xi = γαi − 1, for i odd,

yi = γα2µ+2−i − 1, for i odd,

where 1 < γ < α. Figure 1 on the next page shows
an illustration of the points for µ = 3. Additionally, set
P 0 = {p2, p4, . . . , p2µ}. It is easy to see (but not needed
for the proof) that P ∗ = {p1, p3, . . . , p2µ−1} maximizes
the hypervolume on Y . Alternatively, one could look at
P ∗ − p1 + p2µ+1.

We want to choose γ and α in such a way that P 0 is a
local maximum from which one cannot escape exchanging
only λ points. Thus, no non-decreasing selection policy with
offspring size λ finds a better population than P 0. We then
continue with proving that HYP(P ∗) is sufficiently larger than
the hypervolume of P 0.

For showing this, define A := CONY(p2i) and B :=
CONY(p2i+1). Observe that this is independent of the choice
of i and that A < B. Moreover, we consider the area
dominated by both, p2i and p2i+1, namely C := HYP(Y) −
HYP(Y − p2i − p2i+1)−A−B. Those areas are depicted in
Figure 1. Observe that this is again independent of i and one
gets the same area considering p2i and p2i−1.

Now, let Q1 ⊆ Y be a λ-population and consider any µ-
population P 1 ⊆ P 0∪Q1 with P 0 6= P 1. We want to choose α
and γ in such a way that ∆HYP1 := HYP(P 1)−HYP(P 0) <
0, so that we have to stick to P 0. For this, let H := HYP(Y),
so that we have HYP(P 0) = H − (µ+ 1)B. For P 1, observe
that there is an index i with pi, pi+1 6∈ P 1 (as otherwise P 1 =
P 0). These two points dominate together an area of C that is
not dominated by P 1. Moreover, every point pi ∈ Y , pi 6∈ P 1

adds another A or B to H−HYP(P 1), depending on i being
even or odd. Letting k be the number of points of odd index
in P 1 we thus have

HYP(P 1) 6 H − C − (µ+ 1− k)B − k A.

Thus, we have ∆HYP1 6 k(B − A) − C. As the offspring
size |Q1| 6 λ we have k 6 λ and thus

∆HYP1 6 λ(B −A)− C.

We want to choose α and γ such that the right hand side
from above is less than 0. We compute

A = (x2i − x2i−1)(y2i − y2i+1)

= (α2i − γα2i−1)(α2µ+2−2i − γα2µ+2−2i−1)

= α2µ+2(1− γ/α)2.

Similarly, we see that

B = α2µ+2(γ − 1/α)2,

B −A = α2µ+2(γ2 − 1)(1− 1/α2),

C = α2µ+1(1− γ/α)(γ − 1/α).

Now, λ(B−A)−C < 0 turns into a quadratic inequality in γ.
We solve it and get

γ <
α2 + 1 + (α2 − 1)

√
4α2λ2 + 1

2α (λ (α2 − 1) + 1)
. (4)

Simple calculations show that this bound is always greater
than 1 and less than or equal α (at least for α > 2, λ > 1 this
is easy to show). Hence, there is no contradiction to γ > 1 and
we can choose γ arbitrarily close to the right hand side from
above. Thus, for α > 2 and γ > 1 satisfying equation (4) no
(µ+ λ)-archiving algorithm can escape from P 0.

All that is left to show is that HYP(P ∗) is sufficiently
greater than HYP(P 0). Above we saw that HYP(P 0) =
H − (µ + 1)B, where H = HYP(Y). Now, observe that
HYP(P ∗) = H − µA − B − C, where the B stems from
p2µ+1 not being in P ∗ and the C from p2µ+1 and p2µ not
being in P ∗. We, thus, have

∆HYP∗ := HYP(P ∗)− HYP(P 0) = µ(B −A)− C.

Let ε > 0. By choosing γ (dependent on α) sufficiently near
to the right hand side of equation (4) we have 0 > λ(B −
A)− C > −ε and, hence,

∆HYP∗ > (µ− λ)(B −A)− ε
= (µ− λ)α2µ+2(γ2 − 1)(1− 1/α2)− ε.

We compute HYP(P 0) as follows, where we set x0 := 0:

HYP(P 0) =

µ∑
i=1

(x2i − x2(i−1)) y2i

=

µ∑
i=1

(α2i − α2(i−1))α2µ+2−2i

= µα2µ+2(1− 1/α2).

Now, the approximation ratio of any (µ + λ)-archiving
algorithm on Y with initial population P 0 is, as it cannot
escape P 0,

maxHYPµ(Y)

HYP(P 0)
>

HYP(P ∗)

HYP(P 0)

= 1 +
∆HYP∗

HYP(P 0)

> 1 + (1− λ
µ)(γ2 − 1)− ε,

9

log(y + 1)

log(x+ 1)

p2

p4

p6

p1

p3

p5

p7

A

BC

Figure 1: A schematic log-log plot of the example used in the proof
of Theorem V.7. The considered areas A,B,C are indicated.

for α >
√

2 and, thus, HYP(P 0) > 1, so that we can bound
ε/HYP(P 0) 6 ε. For maximizing the right hand side we will
plug in α = 1 +

√
6 , so that γ is bounded from above and

below by constants. This way, choosing γ sufficiently near to
the right hand side of equation (4), we get

maxHYPµ(Y)

HYP(P 0)
> 1− 2ε

+

(
1− λ

µ

)(α2 + 1 + (α2 − 1)
√

4α2λ2 + 1

2α(λ(α2 − 1) + 1)

)2

− 1

 .

