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Abstract5

Let P be a set of n points in the plane. A crossing-free structure on P is a straight-edge6

plane graph with vertex set P . Examples of crossing-free structures include triangulations7

and spanning cycles, also known as polygonalizations. In recent years, there has been8

a large amount of research trying to bound the number of such structures; in particular,9

bounding the number of (crossing-free) triangulations spanned by P has received consider-10

able attention. It is currently known that every set of n points has at most O(30n) and at11

least Ω(2.43n) triangulations. However, much less is known about the algorithmic problem12

of counting crossing-free structures of a given set P . In this paper we develop a general13

technique for computing the number of crossing-free structures of an input set P . We apply14

the technique to obtain algorithms for computing the number of triangulations, matchings,15

and spanning cycles of P . The running time of our algorithms is upper bounded by nO(k),16

where k is the number of onion layers of P . In particular, for k = O(1) our algorithms run17

in polynomial time. Additionally, we show that our algorithm for counting triangulations18

in the worst case over all k takes time O∗(3.1414n)I. Given that there are several well-19

studied configurations of points with at least Ω(3.47n) triangulations, and some even with20

Ω(8.65n) triangulations, our algorithm asymptotically outperform any enumeration algo-21

rithm for such instances. We also show that our techniques are general enough to solve the22

RESTRICTED-TRIANGULATION-COUNTING-PROBLEM, which we prove to be W [2]-hard23

in the parameter k. This implies that in order to be fixed-parameter tractable, our gen-24

eral algorithm must rely on additional properties that are specific to the considered class of25

crossing-free structures.26

1 Introduction27

Let P ⊂ R
2 be a finite set of n points in general position. A crossing-free structure on P28

is a straight-line plane graph whose vertex set is precisely P . Typical examples of crossing-29

free structures are (crossing-free) triangulations, (crossing-free) spanning cycles, (crossing-free)30
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matchings, and (crossing-free) spanning trees. Throughout the paper we only consider crossing-1

free structures, therefore, when referring to triangulations, matchings, spanning cycles, etc., we2

always assume them to be crossing-free.3

Given a class of crossing-free structures F , e.g., triangulations, one can naturally ask the4

following two questions: () What upper and lower bounds on the number of elements of type5

F can be given over all possible sets of n points in the plane? () Given P , how fast can the6

(exact) number of elements of type F on P be computed? With respect to the first question,7

the search for bounds has spawned a large amount of research over almost 30 years, starting8

with an upper bound of 1013n on the number of (all) crossing-free graphs on every set of n9

points [6]. This 1013n bound implies that the size of each class F of crossing-free structures10

can be upper-bounded by a number of type cn, where c = c(F) ∈ R
+ depends on the particular11

class F . Since then, research has focused on tightening upper and lower bounds on c for many12

different classes of crossing-free structures. Table 1 gives the currently best asymptotic bounds13

on the number of triangulations, spanning cycles, perfect matchings, and spanning trees, which14

are among the most popular and hence most studied crossing-free structures. The symbols ≤,≥15

should be understood as upper and lower bound, respectively.16

Triangulations Spanning cycles Perfect matchings Spanning trees

∀P ≤ O (30n) [30] O (54.55n) [32] O (10.05n) [33] O (141.07n) [24]

∀P ≥ Ω (2.43n) [31] 1 Ω∗ (2n) [22] Ω∗ (6.75n) [20]

∃P ≤ O∗ (3.47n) [4] 1 O∗ (2n) [22] O∗ (6.75n) [20]

∃P ≥ Ω (8.65n) [19] Ω (4.64n) [22] Ω∗ (3n) [22] Ω (12.52n) [25]

Table 1: Asymptotic bounds for various classes of crossing-free structures on
P (a set of n points in the plane). The selected (gray) lower bounds are tight.

