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Probabilistic analysis for metric optimization problems has mostly been con-
ducted on random Euclidean instances, but little is known about metric instances
drawn from distributions other than the Euclidean. This motivates our study of
random metric instances for optimization problems obtained as follows: Every edge
of a complete graph gets a weight drawn independently at random. The distance
between two nodes is then the length of a shortest path (with respect to the weights
drawn) that connects these nodes.

We prove structural properties of the random shortest path metrics generated in
this way. Our main structural contribution is the construction of a good clustering.
Then we apply these findings to analyze the approximation ratios of heuristics for
matching, the traveling salesman problem (TSP), and the k-median problem, as
well as the running-time of the 2-opt heuristic for the TSP. The bounds that we
obtain are considerably better than the respective worst-case bounds. This suggests
that random shortest path metrics are easy instances, similar to random Euclidean
instances, albeit for completely different structural reasons.

1 Introduction

For large-scale optimization problems, finding optimal solutions within reasonable time is of-
ten impossible, because many such problems, like the traveling salesman problem (TSP), are
NP-hard. Nevertheless, we often observe that simple heuristics succeed surprisingly quickly in
finding close-to-optimal solutions. Many such heuristics perform well in practice but have a
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poor worst-case performance. In order to explain the performance of such heuristics, probabilis-
tic analysis has proved to be a useful alternative to worst-case analysis. Probabilistic analysis
of optimization problems has been conducted with respect to arbitrary instances (without the
triangle inequality) [19, 26] or instances embedded in Euclidean space. In particular, the lim-
iting behavior of various heuristics for many of the Euclidean optimization problems is known
precisely [40].

However, the average-case performance of heuristics for general metric instances is not well
understood. This lack of understanding can be explained by two reasons: First, independent
random edge lengths (without the triangle inequality) and random geometric instances are
relatively easy to handle from a technical point of view – the former because of the independence
of the lengths, the latter because Euclidean space provides a structure that can be exploited.
Second, analyzing heuristics on random metric spaces requires an understanding of random
metric spaces in the first place. While Vershik [39] gave an analysis of a process for obtaining
random metric spaces, using this directly to analyze algorithms seems difficult.

In order to initiate systematic research of heuristics on general metric spaces, we use the
following model, proposed by Karp and Steele [27, Section 3.4]: given an undirected complete
graph, we draw edge weights independently at random according to exponential distributions
with parameter one. The distance between any two vertices is the total weight of the shortest
path between them, measured with respect to the random weights. We call such instances
random shortest path metrics.

This model is also known as first-passage percolation, and has been introduced by Broadbent
and Hammersley as a model for passage of fluid in a porous medium [10,11]. More recently, it
has also been used to model shortest paths in networks such as the Internet [16]. The appealing
feature of random shortest path metrics is their simplicity, which enables us to use them for
the analysis of heuristics.

1.1 Known and Related Results

There has been significant study of random shortest path metrics or first-passage percolation.
The expected length of an edge is known to be lnn/n [13, 24]. Asymptotically the same
bound holds also for the longest edge almost surely [21, 24]. These results hold not only for
the exponential distribution, but for every distribution with distribution function F satisfying
F (x) = x + o(x) for small values of x [24]. (See also Section 6.) This model has been used
to analyze algorithms for computing shortest paths [20, 21, 34]. Kulkarni and Adlakha have
developed algorithmic methods to compute distribution and moments of several optimization
problems [30–32]. Beyond shortest path algorithms, random shortest path metrics have been
applied only rarely to analyze algorithms. Dyer and Frieze [15], answering a question raised
by Karp and Steele [27, Section 3.4], analyzed the patching heuristic for the asymmetric TSP
(ATSP) in this model. They showed that it comes within a factor of 1 + o(1) of the optimal
solution with high probability. Hassin and Zemel [21] applied their findings to the 1-center
problem.

From a more structural point of view, first-passage percolation has been analyzed in the area
of complex networks, where the hop-count (the number of edges on a shortest path) and the
length of shortest path trees have been analyzed [23]. These properties have also been studied
on random graphs with random edge weights in various settings [7–9, 22, 29]. Addario-Berry
et al. [1] have shown that the number of edges in the longest of the shortest paths is O(log n)
with high probability, and hence the shortest path trees have depth O(log n).
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1.2 Our Results

As far as we are aware, simple heuristics such as greedy heuristics have not been studied in
this model yet. Understanding the performance of such algorithms is particularly important
as they are easy to implement and used in many applications.

We provide a probabilistic analysis of simple heuristics for optimization under random short-
est path metrics. First, we provide structural properties of random shortest path metrics
(Section 3). Our most important structural contribution is proving the existence of a good
clustering (Lemma 3.9). Then we use these structural insights to analyze simple algorithms
for minimum weight matching and the TSP to obtain better expected approximation ratios
compared to the worst-case bounds. In particular, we show that the greedy algorithm for
minimum-weight perfect matching (Theorem 4.2), the nearest-neighbor heuristic for the TSP
(Theorem 4.4), and every insertion heuristic for the TSP (Theorem 4.6) achieve constant ex-
pected approximation ratios. We also analyze the 2-opt heuristic for the TSP and show that the
expected number of 2-exchanges required before the termination of the algorithm is bounded
by O(n8 log3 n) (Theorem 4.7). Investigating further the structural properties of random short-
est path metrics, we then consider the k-median problem (Section 5), and show that the most
trivial procedure of choosing k arbitrary vertices as k-median yields a 1 + o(1) approximation
in expectation, provided k = O(n1−ε) for some ε > 0 (Theorem 5.2).

2 Model and Notation

We consider undirected complete graphs G = (V,E) without loops. First, we draw edge weights
w(e) independently at random according to the exponential distribution1 with parameter 1.