We consider the bracket on the right hand side separately. This
is(
α2 + 1 + (α2 − 1)

√
4α2λ2 + 1

2α(λ(α2 − 1) + 1)

)2

− 1

=
(α2 + 1 + (α2 − 1)

√
4α2λ2 + 1)2 − 4α2(λ(α2 − 1) + 1)2

4α2(λ(α2 − 1) + 1)2

>
(α2 + 1 + (α2 − 1)

√
4α2λ2)2 − 4α2(λ(α2 − 1) + 1)2

4α2(λ(α2 − 1) + λ)2

=
(α2 − 1)2 + 4(α− 1)3α(α+ 1)λ

4α6λ2
.

Plugging this in and simplifying, we get

maxHYPµ(Y)

HYP(P 0)

> 1− 2ε+
(µ− λ)(α− 1)2(α+ 1)(α+ 1 + 4(α− 1)αλ)

4α6λ2µ

> 1− 2ε+
(µ− λ)(α− 1)2(α+ 1)(4(α− 1)αλ)

4α6λ2µ
.

Now, the right hand side gets maximal for α = 1 +
√

6 .
Plugging this in we get

maxHYPµ(Y)

HYP(P 0)
> 1 +

12(3 +
√

6)

(1 +
√

6)5

(
1

λ
− 1

µ

)
− 2ε

> 1 + 0.1338 ·
(

1

λ
− 1

µ

)
− 2ε.

This finishes the proof.

A bound of the form 1 + c(1/λ − 1/µ) is very natural, as
for λ = µ we get 1, and there is indeed an effective archiving
algorithm in this case by Theorem V.4. The proven constant,
however, may be far from being tight. Maybe surprisingly,
Theorem V.7 indeed does not hold without the restriction
to non-decreasing archiving algorithms. Theorem V.9 in Sec-
tion V-B shows that for all µ and λ there are archiving
algorithms which are not non-decreasing, but effective.

Complementing the lower bound of Theorem V.7, the au-
thors [8, Thm. 4.3] proved for all ε > 0 an upper bound of 2+ε
on the approximation ratio achieved by all increasing (µ+λ)-
archiving algorithms. This was improved by Ulrich and Thiele
[15], who showed that every increasing (µ + 1)-archiving
algorithm reaches a

(
2 − 1

µ

)
-approximation. More precisely,

they showed that every increasing (µ+λ)-archiving algorithm
reaches a

(
2− λ−p

µ

)
-approximation, where µ = q λ− p with

p < λ and p, q ∈ N>0. We can now improve both results and
prove the following theorem.

Theorem V.8. Let A be an increasing (µ + λ)-archiving
algorithm, λ 6 µ. Then A is

(
2 − λ

µ + ε
)
-approximate for

any ε > 0. If the objective space is finite we can even set
ε = 0.

This is better than the bound of [15] if λ does not divide µ.
For λ→ µ it approaches 1 and for λ = µ it attains 1.

Proof of Theorem V.8. Let ε > 0, Y ⊂ Rd+ with
maxHYPµ(Y) <∞ and P 0 ⊆ Y be a µ-population. By defi-
nition of maxHYP as a supremum, there exists a µ-population
P ∗ ⊆ Y with HYP(P ∗) > (1 + ε/2)−1 maxHYPµ(Y). If Y
is finite we even have ε = 0.

As (best-case) offspring we choose the size-λ subsets of P ∗.
This we do until the current population P = PN is stable
under insertions of such sets, i.e., until

maxHYPµ(P ∪Q) = HYP(P) for all Q ⊆ P ∗, |Q| = λ.

We show that for any such stable solution P we have (2−
λ
µ)HYP(P) > HYP(P ∗), so that (2 − λ

µ + ε)HYP(P) >
maxHYPµ(Y), proving the result. To this end, let S ⊂ P ,
|S| = λ with CONP (S) minimal among all such sets, and set
P ′ := P \ S. By monotonicity of HYP and Lemma III.9 we
have

HYP(P ∗) 6 HYP(P ∗ ∪ P ′)

6 HYP(P ′) +
1(
µ−1
λ−1

) ∑
T⊆P∗
|T |=λ

CONP ′(T). (5)

Observe that P ′ ∪ T is reachable from P by exchanging S
with T , where T ⊆ P ∗, |T | = λ. Thus, by stability of P

HYP(P ′ ∪ T) 6 HYP(P) = HYP(P ′ ∪ S),

implying

CONP ′(T) 6 CONP ′(S).

10

Together with inequality (5) we get

HYP(P ∗) 6 HYP(P ′) +

(
µ
λ

)(
µ−1
λ−1

) CONP ′(S)

= HYP(P ′) + µ
λ CONP ′(S)

= HYP(P) +
(
µ
λ − 1

)
CONP ′(S). (6)

Note that CONP ′(S) = CONP (S) (by Lemma III.2.(3) and
P ′ = P \ S). As S minimizes the contribution, we have

CONP (S) 6
1(
µ
λ

) ∑
T⊆P
|T |=λ

CONP (T).

Moreover, by Lemma III.6 we have∑
T⊆P
|T |=λ

CONP (T) 6

(
µ− 1

λ− 1

)
HYP(P).

Together, we obtain

CONP ′(S) 6

(
µ−1
λ−1

)(
µ
λ

) HYP(P) = λ
µHYP(P).

Plugging this into inequality (6) yields the desired bound.

B. Effectiveness and Decreasing Algorithms

We now briefly discuss why the previous results required all
archiving algorithms to be non-decreasing. The reason is that
otherwise none of the negative results and lower bounds from
above hold, as there is an effective (µ+λ)-archiving algorithm
for all µ, λ ∈ N. Such an algorithm is very simple: Given
an ancestral population P and an offspring population Q, it
returns the symmetric difference of both sets if this is not
larger than µ and otherwise returns P directly. The algorithm
is described in more detail in Algorithm 3. This algorithm
is not non-decreasing, very unnatural, and does not guide in
a sensible direction. However, for technical reasons one can
prove the following statement.