It is interesting to point out that the number of spanning cycles, perfect matchings, and17

spanning trees has been proven to be minimum when P is in convex position. That is, the18

selected (gray) lower bounds in Table 1 are tight. The interested reader is referred to the work of19

Aichholzer et al. [3] for a list of other classes of crossing-free structures on P whose cardinality20

is minimized when P is in convex position, and to the work of Dumitrescu et al. and Sheffer21

[19, 34] for up-to-date lists of asymptotic bounds for other crossing-free structures.22

The second question on crossing-free structures mentioned above is of algorithmic flavor:23

We consider the problem of computing the number of crossing-free structures of a particular24

class, say triangulations, for a given input set of points P . This problem is closely related to25

the problem of sampling crossing-free structures of a particular class uniformly at random. A26

first approach to the counting problem would be to produce all elements of the class, using27

well-known methods for enumeration [2, 14, 15, 26], and then simply output the number of28

enumerated elements. This has the obvious disadvantage that the total time spent will be, at29

best, linear in the number of elements counted. This number, however, is in general exponential30

in n (the size of the input P ). Thus, the following question arises naturally: Can we count31

crossing-free structures of a given class in time sub-linear in the number of elements counted?32

This question has in general been much less studied. Until very recently (year 2012) it was only33

known that this is always possible for the class of all plane graphs [28], while for triangulations it34

was only known to be sometimes possible [9]. Empirically, there were other algorithms to count35
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triangulations that are observed to count faster than enumeration [1, 27], but that, until now,1

have no theoretical runtime guarantees. For spanning trees, matchings, and spanning cycles2

no efficient counting algorithm was known. However, for some non-trivial classes of spanning3

cycles (monotone), it was known that exact counting can be done in polynomial time in n [36].4

So far we have discussed the literature on counting crossing-free structures at the time when5

the preliminary version of this paper appeared [7]. We believe it is important to first list our6

contributions (§ 2) before we elaborate on the newest developments (§ 3), that happened during7

a very short period of time, and in particular, while this paper was under review.8

2 Our contributions9

In this paper we present three counting algorithms: To count () triangulations, () matchings,10

and () spanning cycles. In order to formally state the results contained in this paper we need11

the following definition, see also Figure 1.12

Definition 1 (Onion layers). Let P be a set of n points in the plane and let CH(P ) denote its13

convex hull. We define the onion layers of P as follows: The first onion layer P (1) of P is14

CH(P ). For i > 1, the i-th onion layer P (i) of P is defined inductively as CH
(

P \⋃i−1
j=1 P

(j)
)

.15

By “number of onion layers of P” we mean the number of non-empty onion layers of P .16

Observe that the number of onion layers of any non-degenerate set of n points is at most
⌈

n
3

⌉

.17

Let us now denote by FT (P ),FM (P ) and FC(P ) the classes of all triangulations, matchings,18

and spanning cycles of P , respectively. Our first contribution is the following:19

Theorem 1. Let P be a set of n points in the plane, and let k be its number of onion layers. Then20

the exact value of |FT (P )| can be computed in time O∗
(

f(nk )
k
)

, where f(x) = x3+3x2+2x+2
2 .21

Since k ≤
⌈

n
3

⌉

, this bound never exceeds O∗(3.1414n). This running time can alternatively be22

bounded by nO(k), which is polynomial for constant k.23

We remark that () the algorithm of Theorem 1 has a better worst-case guarantee than the24

previously best algorithm for counting triangulations [9], which runs in time O∗ (9n). () It is25

the first algorithm that can compute the exact value of |FT (P )| in polynomial time restricted to26

a non-trivial subset of all instances (constant number of onion layers). () As stated before, for27

every set P of n points in the plane, the cardinality of FT (P ) is at least Ω(2.43n), but it has been28

conjectured that this bound can be improved to Ω
(√

12
n
)

≈ Ω(3.47n) [4, 5, 29]. If this stronger29

bound is true, then our algorithm counts triangulations in time O∗(3.1414n) = o(|FT (P )|), i.e.,30

faster than by using enumeration algorithms, which was not known to be possible up to year31