Second, let the distances d : V ×V → [0,∞) be given as follows: the distance d(u, v) between
u and v is the minimum total weight of a path connecting u and v. In particular, we have
d(v, v) = 0 for all v ∈ V , d(u, v) = d(v, u) because G is undirected, and the triangle inequality:
d(u, v) ≤ d(u, x) + d(x, v) for all u, x, v ∈ V . We call the complete graph with distances d
obtained from random weights w a random shortest path metric.

We use the following notation: Let ∆max = maxu,v d(u, v) denote the diameter of the random
shortest path metric. Let B∆(v) = {u ∈ V | d(u, v) ≤ ∆} be the ball of radius ∆ around v,
i.e., the set of all nodes whose distance to v is at most ∆.

We denote the minimal ∆ such that there are at least k nodes within a distance of ∆ of v
by τk(v). Formally, we define τk(v) = min{∆ | |B∆(v)| ≥ k}.

By Exp(λ), we denote the exponential distribution with parameter λ. If a random variable X
is distributed according to a probability distribution P , we write X ∼ P . In particular,
X ∼

∑m
i=1 Exp(λi) means that X is the sum of m independent exponentially distributed

random variables with parameters λ1, . . . , λm.
By exp, we denote the exponential function. For n ∈ N, let [n] = {1, . . . , n} and let

Hn =
∑n

i=1 1/i be the n-th harmonic number.

1Exponential distributions are technically the easiest to handle because they are memoryless. We will discuss
other distributions in Section 6.
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3 Structural Properties of Shortest Path Metrics

3.1 Random Process

To understand random shortest path metrics, it is convenient to fix a starting vertex v and see
how the lengths from v to the other vertices develop. In this way, we analyze the distribution
of τk(v).

The values τk(v) are generated by a simple birth process as follows. (The same process has
been analyzed by Davis and Prieditis [13], Janson [24], and also in subsequent papers.) For
k = 1, we have τk(v) = 0.

For k ≥ 1, we are looking for the closest vertex to any vertex in Bτk(v)(v) in order to obtain
τk+1(v). This conditions all edges (u, x) with u ∈ Bτk(v)(v) and x /∈ Bτk(v)(v) to be of length
at least τk(v)− d(v, u). The set Bτk(v)(v) contains k vertices. Thus, there are k · (n− k) edges
to the rest of the graph. Consequently, the difference δk = τk+1(v) − τk(v) is distributed as
the minimum of k(n−k) exponential random variables (with parameter 1), or, equivalently, as
Exp(k · (n− k)). We obtain that τk+1(v) ∼

∑k
i=1 Exp

(
i · (n− i)

)
. Note that these exponential

distributions as well as the random variables δ1, . . . , δn are independent.
Exploiting linearity of expectation and that the expected value of Exp(λ) is 1/λ we obtain

the following lemma.

Lemma 3.1. For any k ∈ [n] and any v ∈ V , we have E
(
τk(v)

)
= 1

n ·
(
Hk−1 +Hn−1 −Hn−k

)
and τk(v) ∼

∑k−1
i=1 Exp

(
i · (n− i)

)
.

Proof. The proof is by induction on k. For k = 1, we have τk(v) = 0 and Hk−1+Hn−1−Hn−k =
H0 + Hn−1 − Hn−1 = 0. Now assume that the lemma holds for k for some k ≥ 1. In the
paragraph preceding this lemma we have seen that τk+1(v) − τk(v) ∼ Exp(k(n − k)). Thus,
E(τk+1(v)− τk(v)) = 1

k(n−k) . Plugging in the induction hypothesis yields

E
(
τk+1(v)

)
= E

(
τk(v)

)
+

1

k · (n− k)
=

1

n
·
(
Hk−1 +Hn−1 −Hn−k +

1

k
+

1

n− k

)
=

1

n
·
(
Hk +Hn−1 −Hn−(k+1)

)
.

From this result, we can easily deduce two known results: averaging over k yields that the
expected distance of an edge is Hn−1

n−1 ≈ lnn/n [13, 24]. The longest distance from v to any
other node is τn(v), which is 2Hn−1/n ≈ 2 lnn/n in expectation [24]. For completeness, let us
mention that the diameter ∆max is approximately 3 lnn/n [24]. However, this does not follow
immediately from Lemma 3.1.

3.2 Distribution of τk(v)

Let us now have a closer look at cumulative distribution function of τk(v) for fixed v ∈ V and
k ∈ [n]. To do this, the following lemma is very useful.

Lemma 3.2. Let X ∼
∑n

i=1 Exp(ci). Then P(X ≤ α) = (1− e−cα)n.

Proof. The random variable X has the same distribution as maxni=1 Yi, where Yi ∼ Exp(c).
We have X ≤ α if and only if Yi ≤ α for all i ∈ {1, . . . , n}.
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In the following, let Fk denote the cumulative distribution function of τk(v) for some fixed
vertex v ∈ V , i.e., Fk(x) = P(τk(v) ≤ x).

Lemma 3.3. For every ∆ ≥ 0, v ∈ V , and k ∈ [n], we have(
1− exp(−(n− k)∆)

)k−1 ≤ Fk(∆) ≤
(
1− exp(−n∆)

)k−1
.

Proof. Lemma 3.1 states that τk(v) ∼
∑k−1

i=1 Exp(i(n − i)). We approximate the parameters
by ci for c ∈ {n − k, n}. The distribution with c = n is stochastically dominated by the true
distribution, which is in turn dominated by the distribution obtained for c = n− k. We apply
Lemma 3.2 with c = n and c = n− k.

Lemma 3.4. Fix ∆ ≥ 0 and a vertex v ∈ V . Then(
1− exp(−(n− k)∆)

)k−1 ≤ P
(
|B∆(v)| ≥ k

)
≤
(
1− exp(−n∆)

)k−1
.

Proof. We have |B∆(v)| ≥ k if and only if τk(v) ≤ ∆. The lemma follows from Lemma 3.3.