Theorem V.9. For any µ, λ ∈ N there is an effective (not
necessarily non-decreasing) (µ+ λ)-archiving algorithm.

Proof. We study the following (µ + λ)-archiving algorithm
and prove that it is indeed effective.

Algorithm 3: An effective (µ+ λ)-archiving algorithm

1 P ′ := (P \Q) ∪ (Q \ P)
2 if |P ′| 6 µ then
3 return P ′

4 else
5 return P

To show that Algorithm 3 is effective, let Y ⊂ Rd+ be finite
and P 0 ⊆ Y a µ-population. Moreover, let P ∗ ⊆ Y be a
µ-population with HYP(P ∗) = maxHYPµ(Y). Write P 0 \
P ∗ = {p0

1, . . . , p
0
µ} (with possibly some of the p0

i being equal)
and P ∗ \ P 0 = {p∗1, . . . , p∗µ}. Let Q2i−1 = {p0

i } and Q2i =
{p∗i } for i = 1, . . . , µ. Algorithm 3 works as desired on this

offspring: After every second offspring generation one point of
P 0 is replaced by a point from P ∗ so that after 2µ generations
we arrive at P ∗.

On the way there we even always have populations of size
µ or µ−1 (as long as |P | = |P ∗| = µ). If we have λ > 2, we
can even stick to populations of size µ by inserting every two
offspring generations at once, i.e., Q1 ∪ Q2, then Q3 ∪ Q4,
and so on.

This justifies why we assumed the archiving algorithms to
be non-decreasing in this Section V. Theorem V.9 shows that
Theorems V.2, V.5 and V.7 do not hold for general archiving
algorithms, which are not required to be non-decreasing.

VI. COMPETITIVENESS

In contrast to the last section, we now take a worst-case
view on offspring generation (as well as the initial population),
so we want to bound A(P 0, Q1, . . . , QN) for any initial
population P 0 and any offspring generations Q1, . . . , QN .
Observe that in this setting all results have to be independent
of the specific objective space Y and we cannot hope to reach
maxHYPµ(Y) in general. The only aim can be achieving a
hypervolume as good as the maximum hypervolume among all
µ-populations which are subsets of the points we have seen
so far, that is,

maxHYPµ

(
P 0 ∪

N⋃
i=1

Qi
)
,

which can be arbitrarily smaller than maxHYPµ(Y).
This allows us to view archiving algorithms as an online

problem where the algorithm is fed with new offspring in a
serial fashion and has to decide which individual it should
keep in the population without knowing the entire input. To
measure the ‘regret’ of an archiving algorithm we define its
competitive ratio α as follows.

Definition VI.1. Let P 0 be a µ-population and Qi be λ-
populations for 1 6 i 6 N . Then I := (P 0, Q1, . . . , QN)
is an instance. We also set

Obs(I) := P 0 ∪
N⋃
i=1

Qi.

An archiving algorithm A is α-competitive (for some α > 1)
if for all instances I = (P 0, Q1, . . . , QN) we have

A(P 0, Q1, . . . , QN) >
1

α
maxHYPµ(Obs(I)).

A. Increasing algorithms are at best µ-competitive

It is easy to show an upper bound on the competitive ratio
of µ for a very large class of archiving algorithms. It applies
to all non-decreasing archiving algorithms with the following
property: If a single offspring point q ∈ Q alone dominates
a larger hypervolume than all points in the current population
together, then the algorithm should take this point q (or do
something even better). Note that all locally optimal archiving
algorithms satisfy this condition.

11

Theorem VI.2. Let A be a non-decreasing archiving algo-
rithm such that for all inputs P and Q and points q ∈ Q we
have

HYP(A(P,Q)) > HYP({q}).

Then A is µ-competitive.
In particular: All locally optimal (µ + λ)-archiving algo-

rithms and all increasing (µ + 1)-archiving algorithms are
µ-competitive.

Proof. Let I := (P 0, Q1, . . . , QN) be an instance and
P ∗ ⊆ Obs(I) be a µ-population with HYP(P ∗) =
maxHYPµ(Obs(I)). By Lemma III.7 we have

HYP(P ∗) 6
∑
p∈P∗

HYP({p}),

so there is a point p∗ ∈ P ∗ with

HYP({p∗}) > 1

|P ∗|
HYP(P ∗) >

1

µ
HYP(P ∗).

Either p∗ ∈ P 0 (in which case we set r := 0) or
p∗ ∈ Qr for some r. Consider P i = A(P 0, Q1, . . . , Qi). We
have HYP(P r) > HYP({p∗}) by the extra assumption and
HYP(P r) 6 HYP(P r+1) 6 . . . 6 HYP(PN) by A being
non-decreasing. Taken together these prove the claim.

Observe that even a very simple algorithm fulfills the
premises of the above theorem: It considers the offspring one-
by-one and replaces its current population P i with {q}, if
the offspring point q has greater hypervolume than P i. This
requires only one costly computation of HYP(P 0); all other
populations consist of only a single point in the objective
space.

Perhaps surprisingly, no increasing archiving algorithm is
better than this simple algorithm in the worst case: For them,
the bound of Theorem VI.2 is tight.

Theorem VI.3. No increasing (µ+λ)-archiving algorithm is
(µ− ε)-competitive for any ε > 0.