2012, see also § 3.32

Theorem 2. Let P be a set of n points in the plane and let k be its number of onion layers. Then33

the exact values of |FM (P )| and |FC(P )| can be computed in nO(k) time.34

Again, the algorithms of Theorem 2 compute the exact number of matchings and spanning35

cycles in polynomial time if the number of onion layers is k = O(1). This gives a partial answer36

to Problem 16 of The Open Problems Project, which asks whether |FC(P )| can be computed in37
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polynomial time [18]. However, in Theorem 2 we are not able to prove a running time guarantee1

of the form cn for large k, as in Theorem 1.2

The general layout of the algorithms of Theorems 1 and 2 is similar to the one by Anagnostou3

et al. [12], where these ideas have been used for optimization problems.4

Observe that the running times of Theorems 1 and 2 can be stated as nf(k), for some function5

f that does not depend on n. With regard to parameterized complexity it is natural to ask whether6

these running times can be improved to g(k) · nO(1), for some function g that does not depend7

on n, thus proving that our problems belong to the complexity class FPT, which is the class8

of fixed-parameter tractable problems. However, the techniques involved in the algorithms of9

Theorems 1 and 2 are general enough to solve more general problems, such as the following:10

RESTRICTED-TRIANGULATION-COUNTING-PROBLEM: Given a set of points P and a subset11

of edges E over P , count the triangulations of P whose set of edges is a subset of E. We prove12

the following.13

Theorem 3. The RESTRICTED-TRIANGULATION-COUNTING-PROBLEM is W[2]-hard if the14

parameter is the number of onion layers of P . This result even holds for the problem of just15

deciding the existence of a restricted triangulation.16

The book by J. Flum and M. Grohe [21] is a standard reference for parameterized complex-17

ity theory, where the classes FPT and W[2] are defined. The separation FPT 6= W[2] is widely18

believed. Thus, an algorithm with a running time of the form g(k) · nO(1) for the RESTRICTED-19

TRIANGULATION-COUNTING-PROBLEM is unlikely to exist. This indicates that we have to20

exploit the particular structure of the problems in order to obtain fixed-parameter tractable algo-21

rithms for counting crossing-free structures in the general non-restricted case.22

The rest of the paper is structured as follows: In § 3 we briefly elaborate on the developments23

that occurred while this paper was under review. We prove Theorems 1 and 2 in § 4 and § 5,24

respectively. The proof of Theorem 3 is not contained in this extended abstract but can be25

found in the ArXiv version of this paper [8], where we also present experiments comparing our26

algorithm for counting triangulations (Theorem 1) with the empirically fast algorithm of Ray et27

al. [27]. We conclude our paper in § 6.28

3 Subsequent developments on algorithmic counting (2013–2014)29

While this paper was under review many important developments occurred regarding the prob-30

lem of counting crossing-free structures algorithmically. We briefly list these developments in31

this section.32

In 2013 a new, and rather simple, algorithm for counting triangulations was presented [11].33

This algorithm has a worst-case running time of O∗(2n) — setting finally in the positive the34

question whether enumeration algorithms for triangulations can always be beaten, as every set35

of n points in the plane has at least Ω(2.43n) triangulations. However, the new algorithm does36

not seem to have polynomial time instances, unlike the algorithm for counting triangulations37

presented in this paper, which runs in polynomial time when the input set P has a fixed number38

of onion layers. In fact, experiments [11] show that when the number of onion layers of P is39
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small, the algorithm presented in this paper greatly outperforms the algorithm by Alvarez et1

al. [11].2

Regarding other classes of crossing-free structures, many strong algorithms were presented3

in 2014 [35]. These algorithms build upon the ideas by Alvarez et al. [11]. Among other4

results, it was shown that that the number of all crossing-free structures can be computed in5

time O∗(2.839n), improving over previous results [28], and it was shown that perfect matchings6

can be counted in time O∗(2n). These algorithms show again that enumeration can, at least in7

these cases, always be beaten. It is, however, still open whether for spanning trees and spanning8

cycles the same can be proven. Preliminary results in this direction can also be found in [35]. As9

before, these new algorithms seem not to have polynomial time instance, unlike the algorithms10

presented in this paper for counting matchings and spanning cycles.11

We now proceed to the description of our algorithms and the proofs of Theorems 1 and 2.12

4 Counting triangulations using onion layers13
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Figure 1: Four onion layers.
The cyclic order of the labels in
a layer is not necessary.