We can improve Lemma 3.3 slightly in order to obtain even closer upper and lower bounds.
For n, k ≥ 2, combining Lemmas 3.3 and 3.5 yields tight upper and lower bounds if we disregard

the constants in the exponent, namely Fk(∆) =
(
1− exp(−Θ(n∆))

)Θ(k)
.

Lemma 3.5. For all v ∈ V , k ∈ [n], and ∆ ≥ 0, we have

Fk(∆) ≥
(
1− exp(−(n− 1)∆/4)

)n−1

and
Fk(∆) ≥

(
1− exp(−(n− 1)∆/4)

) 4
3

(k−1)
.

Proof. As τk(v) is monotonically increasing in k, we have Fk(∆) ≥ Fk+1(∆) for all k. Thus,
we have to prove the claim only for k = n. In this case, τn(v) ∼

∑n−1
i=1 Exp(λi), with λi =

i(n− i) = λn−i. Setting m = dn/2e and exploiting the symmetry around m yields

τn(v) ≤
m∑
i=1

Exp(λi) +

m∑
i=1

Exp(λi) = τm(v) + τm(v).

Here, “≤” means stochastic dominance, “=” means equal distribution, and “+” means adding
up two independent random variables. Hence,

Fn(∆) = P
(
τn(v) ≤ ∆

)
≥ P

(
τm(v) + τm(v) ≤ ∆

)
≥ P

(
τm(v) ≤ ∆/2

)2
.

By Lemma 3.3, and using m ≤ (n+ 1)/2, this is bounded by

Fn(∆) ≥ (1− exp(−(n−m)∆/2))2(m−1) ≥ (1− exp(−(n− 1)∆/4))n−1.

For the second inequality, we use the first inequality of Lemma 3.5 for k− 1 ≥ 3
4(n− 1) and

Lemma 3.3 for k − 1 < 3
4(n− 1) as then n− k ≥ (n− 1)/4.
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3.3 Tail Bounds for |B∆(v)| and ∆max

Our first tail bound for |B∆(v)|, which is the number of vertices within distance ∆ of a given
vertex v, follows directly from Lemma 3.3. From this lemma we derive the following corollary,
which is a crucial ingredient for the existence of good clusterings and, thus, for the analysis of
heuristics in the remainder of this paper.

Corollary 3.6. Let n ≥ 5 and fix ∆ ≥ 0 and a vertex v ∈ V . Then we have

P
(
|B∆(v)| < min

{
exp (∆n/5) ,

n+ 1

2

})
≤ exp (−∆n/5) .

Proof. Lemma 3.4 yields

P
(
|B∆(v)| < min

{
exp

(
∆
n− 1

4

)
,
n+ 1

2

})
≤ 1−

(
1− exp

(
−n− 1

2
∆

))exp(∆(n−1)/4)

≤ exp

(
−∆

n− 1

4

)
,

where the last inequality follows from (1−x)y ≥ 1−xy for y ≥ 1, x ≥ 0. Using (n−1)/4 ≥ n/5
for n ≥ 5 completes the proof.

Corollary 3.6 is almost tight according to the following result.

Corollary 3.7. Fix ∆ ≥ 0, a vertex v ∈ V , and any c > 1. Then

P
(
|B∆(v)| ≥ exp(c∆n)

)
< exp

(
−(c− 1)∆n

)
.

Proof. Lemma 3.4 with k = c∆n yields

P
(
|B∆(v)| ≥ exp(c∆n)

)
≤
(
1− exp(−n∆)

)exp(c∆n)−1
.

Using 1 + x ≤ ex, we get

P
(
|B∆(v)| ≥ exp(c∆n)

)
≤ exp

(
exp(−n∆)− exp

(
(c− 1) ·∆n

))
.

Now, we bound exp(−n∆) ≤ 1 and exp
(
(c − 1) · ∆n

)
≥ 1 + (c − 1) · ∆n, which yields the

claimed inequality.

Janson [24] derived the following tail bound for the diameter ∆max. A qualitatively similar
bound can be proved using Lemma 3.4 and can also be derived from Hassin and Zemel’s anal-
ysis [21]. However, Janson’s bound is stronger with respect to the constants in the exponent.

Lemma 3.8 (Janson [24, p. 352]). For any fixed c > 3, we have P(∆max > c ln(n)/n) ≤
O(n3−c log2 n).
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3.4 Balls and Clusters

In this section, we show our main structural contribution, which is a global property of random
shortest path metrics. We show that such instances can be divided into a small number of
clusters of any given diameter.

From now on, let s∆ = min{exp(∆n/5), (n + 1)/2}, as in Corollary 3.6. If |B∆(v)|, the
number of vertices within distance ∆ of v, is at least s∆, then we call the vertex v a dense
∆-center, and we call the set B∆(v) of vertices within distance ∆ of v (including v itself) the
∆-ball of v. Otherwise, if |B∆(v)| < s∆, and v is not part of any ∆-ball, we call the vertex v a
sparse ∆-center. Any two vertices in the same ∆-ball have a distance of at most 2∆ because
of the triangle inequality.

If ∆ is clear from the context, then we also speak about centers and balls without parameter.
We can bound, by Corollary 3.6, the expected number of sparse ∆-centers to be at most
O(n/s∆).

We want to partition the graph into a small number of clusters, each of diameter at most 6∆.
For this purpose, we put each sparse ∆-center in its own cluster (of size 1). Then the diameter
of each such cluster is 0, which is trivially upper-bounded by 6∆, and the number of these
clusters is expected to be at most O(n/s∆).