In the proof of this theorem, we explicitly construct a bad
2-dimensional instance; see Figure 2 for an example with µ =
5. The initial population consists of the points p1, . . . , p4 and
the rightmost point of the qi’s. Then every offspring consists
of (λ copies of) a qi slightly to the left and above the old
one, so that any increasing algorithm has to exchange the two
points. This way, the population will always consist of the
points p1, . . . , p4 and one of the qi’s, with the latter point
being dragged to the left. The optimal population, however,
consists of five nicely spaced qi’s, which has (by choosing
the free parameters correctly) a hypervolume that is nearly a
factor µ larger than the hypervolume of the population of the
increasing algorithm.

Proof. We construct an instance I = (P 0, Q1, . . . , QN) as
follows. For reals a,A > 0 to be chosen later and j ∈
{1, . . . , µ− 1}, we set

pj = (A+ j a, (µ− j)a),

y

x

p1
p2
p3
p4

q0q1q2q3q4
. . .

qi

. . .

qN

Figure 2: Illustration of the example used in the proof of Theo-
rem VI.3.

and B := (µ − 1)a. Moreover, for δ > 0, 0 < ρ < 1 to be
chosen later and i ∈ {0, . . . , N}, we set qi = (xi, yi) with

xi := Aρi,

yi := B +
1 + δ i

xi
.

These points are depicted in Figure 2. Setting P 0 :=
{q0, p1, . . . , pµ−1} and Qi := {qi} (or λ copies of qi), we
get an instance I .

We show that A(P i−1, Qi) = P i with P i =
{qi, p1, . . . , pµ−1} for A being an increasing archiving al-
gorithm. To do this, we have to show that the exchange of
qi−1 with qi increases the hypervolume and is the only in-
creasing exchange. This means we have to show HYP(P i) >
HYP(P i−1) and HYP(P i−1) > HYP(P i−1 + qi − pj) for
any 1 6 j 6 µ− 1, as those are the only possible exchanges.
We have

HYP(P i) = HYP({p1, . . . , pµ−1}) + CONP i(qi),

where CONP i(qi) = xi(yi − B) = 1 + δi, and p1, . . . , pµ−1

are collinear points, so that their hypervolume can easily be
calculated, yielding

HYP(P i) = AB +
(
µ
2

)
a2 + 1 + δ i. (7)

This gives HYP(P i) > HYP(P i−1) right away. Moreover, by
inspection of the constructed instance we have

HYP(P i−1 + qi − pj)
= HYP(P i−1)− CONP i−1(pj) + CONP i−1(qi),

with CONP i−1(pj) > a2 and

CONP i−1(qi) = xi(yi − yi−1)

= 1 + δ i− ρ(1 + δ(i− 1))

= (1− ρ)(1 + δ(i− 1)) + δ.

Hence, for

a2 > (1− ρ)(1 + δ N) + δ, (8)

12

we have HYP(P i−1) > HYP(P i−1 + qi − pj) for any 1 6
j 6 µ− 1, and P i = A(P i−1, Qi) indeed holds.

Lastly, we need a lower bound on maxHYPµ(Obs(I)). For
this we require that µ divides N and consider P = {qiN/µ |
0 6 i 6 µ−1}. If we consider instead P ′ = {q′iN/µ | 0 6 i 6
µ − 1}, with q′i = (xi, y

′
i), y

′
i = B + 1/xi, the hypervolume

decreases only, as we decrease the y-coordinates. Hence, we
have maxHYPµ(Obs(I)) > HYP(P) > HYP(P ′). All that is
left to show is

HYP(P ′) > (µ− ε)HYP(PN). (9)

We compute HYP(P ′) to be

HYP(P ′) = HYP({q′0}) +

µ−1∑
i=1

xiN/µ(y′iN/µ − y
′
(i−1)N/µ)

= A(B + 1/A) +

µ−1∑
i=1

(1− ρN/µ)

= AB + µ− (µ− 1)ρN/µ. (10)

Then equation (9) is fulfilled (using equations (7) and (10)) if

AB + µ− (µ− 1)ρN/µ >

(µ− ε)
(
AB +

(
µ
2

)
a2 + 1 + δ N

)
.

Rearranging this, we get

ε >(µ− 1− ε)AB + (µ− ε)
(
µ
2

)
a2+

(µ− 1)ρN/µ + (µ− ε)δ N.

This inequality is fulfilled by setting

A := ε/(4µB),

a2 := ε/(4µ3),

δ := min{ε/(4µN), a2/2}, and
N := µ dlogρ(ε/(4µ))e.

As we can assume ε 6 1, we have δ 6 min{1/N, a2/2}, so
that requirement (8) can be simplified to a2 > 2(1−ρ)+a2/2.
We set ρ := 1−a2/4 to satisfy it. Noting that there is no cyclic
dependence in these definitions, we conclude the proof.

B. A competitive non-decreasing algorithm

We showed in the preceeding Section VI-A that increasing
archiving algorithms only achieve an unbounded competitive
ratio of > µ. This result implies that the notion of competitive-
ness is not suited for comparing different increasing archiving
algorithms: All of them have an unbounded competitiveness of
at least µ and this is tight even for very simple algorithms. This
leaves open whether there are non-decreasing, but not increas-
ing archiving algorithms with better, e.g., constant competitive
ratio. This would imply that some archiving algorithm that is
not locally optimal achieves a better competitive ratio than all
locally optimal archiving algorithms.

In this section (Section VI-B) we present a non-decreasing
(and not increasing) archiving algorithm which indeed
achieves constant competitiveness. In the following section
(Section VI-C) we will present a randomized variant of the
algorithm which is also computationally efficient.

Theorem VI.4. There is a (4 + 2/µ)-competitive non-
decreasing (µ+ 1)-archiving algorithm.

Note that we can easily build a (µ+λ)-archiving algorithm
with the same competitiveness from the (µ + 1)-archiving
algorithm guaranteed by Theorem VI.4 by feeding the λ
offspring one by one to the (µ+ 1)-archiving algorithm.