In this section we present our algorithm for counting triangula-14

tions, which we call sn-path algorithm. Its main ingredient are15

geometric separators derived from the onion layers of the given16

set of points P .17

For any point p ∈ P let ℓ(p) denote the index of the onion18

layer to which p belongs. Let us label the points p ∈ P with19

distinct labels in {1, . . . , n} such that if ℓ(p) < ℓ(q) then p also20

receives a label smaller than q. This is clearly possible. Figure 121

shows the onion layers of a set of 17 points and the labels as-22

signed to them. From now on we refer to the points of P by their23

labels, i.e., we think of P as the set {1, . . . , n} and when we say24

“p ∈ P ”, we mean the point with label p.25
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Figure 2: R is the sn-region of
(ρ, σ) with starting points p, q

and endpoints p′, q′.

A descending path is a sequence of points ρ = (p1, . . . , pk)26

with ℓ(pi+1) < ℓ(pi) for all 1 ≤ i < k. Consider any crossing-27

free set of straight-line edges T on P ; think of T as a (partial) tri-28

angulation. A descending path ρ is maximal w.r.t. T if the edges29

of ρ are contained in T and ρ cannot be extended by edges in T .30

For any p ∈ P we construct a unique maximal descending path31

w.r.t. T starting in p, which we call sn-path: For any q ∈ P , if32

all neighbors q′ of q in T have ℓ(q′) ≥ ℓ(q), then set snT (q) =⊥.33

Otherwise let snT (q) be the neighbor of q in T with smallest la-34

bel; in this case ℓ(snT (q)) < ℓ(q). Then the (unique) descending35

path ρ = (p1, . . . , pk) with () p1 = p, () pi+1 = snT (pi) for all36

1 ≤ i < k, and () snT (pk) =⊥ is the sn-path of p w.r.t. T . Note37

that every sn-path consists of at most one point from each onion layer. Also note that for T ′ ⊆ T38

if ρ is an sn-path w.r.t. T then it is also an sn-path w.r.t. T ′. Any descending path satisfying ()39

and (), but not necessarily () is called a partial sn-path of p w.r.t. T .40
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Let ρ, σ be descending paths starting in p, q and ending in p′, q′. Let U = U(ρ, σ) be the1

union of the edges of ρ, σ and the edge (p, q). We call (ρ, σ) legal if () U is crossing-free,2

() ρ and σ are sn-paths w.r.t. U , and () ρ and σ end in P (1). In this case ρ, σ induce a region3

R = R(ρ, σ) whose boundary is the union of U and the part of CH(P ) from p′ to q′ in clockwise4

order, see Figure 2. We call R the sn-region of (ρ, σ). A triangulation of R is a maximal set5

of triangles with vertices in P partitioning R such that no triangle contains a point of P in its6

interior. Given any sn-region R, we refer to the number of triangles in any triangulation of R7

as the size of R. This is well defined since the number of triangles is the same regardless of the8

specific triangulation.9

For descending paths ρ, δ, σ we let ∆ = ∆(ρ, δ, σ) be the triangle formed by the starting10

points of ρ, δ, σ, and we let U = U(ρ, δ, σ) be the union of the edges of ρ, δ, σ, and ∆. We say11

that (ρ, δ, σ) is legal if () U is crossing-free, () ρ, δ, and σ are sn-paths w.r.t. U , () ρ, δ, and12

σ end in P (1) and () ∆ is free of points from P , apart from its vertices. See Figure 3. Observe13

that this implies that (ρ, δ), (δ, σ), and (ρ, σ) are legal, since if ρ is an sn-path w.r.t. U(ρ, δ, σ)14

then it is also an sn-path w.r.t. U(ρ, δ) ⊆ U(ρ, δ, σ).15

4.1 The sn-path algorithm16

Our algorithm recursively solves the following problem. Given legal descending paths (ρ, σ),17

count the number of triangulations T of R(ρ, σ) satisfying the following sn-constraint: ρ and18

σ are sn-paths w.r.t. T . We denote the result of instance (ρ, σ) by #(ρ, σ).19

9
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∆

Figure 3: In the recursive step
of the sn-path algorithm, we
split the region R = R(ρ, σ)
along the descending path δ and
the triangle ∆ = ∆(ρ, δ, σ).