We are left with the dense ∆-centers, which we cluster using the following algorithm: Con-
sider an auxiliary graph whose vertices are all dense ∆-centers. We draw an edge between
two dense ∆-centers u and v if B∆(u) ∩ B∆(v) 6= ∅. Now consider any maximal independent
set of this auxiliary graph (for instance, a greedy independent set), and let t be the number
of its vertices. Then we form initial clusters C ′1, . . . , C

′
t, each containing one of the ∆-balls

corresponding to the vertices in the independent set. By the independence, all these t ∆-balls
are disjoint, which implies t ≤ n/s∆. The ball of every remaining center v has at least one
vertex in one of the C ′i. We add all remaining vertices of B∆(v) to such a C ′i to form the final
clusters C1, . . . , Ct. By construction, the diameter of each Ci is at most 6∆: Consider any two
vertices u, v ∈ Ci. The distance of u towards its closest neighbor in the initial ball C ′i is at
most 2∆. The same holds for v. Finally, the diameter of the initial ball C ′i is also at most 2∆.

With this partitioning, we have obtained the following structure: We have an expected
number of O(n/s∆) clusters of size 1 and diameter 0, and a number of O(n/s∆) clusters of size
at least s∆ and diameter at most 6∆. Thus, we have O(n/s∆) = O(1+n/ exp(∆n/5)) clusters
in total. We summarize these findings in the following lemma. This lemma is the crucial
ingredient for bounding the expected approximation ratios of the greedy, nearest-neighbor,
and insertion heuristics.

Lemma 3.9. Consider a random shortest path metric and let ∆ ≥ 0. If we partition the
instance into clusters, each of diameter at most 6∆, then the expected number of clusters
needed is O(1 + n/ exp(∆n/5)).

4 Analysis of Heuristics

4.1 Greedy Heuristic for Minimum-Length Perfect Matching

Finding minimum-length perfect matchings in metric instances is the first problem that we
consider. This problem has been widely considered in the past and has applications in, e.g.,
optimizing the speed of mechanical plotters [35,38]. The worst-case running-time of O(n3) for
finding an optimal matching is prohibitive if the number n of points is large. Thus, simple
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heuristics are often used, with the greedy heuristic being probably the simplest one: at every
step, choose an edge of minimum length incident to the unmatched vertices and add it to the
partial matching. Let GREEDY denote the cost of the matching output by this greedy matching
heuristic, and let MM denote the optimum value of the minimum-length perfect matching. The
worst-case approximation ratio for greedy matching on metric instances is Θ(nlog2(3/2)) [35],
where log2(3/2) ≈ 0.58. In the case of Euclidean instances, the greedy algorithm has an
approximation ratio of O(1) with high probability on random instances [5]. For independent
random edge weights (without the triangle inequality), the expected weight of the matching
computed by the greedy algorithm is Θ(log n) [14] whereas the optimal matching has a weight
of Θ(1) with high probability, which gives an O(log n) approximation ratio.

We show that greedy matching finds a matching of constant expected length on random
shortest path metrics.

Theorem 4.1. E(GREEDY) = O(1).

Proof. Let ∆i = i
n . We divide the run of GREEDY in phases as follows: we say that GREEDY

is in phase i if edges {u, v} are inserted such that d(u, v) ∈ (6∆i−1, 6∆i]. Lemma 3.8 allows to
show that the expected sum of all edges longer than ∆Ω(logn) is o(1), so we can ignore them.
GREEDY goes through phases i with increasing i (phases can be empty). We now estimate

the contribution of phase i to the matching computed by GREEDY. Using Lemma 3.9, after
phase i− 1 we can find a clustering into clusters of diameter at most 6∆i−1 using an expected
number of O(1+n/e(i−1)/5) clusters. Each such cluster can have at most one unmatched vertex.
Thus, we have to add at most O(1 + n/e(i−1)/5) edges in phase i. Each such edge connects
vertices at a distance of at most 6∆i. Hence, the contribution of phase i is O( in ·(1+n/e(i−1)/5))
in expectation. Summing over all phases yields the desired bound:

E
(
GREEDY

)
= o(1) +

O(logn)∑
i=1

O

(
i

e(i−1)/5
+
i

n

)
= O(1).

Careful analysis allows us to bound the expected approximation ratio.

Theorem 4.2. The greedy algorithm for minimum-length perfect matching has constant ap-
proximation ratio on random shortest path metrics, i.e., E

(
GREEDY

MM

)
= O(1).

We will use the following tail bound to estimate the approximation ratios of the greedy
heuristic for matching as well as the nearest-neighbor and insertion heuristics for the TSP.

Lemma 4.3. Let α ∈ [0, 1]. Let Sm be the sum of the lightest m edge weights, where m ≥ αn.
Then, for all c ∈ [0, 1], we have

P(Sm ≤ c) ≤
(
e2c

2α2

)αn
.

Furthermore, TSP ≥ MM ≥ Sn/2, where TSP and MM denote the length of the shortest TSP
tour and the minimum-weight perfect matching, respectively, in the corresponding shortest path
metric.
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Proof. Let X ∼
∑m

i=1 Exp(1), and let Y be the sum of m independent random variables drawn
uniformly from [0, 1]. The random variable X stochastically dominates Y , and P(Y ≤ c) =
cm/m!.

The probability that Sm ≤ c is at most the probability that there exists a subset of the edges
of cardinality m whose total weight is at most c. By a union bound and using

(
a
b

)
≤ (ae/b)b,(

n
2

)
≤ n2/2, and a! > (a/e)a, we obtain

P(Sm ≤ c) ≤
((n

2

)
m

)
· c

m

m!
≤
(
n2e2c

2m2

)m
≤
(
e2c

2α2

)m
.

We can replace m by its lower bound αn in the exponent [2, Fact 2.1] to obtain the first claim.
It remains to prove TSP ≥ MM ≥ Sn/2. The first inequality is trivial. For the second

inequality, consider a minimum-weight perfect matching in a random shortest path metric.
We replace every edge by the corresponding paths. If we disregard multiple edges, then we are
still left with at least n/2 edges whose length is not shortened by taking shortest paths. The
sum of the weights of these n/2 edges is at most MM and at least Sn/2.