We do not prove Theorem VI.4 directly, as it follows from
the proof of Theorem VI.6 below. However, one such archiving
algorithm Acomp is given in Algorithm 4. This non-locally-
optimal algorithm improves on the locally optimal algorithms
with respect to the competitive ratio and hence is better suited
for hypervolume-based selection in the worst case. Note that
this does not imply that this algorithm should be used in
practice, as worst-case optimality is usually not needed.

Algorithm 4: Competitive (µ + 1)-archiving algorithm
Acomp

input : µ-population P , offspring {q}
output: µ-population P ′

1 foreach p ∈ P + q do
2 Hp ← HYP(P + q − p)
3 p′ ← argmax{Hp | p ∈ P}
4 if Hp′ > (1 + 1/µ)Hq then
5 return P + q − p′

6 else
7 return P

Unfortunately, the runtime ofAcomp cannot be polynomial in
µ + d (unless P = NP) as the exact hypervolume calculation
in line 2 of Algorithm 4 is #P-hard [5]. However, this also
holds for all increasing archiving algorithms as shown in
Theorem IV.1.

C. A computationally efficient randomized competitive non-
decreasing archiving algorithm

We now propose a randomized variant of Acomp which
improves on all increasing algorithms not only with respect
to the competitive ratio, but also the runtime. It is a random-
ized algorithm which meets the competitive ratio bound only
with a certain high probability. Hence, we need to redefine
competitiveness (and non-decreasing) to include randomized
algorithms.

Definition VI.5. Let α > 1 and p : N→ [0, 1]. A randomized
archiving algorithm A is α-competitive with probability p if
for all instances I = (P 0, Q1, . . . , QN) we have

A(P 0, Q1, . . . , QN) >
1

α
maxHYPµ(Obs(I))

with probability at least p(N).
We call a randomized archiving algorithm A non-

decreasing with probability p if for all instances I =
(P 0, Q1, . . . , QN) we have HYP(A(P 0, Q1, . . . , Qi)) >
HYP(A(P 0, Q1, . . . , Qi−1)) for all i ∈ {1, . . . , N} with
probability at least p(N).

13

Our proposed algorithm Aeff is given in Algorithm 5. It
takes additional parameters ε, δ > 0 and is (4 + 2/µ + ε)-
competitive with probability p(N) = 1−Nδ.

Algorithm 5: Randomized Efficient Competitive (µ+ 1)-
archiving algorithm Aeff

input : µ-population P , offspring {q},
error bound ε, error probability δ

output: µ-population P ′

1 ε′ ← ε/104
2 c ← 1 + 2ε′

3 foreach p ∈ P + q do
4 Hp ← compute (1 + ε′/µ)-approximation of

HYP(P + q − p) with error probability δ/(µ+ 1)

5 p′ ← argmax{Hp | p ∈ P}
6 if Hp′ > (1 + c

µ)Hq then
7 return P + q − p′

8 else
9 return P

The critical feature of Aeff is line 4. It makes use of
the hypervolume approximation scheme of Bringmann and
Friedrich [5] which computes with probability at least 1 − δ
a (1 + ε)-approximation of the hypervolume of a given set
of µ points in Rd+ in time O(log(1/δ)µd/ε2). It is clear
from the hypervolume approximation algorithm used here that
Aeff is efficiently computable, namely with a run-time of at
most O(log(µ/δ)µ4d/ε2). Note that we aimed only for a
polynomial runtime and did not try to optimize the algorithm
for a better runtime bound.

We can prove that Aeff is competitive. The following
theorem states our result.

Theorem VI.6. Let 0 < ε 6 1. AlgorithmAeff is a randomized
(µ + 1)-archiving algorithm which is non-decreasing and
(4 + 2/µ + ε)-competitive with probability p(N) = 1 − Nδ.
Moreover, it has a deterministic runtime polynomial in µ, λ,
d, log(1/δ), and 1/ε.

Observe that by setting ε = 0, so that all hypervolume
approximations are in fact exact computations, Algorithm 5
becomes the same as Algorithm 4. This implies that the proof
of Theorem VI.6 is a proof of Theorem VI.4, too.

The perhaps surprising probability bound is caused by
the (necessary) assumption that every call to the hypervol-
ume approximation algorithm indeed returns a (1 + ε′/µ)-
approximation. The factor N in the probability can easily be
cancelled out by a sufficiently small δ, as the runtime depends
only logarithmically on 1/δ.

Proof. Let I = (P 0, Q1, . . . , QN) be an instance. Consider
the probability that every hypervolume approximation of Aeff
on I indeed lies in the specified bounds, i.e., we have

(1−ε′/µ)HYP(P+q−p) 6 Hp 6 (1+ε′/µ)HYP(P+q−p)

for every computation of Hp in Aeff. For a single call, this
happens with probability at least 1−δ/(µ+1). Furthermore, we

have at most N(µ+ 1) hypervolume approximations running
Aeff on I , as in every invocation of Aeff, at most µ+ 1 hyper-
volume approximations are computed. With the union bound,
we arrive at a probability of at least p(N) = 1−Nδ that all the
hypervolume approximations lie within the specified bounds.
Thus, in the remainder we can assume that all hypervolume
approximations of Aeff indeed lie in the specified bounds.

To show that Aeff is non-decreasing, note that in every
iteration either we stay with the current population or the
hypervolume increases by a constant factor, in which case(

1 +
ε′

µ

)
HYP(P i) > Hp′

>
(

1 +
c

µ

)
Hq >

(
1− ε′

µ

)(
1 +

c

µ

)
HYP(P i−1).