Initially, we pick vertices p, q of CH(P ) that are consecutive20

in clockwise order. Set ρ = (p), σ = (q). Note that ρ, σ are the21

sn-paths of p, q w.r.t. any set of edges T , as no point v has ℓ(v)22

smaller than ℓ(p) or ℓ(q). Thus, the sn-constraint of (ρ, σ) is triv-23

ially satisfied. Moreover, the boundary of R(ρ, σ) is the whole24

convex hull of P . Hence, #(ρ, σ) is simply the total number of25

triangulations of P , as desired.26

In order to recursively solve an instance (ρ, σ), we enumer-27

ate all descending paths δ such that (ρ, δ, σ) is legal. We return28
∑

δ #(ρ, δ) · #(δ, σ), where the sum ranges over all enumer-29

ated δ.30

Note that both sn-regions R(ρ, δ) and R(δ, σ) have size31

smaller than R(ρ, σ), i.e., fewer triangles in any triangulation.32

The recursion ends when the size is 0, in which case we know33

that there is exactly one triangulation, or when there are is no δ34

that makes (ρ, δ, σ) legal, in which case the result is 0.35

4.2 Correctness36

Consider an instance (ρ, σ) with sn-region R = R(ρ, σ). We show that () every object counted37

by our algorithm corresponds to a unique triangulation of R satisfying the sn-constraint, and ()38

every triangulation of R satisfying the sn-constraint is counted at least once.39
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For (), fix some enumerated δ̃ = δ(ρ, σ) for a given instance (ρ, σ). In both recursive1

subproblems (ρ, δ̃) and (δ̃, σ) fix some enumerated descending paths δ(ρ, δ̃), δ(δ̃, σ) as well.2

Iteratively fix in each recursive subproblem (ρ′, σ′) some third path δ(ρ′, σ′). Consider the3

union S over all recursive subproblems (ρ′, σ′) (arising from all the sn-paths that we iteratively4

fixed) of the set {ρ′, σ′, δ(ρ′, σ′),∆(ρ′, δ(ρ′, σ′), σ′)}. Note that our algorithm counts all objects5

S. Consider the union T of all edges of all descending paths and all triangles in such a counted6

set S. Note that T is crossing-free, since at the start of each recursive call (ρ′, σ′) we have not7

picked any edges in the interior of the current region R′ ⊆ R yet, and every new descending path8

δ′ and triangle ∆(ρ′, δ′, σ′) that we construct does not cross the boundary of R′. Moreover, T is9

a triangulation of R, since we repeatedly add triangles and the only base case of the recursion in10

which we return a non-zero number is when the size of the current region R′ is 0, in which case11

it is already triangulated.12

We show that T satisfies the sn-constraint, i.e., ρ and σ are sn-paths w.r.t. T . Assume for13

contradiction that the sn-path condition of ρ is not satisfied in T for some point a of ρ. Let b14

be the successor of a on ρ. Consider the first recursive subproblem (ρ′, σ′), with third path δ′,15

where we violate the sn-path condition of ρ at a, i.e., δ′ or ∆(ρ′, δ′, σ′) contains an edge (a, c)16

with c < b. Since a appears on the boundary of R and the edge (a, c) is contained in the current17

region R′ ⊆ R, the point a also appears on the boundary of R′, i.e., a is contained in ρ′ or σ′, say18

in ρ′. Its successor on ρ′ has label at least b, since (a, c) is the first edge that we add with c < b.19

Thus, the edge (a, c) violates the sn-path condition not only of ρ, but also of ρ′, since c < b.20

However, we explicitly check that (ρ′, δ′, σ′) is legal, so we check that ρ′ is an sn-path w.r.t. a set21

U(ρ′, δ′, σ′) that contains the added edge (a, c). This is a contradiction, which implies that the22

sn-path property is preserved at every point a of ρ. A symmetric statement holds for edges on σ.23

Hence, each counted object corresponds to a triangulation of R satisfying the sn-constraint.24

To see that there is no overcounting, let S1, S2 be two counted objects and consider any25

recursive subproblem (ρ′, σ′) where they diverge, i.e., where we choose different δ1 and δ2 when26

constructing S1 and S2. If ∆(ρ′, δ1, σ
′) 6= ∆(ρ′, δ2, σ

′), then these triangles are intersecting, so27

that the triangulations corresponding to S1 and S2 are different. Otherwise, δ1 and δ2 have the28

same starting point z. Observe that all further choices produce triangulations in which δ1 (or29