Proof of Theorem 4.2. The worst-case approximation ratio of GREEDY for minimum-weight
perfect matching is nlog2(3/2) [35]. Let c > 0 be a sufficiently small constant. Then the
approximation ratio of GREEDY on random shortest path instances is

E
(
GREEDY

MM

)
≤ E

(
GREEDY

c

)
+ P(MM < c) · nlog2(3/2).

By Theorem 4.1, the first term is O(1). Since c is sufficiently small, Lemma 4.3 shows that the
second term is o(1).

4.2 Nearest-Neighbor algorithm for the TSP

A greedy analogue for the traveling salesman problem (TSP) is the nearest neighbor heuristic:
(1) Start with some starting vertex v0 as the current vertex v. (2) At every iteration, choose
the nearest yet unvisited neighbor u of the current vertex v (called the successor of v) as the
next vertex in the tour, and move to the next iteration with the new vertex u as the current
vertex v. (3) Go back to the first vertex v0 if all vertices are visited. Let NN denote both
the nearest-neighbor heuristic itself and the cost of the tour computed by it. Let TSP denote
the cost of an optimal tour. The nearest-neighbor heuristic NN achieves a worst-case ratio of
O(log n) for metric instances and also an average-case ratio (for independent, non-metric edge
lengths) of O(log n) [4]. We show that NN achieves a constant approximation ratio on random
shortest path instances.

Theorem 4.4. For random shortest path instances we have E(NN) = O(1) and E
(

NN
TSP

)
=

O(1).

Proof. The proof is similar to the proof of Theorem 4.2. Let ∆i = i/n for i ∈ N. Let
Q = O(log n/n) be sufficiently large.

Consider the clusters obtained with parameter ∆i as in the discussion preceding Lemma 3.9.
These clusters have diameters of at most 6∆i. We refer to these clusters as the i-clusters. Let
v be any vertex. We call v bad at i, if v is in some i-cluster and NN chooses a vertex at a
distance of more than 6∆i from v for leaving v. Hence, if v is bad at i, then the next vertex
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lies outside of the cluster to which v belongs. (Note that v is not bad at i if the outgoing edge
at v leads to a neighbor outside of the cluster of v but at a distance of at most 6∆i from v.)

In the following, let the cost of a vertex v be the distance from v to its successor u. The
length of the tour produced by NN is equal to the sum of costs over all vertices.

Claim 4.5. The expected number of vertices with costs in the range (6∆i, 6∆i+1] is at most
O(1 + n/ exp(i/5)).

Proof of Claim 4.5. Suppose that the cost of the neighbor chosen by NN for a vertex v is in
the interval (6∆i, 6∆i+1]. Then v is bad at i. This happens only if all other vertices of the
i-cluster containing v have already been visited. Otherwise, there would be another vertex
u in the same i-cluster with a distance of at most 6∆i to v. By Lemma 3.9, the number of
i-clusters is at most O(1 + n/ exp(i/5)).

If ∆max ≤ Q, then it suffices to consider i for i ≤ O(log n). If ∆max > Q, then we bound
the value of the tour produced by NN by n∆max. This failure event, however, contributes only
o(1) to the expected value by Lemma 3.8. For the case ∆max ≤ Q, the contribution to the
expected length of the NN tour is bounded from above by

O(logn)∑
i=0

6∆i+1 ·O
(

1 +
n

exp(i/5)

)
=

O(logn)∑
i=0

O

(
i+ 1

n
+

i+ 1

exp(i/5)

)
= O(1).

Using the fact that the worst-case approximation ratio of NN is O(log n), the proof of the
constant expected approximation ratio is similar to the proof of Theorem 4.2.

4.3 Insertion Heuristics

An insertion heuristic for the TSP is an algorithm that starts with an initial tour on a few
vertices and extends this tour iteratively by adding the remaining vertices. In every iteration,
a vertex is chosen according to some rule, and this vertex is inserted at the place in the current
tour where it increases the total tour length the least. The approximation ratio achieved
depends on the rule used for selecting the next node to insert. Certain insertion heuristics such
as nearest neighbor insertion (which is different from the nearest neighbor algorithm from the
previous section) achieve constant approximation ratios [36]. The random insertion algorithm,
where the next vertex is chosen uniformly at random from the remaining vertices, has a worst-
case approximation ratio of Ω(log log n/ log log log n), and there are insertion heuristics with a
worst-case approximation ratio of Ω(log n/ log logn) [6].

A rule R that specifies an insertion heuristic can be viewed as follows: depending on the
distances d, it (1) chooses a set RV of vertices for computing an initial tour and (2) given any
tour of vertices V ′ ⊇ RV , describes how to choose the next vertex. Let INSERTR denote the
length of the tour produced with rule R.

For random shortest path metrics, we show that any insertion heuristic produces a tour
whose length is expected to be within a constant factor of the optimal tour. This result holds
irrespective of which insertion strategy we actually use.

Theorem 4.6. For every rule R, we have E(INSERTR) = O(1) and E
(
INSERTR

TSP

)
= O(1).

10



Proof. Let ∆i = i/n for i ∈ N and Q = O(log n/n) be sufficiently large. Assume that ∆max ≤
Q. If ∆max > Q, then we bound the length of the tour produced by n ·∆max. This contributes
only o(1) to the expected value of length of the tour produced by Lemma 3.8.

Suppose we have a partial tour T and v is the vertex that we have to insert next. If T has
a vertex u such that v and u are in a common i-cluster, then the triangle inequality implies
that the costs of inserting v into T is at most 12∆i because the diameters of i-clusters are at
most 6∆i [36, Lemma 2]. For each i, only the insertion of the first vertex of each i-cluster
can possibly cost more than 12∆i. Thus, the number of vertices whose insertion would incur
costs in the range (12∆i, 12∆i+1] is at most O

(
1 + n

exp(i/5)

)
in expectation. Note that we only

have to consider i with i ≤ O(log n) since ∆max ≤ Q. The expected costs of the initial tour
are at most TSP = O(1) [19]. Summing up the expected costs for all i plus the costs of the
initial tour, we obtain that the expected costs of the tour obtained by an insertion heuristic is
bounded from above by

E(INSERTR) = O(1) +

O(logn)∑
i=0

∆i ·O
(

1 +
n

exp(i/5)

)
= O(1).