For c = 1 + 2ε′ > 1, µ > 1 and ε′ 6 1/3, which is true by
assumption, we have(

1− ε′

µ

)(
1 +

c

µ

)
>
(

1 +
ε′

µ

)
,

implying that the algorithm is non-decreasing.
It remains to prove that Aeff is (4+2/µ+ε)-competitive. To

this end, let P i = Aeff(P
i−1, Qi) for i = 1, . . . , N . Consider

P̂ :=
⋃N
i=0 P

i, the set of all points in Obs(I) that were taken
by Aeff at some point. Let P ∗ ⊆ Obs(I) be a µ-population
with HYP(P ∗) = maxHYPµ(Obs(I)). By monotonicity of
HYP and Lemma III.8 we have

maxHYPµ(Obs(I)) = HYP(P ∗) 6 HYP(P̂ ∪ P ∗)

6 HYP(P̂) +
∑

q∈P∗\P̂

CONP̂ (q). (11)

To continue, we bound HYP(P̂) as well as the contribution
of any point q ∈ P ∗ \ P̂ to P̂ in terms of HYP(PN). This
will yield the desired bound for HYP(PN). We start with the
latter.

Consider a point not chosen by the algorithm, q ∈ Obs(I)\
P̂ . We have Qi = {q} for some 1 6 i 6 N . Let p̃ ∈ P i−1 +q
with CONP i−1+q(p̃) minimal among all p ∈ P i−1 + q. Note
that we can have p̃ = q, if q has the least contribution, but
choosing q does not decrease the hypervolume enough, i.e.,
by a factor 1 + c

µ . Using Lemma III.5 we have

CONP i−1+q(p̃) 6
1

µ+ 1

∑
p∈P i−1+q

CONP i−1+q(p)

6
1

µ+ 1
HYP(P i−1 + q)

=
1

µ+ 1

(
HYP(P i−1) + CONP i−1(q)

)
. (12)

Let p′ = argmax{Hp | p ∈ P i−1}, see Algorithm 5. The
point q was not taken by the algorithm, so we have(

1− ε′

µ

)
HYP(P i−1 + q − p̃)

6 Hp̃ 6 Hp′ 6
(

1 +
c

µ

)
Hq

6
(

1 +
c

µ

)(
1 +

ε′

µ

)
HYP(P i−1), (13)

14

where the factors (1± ε′/µ) stem from the Hp being approx-
imations. The equality HYP(P i−1 + q− p̃) = HYP(P i−1) +
CONP i−1(q)−CONP i−1+q(p̃) can be seen by replacing CON
by its definition. Using this, inequality (12), and 1

1−ε′/µ 6

1 + 2ε′

µ for ε′ 6 1/2, we can simplify inequality (13) to

CONP i−1(q) 6 βHYP(P i−1),

where

β =

(
1 +

1

µ

)(
1 +

c

µ

)(
1 +

ε′

µ

)(
1 +

2ε′

µ

)
− 1.

Together with submodularity (Lemma III.4) and using P̂ ⊇
P i−1 and HYP(PN) > HYP(P i−1) we obtain

CONP̂ (q) 6 CONP i−1(q) 6 βHYP(P i−1) 6 βHYP(PN).
(14)

Plugging in the definition of c = 1 + 2ε′, simplifying and
roughly bounding the number of terms involving ε′/µ together
with their coefficients, and using µ > 1, yields

β 6
2

µ
+

1

µ2
+ 64

ε′

µ
. (15)

Now we bound HYP(P̂). Consider I = {i | P i 6=
P i−1, 1 6 i 6 N}, the indices where P i changed, and let
pi be the unique point in P i−1 \P i, i.e., the point we deleted
in round i ∈ I . Then we have for i ∈ I and every p ∈ P i+pi(

1 +
ε′

µ

)
HYP(P i) > Hpi > Hp

>

(
1− ε′

µ

)
HYP(P i + pi − p).

Since HYP(P i + pi − p) = HYP(P i) + CONP i(pi) −
CONP i+pi(p), this is equivalent to

2ε′

µ

(
1− ε′

µ

)−1

HYP(P i) + CONP i+pi(p)

> CONP i(pi).

Summing over all p ∈ P i + pi and using HYP(P) >∑
p∈P CONP (p) (Lemma III.5) we get

2ε′
(

1 +
1

µ

)(
1− ε′

µ

)−1

HYP(P i) + HYP(P i + pi)

> (µ+ 1)CONP i(pi).

This yields, after substituting HYP(P i + pi) = HYP(P i) +
CONP i(pi) again,

CONP i(pi) 6 γHYP(P i),

with γ = 1
µ

(
1+2ε′

(
1+ 1

µ

)(
1− ε′

µ

)−1)
. Now, by a telescoping

sum and submodularity (Lemma III.4) we have

HYP(P̂) = HYP(PN) +
∑
i∈I

CONPN∪...∪P i(pi)

6 HYP(PN) +
∑
i∈I

CONP i(pi)

6 HYP(PN) + γ
∑
i∈I

HYP(P i).

As we go to a new population only if we have an improvement
of a factor of at least (1 + c/µ), but we deal with approxi-
mations, we get δ · HYP(P i) > HYP(P i−1) for i ∈ I and
δ := (1 + c/µ)−1(1 − ε′/µ)−1(1 + ε′/µ). Plugging this into
the above inequality yields

HYP(P̂) 6 HYP(PN)

(
1 + γ

N−1∑
i=0

δi

)

6 HYP(PN)

(
1 +

γ

1− δ

)
. (16)

Plugging in the definitions of c = 1 + 2ε′, δ and γ, simple
calculations and rough estimations using µ > 1 and ε′ 6 1/6
show that

γ

1− δ
6 1 +

1

µ
+ 40ε′. (17)

Now we can take equation (11), plug in equations (14)
and (16), and simplify using equations (15) and (17) to get

HYP(P ∗) 6 HYP(P̂) +
∑

q∈P∗\P̂

CONP̂ (q)

6

(
1 +

γ

1− δ
+ µβ

)
HYP(PN)

6

(
4 +

2

µ
+ 104ε′

)
HYP(PN)

=

(
4 +

2

µ
+ ε

)
HYP(PN).