δ2, respectively) is the sn-path of z. Since sn-paths are unique and δ 6= δ′, the triangulations30

corresponding to S1 and S2 are different.31

For (), consider any triangulation T of R satisfying the sn-constraint. Let p, q be the starting32

points of ρ, σ. Recall that (p, q) is an edge of the boundary of R. If (p, q) is also an edge of ρ33

then ρ is (p, q) followed by σ, because two merged sn-paths cannot split again. Thus R has size34

0 and we return 1. If (q, p) is an edge of σ we have a symmetric case. Otherwise, in T the points35

p, q form a triangle with a third point z. Let δ be the sn-path of z w.r.t. T . Observe that (ρ, δ, σ)36

is legal. Thus, recursively we construct T as a union of sn-paths and triangles, and T is counted37

in the product #(ρ, δ) ·#(δ, σ).38

4.3 Running Time39

We add one important ingredient for efficiency: Memoization. Whenever we have computed the40

answer to a recursive subproblem, we store it in a dictionary data structure, such as a hash table.41

This way, we can bound the total running time of the algorithm by summing the time it takes42
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to enumerate δ over all legal descending paths (ρ, σ). Since all checks take polynomial time,1

the total running time can be bounded, up to polynomial factors, by the number M of triples2

(ρ, σ, δ̂), where (ρ, σ) are legal descending paths and δ̂ is any intermediate path constructed dur-3

ing the enumeration of all possible δ. Observe that for enumerating δ we can build a descending4

path step by step, making sure that at all points in time δ̂ is a partial sn-path (w.r.t. U(ρ, δ̂, σ)),5

and that ρ and σ stay sn-paths (w.r.t. U(ρ, δ̂, σ)). For any such triple (ρ, σ, δ̂) counted by M ,6

let σ′ be the portion of σ that does not have any points in common with ρ, and let δ′ be the7

portion of δ̂ that does not have any points in common with ρ or σ. The descending paths ρ, σ′, δ′8

are crossing-free and vertex-disjoint. Moreover, we can reconstruct σ from (ρ, σ′) if we know9

whether σ has a point in common with ρ and what is the first such point. This is because10

once two sn-paths merge their remaining portions are equal, as subpaths of sn-paths are also11

sn-paths and thus unique. Thus, we need O(log n) bits to reconstruct σ from (ρ, σ′). Similarly,12

we can reconstruct the partial sn-path δ̂ from (ρ, σ, δ′) if we know its length and whether and13

where it merges with ρ or σ, which can be encoded using O(log n) bits. Hence, we can bound14

M ≤ 2O(logn)N = O∗(N), where N is the number of crossing-free vertex-disjoint triples of15

descending paths.16

It is left to prove an upper bound for N , which is also an upper bound on the total running17

time up to polynomial factors. Each descending path uses at most one point from every onion18

layer. Let ni = |P (i)| be the size of the i-th onion layer. Let us count how many ways there19

are for any triple of paths to use at most one point, each, from this layer. There is one way for20

the triple of paths to skip this onion layer. There are ni ways of choosing one point among the21

ni which may then be used by any of the paths. This gives 3ni ways for the three paths. There22

are
(ni
2

)

ways to choose two points, and any two of the paths may use them. This gives 6
(ni
2

)

23

ways among the three paths. Finally there are
(ni
3

)

ways of choosing three points, and there24

are three (not six) ways for the three paths to use one of these vertices. This is because these25

paths are non-crossing planar curves, and therefore the clockwise order of these paths along26

any CH
(

P (i)
)

that intersects all three of them is the same for each i. The overall number of27

ways in which at most three points can be used from the i-th layer is therefore f(ni), where28

f(x) = 1 + 3x+ 6x(x−1)
2 + 3x(x−1)(x−2)