Note that the above argument is independent of the rule R used.
The proof for the approximation ratio is similar to the proof of Theorem 4.2 and uses the

worst-case ratio of O(log n) for insertion heuristics for any rule R [36, Theorem 3].

4.4 Running-Time of 2-Opt for the TSP

The 2-opt heuristic for the TSP starts with an initial tour and successively improves the
tour by so-called 2-exchanges until no further refinement is possible. In a 2-exchange, a pair
of edges e12 = {v1, v2} and e34 = {v3, v4}, where v1, v2, v3, v4 appear in this order in the
Hamiltonian tour, are replaced by a pair of edges e13 = {v1, v3} and e24 = {v2, v4} to get
a shorter tour. The 2-opt heuristic is easy to implement and widely used. In practice, it
usually converges quite quickly to close-to-optimal solutions [25]. To explain its performance
in practice, probabilistic analyses of its running-time on geometric instances [18, 28, 33] and
its approximation performance on geometric instances [18] and with independent, non-metric
edge lengths [17] have been conducted. We prove that for random shortest path metrics, the
expected number of iterations that 2-opt needs is bounded by a polynomial.

Theorem 4.7. The expected number of iterations that 2-opt needs to find a local optimum is
bounded by O(n8 log3 n).

Proof. The proof is similar to the analysis of 2-opt by Englert et al. [18]. Consider a 2-exchange
where edges e1 and e2 are replaced by edges f1 and f2 as described above. The improvement
obtained from this exchange is given by δ = δ(v1, v2, v3, v4) = d(v1, v2) + d(v3, v4)− d(v1, v3)−
d(v2, v4).

We estimate the probability P(δ ∈ (0, ε]) of the event that the improvement is at most
ε for some ε > 0. The distances d(vi, vj) correspond to shortest paths with respect to the
exponentially distributed edge weights w. Assume for the moment that we know these paths.
Then we can rewrite the improvement as

δ =
∑
e∈E

αew(e) (1)

11



for some coefficients αe ∈ {−2,−1, 0, 1, 2}. If the exchange considered is indeed a 2-exchange,
then δ > 0. Thus, in this case, there exists at least on edge e = {u, u′} with αe 6= 0. Let
I ⊆ {e12, e34, e13, e24} be the set of edges of the 2-exchange such that the corresponding paths
use e.

For all combinations of I and e, let δI,eij be the following quantity:

• If eij /∈ I, then δI,eij is the length of a shortest path from vi to vj without using e.

• If eij ∈ I, then δI,eij is the minimum of

– the length of a shortest path from vi to u without e plus the length of a shortest
path from u′ to vj without e and

– the length of a shortest path from vi to u′ without e plus the length of a shortest
path from u to vj without e.

Let δe,I = δe,I12 + δe,I34 − δ
e,I
13 − δ

e,I
24 .

Claim 4.8. For every outcome of the random edge weights, there exists an edge e and a set I
such that δ = δe,I + αw(e), where α ∈ {−2,−1, 1, 2} is determined by e and I.

Proof of Claim 4.8. Fix the edge weights arbitrarily and consider any four shortest paths.
Then there exists some edge e with non-zero αe in (1). We choose this e, an appropriate set
I, and we choose α = αe. Then the claim follows from the definition of δe,I .

Claim 4.8 yields that δ ∈ (0, ε] implies that there are an e and an I with δe,I +αw(e) ∈ (0, ε].

Claim 4.9. Let e and I be arbitrary with α = αe 6= 0. Then P(δe,I + αw(e) ∈ (0, ε]) ≤ ε.

Proof of Claim 4.9. We fix the edge weights of all edges except for e. This determines δe,I .
Thus, δe,I + αw(e) ∈ (0, ε] if and only of w(e) assumes a value in a now fixed interval of size
ε/α ≤ ε. Since the density of the exponential distribution is bounded from above by 1, the
claim follows.

The number of possible choices for e and I is O(n2). Thus, P(δ ∈ (0, ε]) = O(n2ε).
Let δmin > 0 be the minimum improvement made by any 2-exchange. Since there are at

most n4 different 2-exchanges, we have P(δmin ≤ ε) = O(n6ε).
The initial tour has a length of at most n∆max. Let T be the number of iterations that 2-opt

takes. Then T ≤ n∆max/δmin. Now, T > x implies ∆max/δmin > x/n. The event ∆max/δmin >
x/n is contained in the union of the events ∆max > log x lnn/n, and δmin < lnn · log x/x. The
first happens with a probability of at most n−Ω(log(x)) by Lemma 3.8. The second happens
with a probability of at most O(n6 log(x)/x). Thus, we obtain

P(T > x) ≤ n−Ω(log(x)) +O
(
n6 lnn · log(x)/x

)
.

Since the number of iterations is at most n!, we obtain an upper bound of

E(T ) ≤
n!∑
x=1

(
n−Ω(log(x)) +O(n6 lnn log(x)/x)

)
.

The sum of the n−Ω(log(x)) is negligible. The sum of the O(n6 lnn log(x)/x) contributes
O(n6 lnn log(n!)2) = O(n8 log3 n).
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5 k-Median

In the (metric) k-median problem, we are given a finite metric space (V, d) and should pick k
points U ⊆ V such that

∑
v∈V minu∈U d(v, u) is minimized. We call the set U a k-median. Re-

garding worst-case analysis, the best known approximation algorithm for this problem achieves
an approximation ratio of 3 + ε [3].