D. Lower bound for Competitiveness

It is useful to relate the notion of approximation from
Section V with the notion of competitiveness introduced in
Section VI-A. The following lemma shows that competitive-
ness implies approximation.

Lemma VI.7. If A is an α-competitive (µ + λ)-archiving
algorithm, then A is also an (α + ε)-approximate (µ + 1)-
archiving algorithm for all ε > 0.

To ease the application of Lemma VI.7, we first state a direct
implication of its contraposition in the following Lemma VI.8.
It allows us to transfer lower bounds for approximation to
lower bounds for competitiveness.

Lemma VI.8. If there is no α-approximate non-decreasing
(µ + 1)-archiving algorithm, then there is no (α − ε)-
competitive non-decreasing (µ + λ)-archiving algorithm for
any ε > 0 and λ > 1.

We can now easily combine Theorem V.7 and Lemma VI.8
and get the following corollary.

Theorem VI.9. There is no
(
1.1338 − 0.1338/µ − ε

)
-

competitive non-decreasing (µ+ λ)-archiving algorithm.

Observe that the structure of the bound shown in Theo-
rem VI.9 is natural as for µ = 1 it proves that there is no
(1−ε)-competitive non-decreasing (1+1)-archiving algorithm
while a greedy (1 + 1)-archiving algorithm is obviously
1-competitive. For µ > 2, Theorem VI.9 implies that there

15

is no (µ+ λ)-archiving algorithm with a competitive ratio of
1.06 or less.

Proof of Lemma VI.7. Let A be an α-competitive (µ + λ)-
archiving algorithm. Let Y ⊂ Rd+ with finite maxHYPµ(Y)
and P 0 ⊆ Y a µ-population. Since Y may be infi-
nite there may not be a hypervolume maximizing set in
it. However, the supremum in the definition of maxHYP
guarantees the existence of a µ-population P ∗ ⊆ Y with
HYP(P ∗) > α

α+ε maxHYPµ(Y). For P ∗ = {p∗1, . . . , p∗µ}
we set Qi := {p∗i } for i = 1, . . . , µ. Consider the instance
I = (P 0, Q1, . . . , Qµ). A is α-competitive, so we have

A(P 0, Q1, . . . , Qµ) >
1

α
maxHYPµ(Obs(I)),

but Obs(I) contains P ∗, so maxHYPµ(Obs(I)) > HYP(P ∗).
Putting everything together we see that there exists a
sequence of offspring such that A(P 0, Q1, . . . , Qµ) >

1
α+ε maxHYPµ(Y), so A is an (α+ ε)-approximate (µ+ 1)-
archiving algorithm.

VII. CONCLUSION

The first question when theoretically analyzing evolution-
ary algorithms is typically convergence. We considered an
abstract hypervolume-based multi-objective evolutionary algo-
rithm (MOEA) without problem-specific assumptions on the
structure of the search space or algorithm-specific assumptions
on the generation of the initial and offspring population.

Assuming the offspring generation to be best-case, we
proved that non-decreasing (µ + λ)-archiving algorithms can
only be effective for λ > µ and that they cannot achieve an
approximation of the maximum hypervolume by a factor of
more than 1/(1+0.1338 (1/λ−1/µ)). On the positive side, we
proved that the popular (but computationally very expensive)
locally optimal algorithms are effective for λ = µ and can
always find a population with hypervolume at least half the
optimum for λ < µ. We conjecture that the lower bound of
one half can be improved to a value which is asymptotically 1
(for any λ → ∞, even if µ � λ), but leave this as an open
question. For practically used archiving algorithms our results
suggest using λ > µ as this is necessary for being able to end
up in a population maximizing the hypervolume even when
assuming an optimal offspring generation.

We also studied the behavior of archiving algorithms assum-
ing the offspring generation to be worst-case. For this setting,
we have proven that increasing archiving algorithms are com-
putationally inefficient and achieve only an unbounded com-
petitive ratio of µ. The same holds for greedy archiving algo-
rithms used in hypervolume-based MOEAs like SIBEA [17],
SMS-EMOA [1], and the generational MO-CMA-ES [10, 11].
In sharp contrast to this, we presented a non-decreasing archiv-
ing algorithm which not only achieves a constant competitive
ratio of 4 + 2/µ, but is also efficiently computable. This
new archiving algorithm can be implemented efficiently, but it
remains open to find a practical and computationally efficient
archiving algorithm which is at the same time effective and
competitive, that is, performing well for best-case and worst-
case offspring generation.

We focused on best-case and worst-case offspring gener-
ation. Another interesting option would be an average-case
offspring generation. It might be the case that in this setting
locally optimal archiving algorithms show a better perfor-
mance, as results such as Theorem VI.3 might do not hold
in the average-case. The disadvantage of such a model would
be the necessity of modeling other parts of the (until now)
abstract MOEA, namely the generation of the initial population
and offspring as well as the structure of the search space.
Such average-case results would therefore be necessarily less
general. It might be possible to compensate this by considering
a smoothed model [14] instead.

While this paper solely focused on hypervolume-based
MOEAs, it is worth studying the convergence behavior of
other MOEAs which are, e.g., based on the ε-indicator. This
might yield interesting results for comparing different indica-
tors.

ACKNOWLEDGEMENTS

This research endavor was triggered by Lothar Thiele, who
pointed us to Theorem V.2 and posed the question whether
Theorem V.5 holds or the opposite.