6 , which can be simplified to 1
2(x

3 + 3x2 + 2x+ 2).29

The number of triples of non-crossing vertex-disjoint descending paths is therefore N ≤30
∏k

i=1 f(ni). Since each ni is a positive integer, and the function f(·) is log-concaveII for31

x ≥ 1, the above product is maximized when each ni is equal to n
k . This gives an upper32

bound of f
(

n
k

)k ≤ (nk )
O(k). Alternatively, we can bound the running time by g

(

n
k

)n
, where33

g(x) = f(x)
1
x is a decreasing function for x ≥ 1. Since each onion layer except the k-th one34

must have at least three points, we have N = O (g(3)n). The fact that the k-th onion layer may35

have fewer than three points makes only a difference of a constant factor. Therefore the running36

time of the algorithm presented in this section is O∗(g(3)n) = O∗( 3
√
31

n
) = O∗(3.1414n). This37

concludes the proof of Theorem 1.38

We want to point out that often the number of onion layers can be much smaller than the39

maximum possible
⌈

n
3

⌉

. For example, Dalal [17] has shown that if n points are chosen uniformly40

at random from a disk, then the expected number of onion layers of the resulting point set is41

IIf(·) is log-concave iff f(αx+ (1−α)y) ≥ f(x)α · f(y)1−α for every x, y in the domain of f and 0 ≤ α ≤ 1.
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k = Θ
(

n2/3
)

. Using Markov’s inequality, this implies that with high probabilityIII we have1

N ≤ 2n
2/3+o(1)

. Hence, with high probability our algorithm runs in sub-exponential time for2

points randomly distributed on a disk.3

5 Counting other crossing-free structures4

In this section we show how the ideas of the sn-path algorithm can be augmented in order to5

develop a general framework for counting many classes of crossing-free structures. We use this6

framework to count matchings and spanning cycles.7

The overall idea can be roughly described as follows. Suppose we want to count the elements8

of a particular class F of crossing-free structures on P . A set S of non-crossing edges on P is9

called a separator if the union of the edges in S splits (the interior of) CH(P ) into at least two10

regions, say regions RS
1 , RS

2 , . . . , RS
t . Now assume that there exists a set S of separators with the11

following properties: () Every element of F contains a unique separator S ∈ S , () choosing12

an element of F with separator S can be done independently in the regions RS
i , and () we can13

quickly enumerate the members of S . With such a set of separators S , the elements of F can be14

counted as follows: Recursively compute the number nS
i of elements of F of each region RS

i .15

The number of elements of F containing S is then NS =
∏t

i=1 n
S
i . Thus the total number of16

elements of F is simply
∑

S∈S NS . Of course, in the recursion, a set of separators is required17

in each RS
i . We fill in the details of this approach in the following sections.18

5.1 Annotations19

Assume we want to count all matchings spanned by P . We have to ensure that each vertex20

that is contained in the separator S is matched consistently in all of its incident regions. In21

any matching M that fits to a separator S, each vertex in S is unmatched, or matched to a22

vertex strictly within some region RS
i , or matched to another vertex in S. We can annotate23

each separator S with this information. When counting, for each S ∈ S , we iterate over all24

annotations of S, and ensure consistency with the current annotation in all recursive calls.25

In general, the choice of the annotation scheme heavily depends on the class of crossing-26

free structures. We present annotations for matchings and spanning cycles in this paper, an27

annotation scheme for spanning trees was designed by Alvarez et al. [10].28

5.2 Embedding Crossing-Free Structures into Triangulations29

Again assume that we want to count matchings. Property () above states that each matching30

should have a unique separator S. This seems hard to achieve directly, especially since a match-31

ing can contain very few edges, leaving much freedom to choose a separator. However, we have32

seen that unique separators exist for triangulations, specifically sn-paths. Hence, we do not count33

matchings directly, but we count matchings embedded in a triangulation. In order not to over-34

count matchings, we choose a unique triangulation TM containing the matching M and count35

all pairs (M,TM ). Given a suitable family S of separators for the triangulations of P , such as36

IIIWhen we say “with high probability” we mean probability 1− o(1).
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sn-paths, we count (M,TM ) and thus M for exactly one S ∈ S . Specifically, we choose the1

unique triangulation TM to be the constrained Delaunay triangulation (CDT) △M ⊃ M , which2

we briefly describe next.3

Constrained Delaunay Triangulation: The constrained Delaunay triangulation (CDT) △S
4

of a point set P and a set of (crossing-free straight-line) edges S on P was first introduced by5