In this section, we consider the k-median problem in the setting of random shortest path
metrics. In particular we examine the approximation ratio of the algorithm TRIVIAL, which
picks k points independently of the metric space, e.g., U = {1, . . . , k} or k random points in V .
We show that TRIVIAL yields a (1 + o(1))-approximation for k = O(n1−ε). This can be seen
as an algorithmic result since it improves upon the worst-case approximation ratio, but it is
essentially a structural result on random shortest path metrics. It means that any set of k
points is, with high probability, a very good k-median, which gives some knowledge about the
topology of random shortest path metrics. For larger, but not too large k, i.e., k ≤ (1 − ε)n,
TRIVIAL still yields an O(1)-approximation.

The main insight comes from generalizing the growth process described in Section 3.2. Fixing
U = {v1, . . . , vk} ⊆ V we sort the vertices V \U by their distance to U in ascending order, calling
the resulting order vk+1, . . . , vn. Now we consider δi = d(vi+1, U)−d(vi, U) for k ≤ i < n. These
random variables are generated by a simple growth process analogous to the one described
in Section 3.2. This shows that the δi are independent and δi ∼ Exp(i · (n − i)). Since
aExp(b) ∼ Exp(b/a), we have

cost(U) =
n−1∑
i=k

(n− i) · δi ∼
n−1∑
i=k

(n− i) · Exp(i · (n− i)) ∼
n−1∑
i=k

Exp(i).

From this, we can read off the expected cost of U immediately, and thus the expected cost of
TRIVIAL.

Lemma 5.1. Fix U ⊆ V of size k. We have

E(TRIVIAL) = E
(
cost(U)

)
= Hn−1 −Hk−1 = ln(n/k) + Θ(1).

Proof. We have E(cost(U)) =
∑n−1

i=k
1
i = Hn−1 − Hk−1. Using Hn = ln(n) + Θ(1) yields the

last equality.

By closely examining the random variable
∑n−1

i=k Exp(i), we can show good tail bounds for
the probability that the cost of U is lower than expected. Together with the union bound this
yields tail bounds for the optimal k-median MEDIAN, which implies the following theorem. In
this theorem, the approximation ratio becomes 1 +O

( ln ln(n)
ln(n)

)
for k = O(n1−ε).

Theorem 5.2. Let k ≤ (1− ε)n for some constant ε > 0. Then

E
(
TRIVIAL

MEDIAN

)
= O(1).

If we have k ≤ κn for some sufficiently small constant κ ∈ (0, 1), then

E
(
TRIVIAL

MEDIAN

)
= 1 +O

(
ln ln(n/k)

ln(n/k)

)
. (2)
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We need the following lemmas to prove Theorem 5.2.

Lemma 5.3. The density f of
∑m

i=k Exp(i) is given by

f(x) = k ·
(
m

k

)
· exp(−kx) ·

(
1− exp(−x)

)m−k
.

Proof. The distribution
∑m

i=k Exp(i) corresponds to the k-th largest element of a set of m
independent, exponentially distributed random variables with parameter 1. The density of
such order statistics is known [37, Example 2.38].

Lemma 5.4. Let c > 0 be sufficiently large, and let k ≤ c′n for c′ = c′(c) > 0 be sufficiently
small. Then

P
(
MEDIAN < ln

(n
k

)
− ln ln

(n
k

)
− ln c

)
= n−Ω(c).

Proof. Fix U ⊆ V of size k and consider cost(U) ∼
∑n−1

i=k Exp(i). In the following we set
m := n− 1 to shorten notation. We now want to bound f(x) from above at x = ln

(
m
ak

)
for a

sufficiently large a with 1 ≤ a ≤ m/k (such an a exists since k is small enough). Plugging in
this particular x and using

(
m
k

)
≤ mkek/kk yields

f(x) = k ·
(
m

k

)
· a

kkk(m− ak)m−k

mm
≤ k(ea)k

(
1− ak

m

)m−k
.

Using 1 + x ≤ ex and m− k = Ω(m), so that (m− k)/m = Ω(1), yields

f(x) ≤ k(ea)k exp(−Ω(ak)).

Since a is sufficiently large, the first two factors are lower order terms that we can hide by the
Ω. Thus, we can simplify this further to

f(x) ≤ exp(−Ω(ak)).

Rearranging this using a = m
k e
−x yields

f(x) = exp(−Ω(m exp(−x)), (3)

which holds for any x ∈ [0, ln
(
m
αk

)
] for any sufficiently large α ≥ 1. Now we can bound the

probability that cost(U) < ln
(
m
αk

)
. This probability is equal to∫ ln( m

αk
)

0
f(x) dx =

∫ ln( m
αk

)

0
f
(

ln
( m
αk

)
− x
)

dx

=

∫ ln( m
αk

)

0
exp
(
−Ω(αk exp(x))

)
dx using (3)

≤
∫ ∞

0
exp
(
−Ω(αk(1 + x))

)
dx ≤ exp

(
−Ω(αk)

)
since

∫∞
0 exp(−Ω(αkx)) dx = O(1/(αk)) ≤ 1 as α is sufficiently large.
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In order for MEDIAN to be less than ln
(
m
αk

)
, one of the subsets U ⊆ V of size k has to have

cost less than ln
(
m
αk

)
. We bound the probability of the latter using the union bound and get

P
(
MEDIAN < ln

( m
αk

))
= P

(
∃U ⊆ V, |U | = k : cost(U) < ln

( m
αk

))
≤
(
n

k

)
· P
(
cost(U) < ln

( m
αk

))
≤
(
n

k

)
· exp

(
−Ω(αk)

)
.

By setting α = c ln
(
n
k

)
for sufficiently large c ≥ 1, we fulfill all conditions on α. This yields

P
(
MEDIAN < ln

(n
k

)
− ln ln

(n
k

)
− ln c

)
≤
(en
k

)k
·
(n
k

)−Ω(ck)
.