Karl Bringmann is a recipient of the Google Europe Fellow-
ship in Randomized Algorithms, and this research is supported
in part by this Google Fellowship. Tobias Friedrich is sup-
ported by the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 618091 (SAGE).

REFERENCES

[1] N. Beume, B. Naujoks, and M. T. M. Emmerich. SMS-
EMOA: Multiobjective selection based on dominated hy-
pervolume. European Journal of Operational Research,
181:1653–1669, 2007.

[2] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis, Vol. 2. Cambridge University Press
Cambridge, 1998.

[3] L. Bradstreet, L. Barone, and L. While. Maximising
hypervolume for selection in multi-objective evolutionary
algorithms. In IEEE Congress on Evolutionary Compu-
tation (CEC ’06), pp. 6208–6215, 2006.

[4] K. Bringmann and T. Friedrich. Parameterized average-
case complexity of the hypervolume indicator. In 15th
Annual Conference on Genetic and Evolutionary Com-
putation (GECCO ’13), pp. 575–582. ACM Press, 2013.

[5] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. Computational Geometry: Theory and
Applications, 43:601–610, 2010.

[6] K. Bringmann and T. Friedrich. An efficient algorithm
for computing hypervolume contributions. Evolutionary
Computation, 18:383–402, 2010.

[7] K. Bringmann and T. Friedrich. Approximating the least
hypervolume contributor: NP-hard in general, but fast in
practice. Theoretical Computer Science, 425:104–116,
2012.

[8] K. Bringmann and T. Friedrich. Convergence of
hypervolume-based archiving algorithms I: Effectiveness.

16

In 13th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’11), pp. 745–752. ACM Press,
2011.

[9] K. Bringmann and T. Friedrich. Convergence of
hypervolume-based archiving algorithms II: Competi-
tiveness. In 14th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’12), pp. 457–464.
ACM Press, 2012.

[10] C. Igel, N. Hansen, and S. Roth. Covariance matrix
adaptation for multi-objective optimization. Evolutionary
Computation, 15:1–28, 2007.

[11] C. Igel, T. Suttorp, and N. Hansen. Steady-state selection
and efficient covariance matrix update in the multi-
objective CMA-ES. In 4th International Conference on
Evolutionary Multi-Criterion Optimization (EMO ’07),
Vol. 4403 of LNCS, pp. 171–185. Springer, 2007.

[12] M. López-Ibáñez, J. D. Knowles, and M. Laumanns.
On sequential online archiving of objective vectors. In
6th International Conference on Evolutionary Multi-
Criterion Optimization (EMO ’11), Vol. 6576 of LNCS,
pp. 46–60. Springer, 2011.

[13] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of
approximations for maximizing submodular set functions
– I. Mathematical Programming, 14:265–294, 1978.

[14] D. A. Spielman and S.-H. Teng. Smoothed analysis
of algorithms: Why the simplex algorithm usually takes
polynomial time. Journal of the ACM, 51:385–463, 2004.

[15] T. Ulrich and L. Thiele. Bounding the effectiveness
of hypervolume-based (µ + λ)-archiving algorithms. In
6th International Conference on Learning and Intelligent
Optimization (LION ’12), pp. 235–249, 2012.

[16] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the strength
Pareto approach. IEEE Trans. Evolutionary Computation,
3:257–271, 1999.

[17] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume
indicator revisited: On the design of Pareto-compliant
indicators via weighted integration. In 4th International
Conference on Evolutionary Multi-Criterion Optimiza-
tion (EMO ’07), Vol. 4403 of LNCS, pp. 862–876.
Springer, 2007.

[18] E. Zitzler, L. Thiele, and J. Bader. On set-based
multiobjective optimization. IEEE Trans. Evolutionary
Computation, 14:58–79, 2010.

Karl Bringmann received his MSc degrees in
computer science and mathematics from Saarland
University in Saarbrücken, Germany, in 2011. Since
2011 he is a PhD student in the Algorithms and
Complexity Group at the Max Planck Institute for
Informatics in Saarbrücken, Germany. In 2012 he
received the Google Europe Fellowship in Ran-
domized Algorithms. His research interests lie in
randomized algorithms (including sampling algo-
rithms and evolutionary algorithms), computational
geometry, and lower bounds.

Tobias Friedrich received his MSc in computer
science from the University of Sheffield, UK, in
2003 and his diploma in mathematics from the
University of Jena, Germany, in 2005. In 2007 he
obtained a PhD in computer science from Saarland
University, Germany. Afterwards, he was a post-
doc in the Algorithms Group of the International
Computer Science Institute, Berkeley, USA. From
2011 till 2012 he was senior researcher at the Max
Planck Institute for Informatics and independent
research group leader at the Cluster of Excellence

on “Multimodal Computing and Interaction” in Saarbrücken. Since August
2012 he is full professor and chair of theoretical computer science at the
University of Jena, Germany. The central topics of his work are randomized
methods in mathematics and computer science and randomized algorithms
(both classical and evolutionary).

	Introduction
	Results on effectiveness
	Results on competitiveness
	Results on computational efficiency

	Preliminaries
	Hypervolume indicator
	Archiving algorithms
	[1.0]Hypervolume-based archiving algorithms

	Technical Basics
	Computational Complexity
	Effectiveness
	Approximate Effectiveness
	Effectiveness and Decreasing Algorithms

	Competitiveness
	Increasing algorithms are at best -competitive
	A competitive non-decreasing algorithm
	A computationally efficient randomized competitive non-decreasing archiving algorithm
	Lower bound for Competitiveness

	Conclusion
	Biographies
	Karl Bringmann
	Tobias Friedrich