Since k is sufficiently smaller than n, we have en
k ≤ (nk )2. Thus, for sufficiently large c, the

right hand side simplifies to (nk )−Ω(ck). Since k is at least 1 and sufficiently smaller than n, we

have (nk )k ≥ n. Thus, the probability is bounded by n−Ω(c), which finishes the proof.

To bound the expected value of the quotient TRIVIAL /MEDIAN, we further need to bound
the probabilities that TRIVIAL is much too large or MEDIAN is much too small. This is achieved
by the following two lemmas.

Lemma 5.5. Let k ≤ (1− ε)n for some constant ε > 0. Then, for any c > 0, we have

P(MEDIAN < c) = O(c)Ω(n).

Proof. Since n− k vertices have to be connected to the k-median, the cost of the k-median is
the sum of n− k shortest path lengths. Thus, the cost of the minimal k-median is at least the
sum of the smallest n− k edge weights w(e). We use Lemma 4.3 with α = ε.

Lemma 5.6. For any c ≥ 3, we have P(TRIVIAL > nc) ≤ exp(−nc/3).

Proof. We can bound very roughly TRIVIAL ≤ nmaxe{w(e)}. As maxe{w(e)} is the maximum
of
(
n
2

)
independent exponentially distributed random variables, we have

P
(
TRIVIAL ≤ nc

)
≥ (1− exp(−nc−1))(

n
2) ≥ 1−

(
n

2

)
· exp(−nc−1)

≥ 1− exp
(
−nc−2

)
≥ 1− exp

(
−nc/3

)
.

Proof of Theorem 5.2. Let T = TRIVIAL and C = MEDIAN for short. We have for any m ≥ 0

E
(
T

C

)
≤ E

(
T

m

)
+ P(C < m) · E

(
T

C

∣∣ C < m

)
. (4)

Case 1 (k ≤ c′n, c′ sufficiently small): Using Lemma 5.4, we can pick c > 0 such that

P
[
C < ln

(n
k

)
− ln ln

(n
k

)
− ln c

]
≤ n−7.
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Set m = ln
(
n
k

)
− ln ln

(
n
k

)
− ln c. Then, by Lemma 5.1, we have

E
(
T

m

)
≤ ln(n/k) +O(1)

m
≤ 1 +O

(
ln ln(n/k)

ln(n/k)

)
.

We show that the second summand of inequality (4) is O(1/n) in the current situation, which
shows the claim. We have

P(C < m) · E
(
T

C

∣∣ C < m

)
= P(C < m) ·

∫ ∞
0

P
(
T

C
≥ x

∣∣ C < m

)
dx

≤ P(C < m) ·
(
n6 +

∫ ∞
n6

P
(
T

C
≥ x

∣∣ C < m

)
dx

)
≤ n−1 +

∫ ∞
n6

P
(
T

C
≥ x and C < m

)
dx

≤ n−1 +

∫ ∞
n6

P
(
T

C
≥ x

)
dx

≤ n−1 +

∫ ∞
n6

2 max

{
P
(
T ≥

√
x
)
,P
(
C ≤ 1√

x

)}
dx

since T/C ≥ x implies T ≥
√
x or C ≤ 1/

√
x. Using Lemmas 5.5 and 5.6, this yields

P(C < m) · E
(
T

C

∣∣ C < m

)
≤ n−1 +

∫ ∞
n6

2 max

{
exp
(
−x1/6

)
, O

(
1√
x

)Ω(n)
}

dx = O(1/n).

Case 2 (c′n < k ≤ (1− ε)n): We repeat the proof above, now choosing m to be a sufficiently
small constant. Then P(C < m) = O(m)Ω(n) ≤ O(n−7) by Lemma 5.5, and we have

E
(
T

m

)
=

ln(n/k) +O(1)

m
= O(1),

since k > c′n. Together with the first case, this shows the first claim.

6 Concluding Remarks

6.1 General Probability Distributions

Using a coupling argument, Janson [24, Section 3] proved that the results about the length
of a fixed edge and the longest edge carry over if the exponential distribution is replaced by
a probability distribution with the following property: the probability that an edge weight is
smaller than x is x+ o(x). This property is satisfied, e.g., by the exponential distribution with
parameter 1 and by the uniform distribution on the interval [0, 1]. The intuition is that, because
the longest edge has a length of O(log n/n) = o(1), only the behavior of the distribution in a
small, shrinking interval [0, o(1)] is relevant and the o(x) term becomes irrelevant.

We believe that also all of our results carry over to such probability distributions. In fact,
we started our research using the uniform distribution and only switched to exponential dis-
tributions because they are technically easier to handle. However, we decided not to carry out
the corresponding proofs because, first, they seem to be technically very tedious and, second,
we feel that they do not add much.
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6.2 Open Problems

To conclude the paper, let us list the open problems that we consider most interesting:

1. While the distribution of distances in asymmetric instances does not differ much from
the symmetric case, an obstacle in the application of asymmetric random shortest path
metrics seems to be the lack of clusters of small diameter (see Section 3). Is there an
asymmetric counterpart for this?

2. Is it possible to prove an 1 + o(1) approximation ratio (like Dyer and Frieze [15] for the
patching algorithm) for any of the simple heuristics that we analyzed?

3. What is the approximation ratio of 2-opt in random shortest path metrics? In the
worst case on metric instances, it is O(

√
n) [12]. For independent, non-metric edge

lengths drawn uniformly from the interval [0, 1], the expected approximation ratio is
O(
√
n·log3/2 n) [17]. For d-dimensional geometric instances, the smoothed approximation

ratio is O(φ1/d) [18], where φ is the perturbation parameter.

We easily get an approximation ratio of O(log n) based on the two facts that the length
of the optimal tour is Θ(1) with high probability and that ∆max = O(log n/n) with high
probability. Can we prove that the expected ratio of 2-opt is o(log n)?
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