L. P. Chew [16]. Formally, it is the triangulation T of P containing S such that no edge e in6

T \ S is flippable in the following sense: Let △1,△2 be triangles of P sharing e. The edge e7

is flippable if and only if � = △1 ∪ △2 is convex, and replacing e with the other diagonal of8

� increases the smallest angle of the triangulation of �. One of the most important properties9

of constrained Delaunay triangulations is its uniqueness if no four points of P are cocircular.10

Thus, under standard non-degeneracy assumptions, there is a unique CDT for any given set of11

mandatory edges. For a good study on constrained Delaunay triangulations we suggest the book12

by Ø. Hjelle and M. Dæhlen [23].13

From now on we will assume that no four points of P are cocircular. We can now go back to14

our simple algorithm for counting matchings and revise it as follows: After picking a separator S,15

in each recursive sub-problem we only count matchings M such that S ⊆ △M , where S ∈ S16

is a separator. If this last condition can be checked locally in each recursive call, i.e., choices17

in one sub-problem do not depend on choices in others, we are done. Since not every set of18

separators S admits such a locality condition, we construct a new family of separators in the19

next section.20

5.3 Triangular paths21

We assume again that P has k onion layers. For every point p ∈ P (on layer P (i) which is not22

the first layer) we fix in advance a ray τp which emanates from p, avoids other points of P , and23

does not intersect the interior of CH
(

P (i)
)

.24

p0
p1

τp0

τp1

p2

τp2
p3

Figure 4: Triangular path Pp

starting in onion layer P (4).
Onion layers are drawn dashed.
Pp can be extended to a trian-
gulation T , in such a case Pp

will be unique for T .

For any triangulation T of P there is a unique triangle △p =25

(p, q1, q2) adjacent to p that intersects τp. Let qp be the smaller26

of q1 and q2, using the same labeling as before. Clearly, qp lies in27

a layer lower than the one containing p. Let p0, p1, . . . , pr be the28

sequence so that p0 = p, pi+1 = qpi , ∀ 0 ≤ i < k, and pr lies on29

the first layer. We call Pp(T ) :=
⋃

i △pi the triangular path of30

p w.r.t. T , see Figure 4. It is easy to see that the triangular path31

Pp(T ) is uniquely defined for any triangulation T . Moreover,32

for distinct triangulations T1 and T2, Pp(T1), Pp(T2) are either33

identical or they intersect properly: Let i be the first position34

where △pi(T1) 6= △pi(T2), then those two triangles intersect, as35

they both are adjacent to p, intersect τp and have interiors free36

of points in P . We are now ready to present the algorithm for37

counting matchings.38
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5.4 Algorithm for counting matchings1

Given a matching M , let △M be the CDT of M (with vertex set P ). By our assumption of no2

four cocircular points, this CDT is unique for M . We annotate △M as follows:3

• each edge e of △M is annotated with a bit be that indicates whether e belongs to M or not.4

• each vertex p of △M is annotated with a number 0 ≤ mp ≤ n that represents the point5

in P that p is matched to. If mp is, say, 0 then we know that p is not matched in M .6

We may add the constraint mp > 0 to count only perfect matchings, otherwise we count all7

(not necessarily perfect) matchings.8

Let us denote by △M
the annotated version of △M . Let S be a separator contained in △M

9

that splits CH(P ) into regions RS
1 , . . . , R

S
t . Separator S inherits all the information from △M

.10

The separator thus annotated will be denoted by △M
S .11

We say that an annotated constrained Delaunay triangulation is legal if and only if is identical12

to △M
, for some matching M . Since there is a one-to-one correspondence between matchings13

and legal annotated constrained Delaunay triangulations, our goal is to count the latter.14

a b

p

R2

R3

R1

Figure 5: In the first call of the
algorithm, the triangular path
shown in light gray is created.
It divides the problem into re-
gions R1 ∪ R3 and R2. A call
for the former creates the trian-
gular path shown in dark gray.
Annotations are not shown.

Our algorithm is essentially the same as for counting triangu-15

lations: Instead of sn-paths we use annotated triangular paths. In16

the first call of the algorithm, we start with an edge ab on CH(P )17

and enumerate the set of points p such that the triangle apb is free18

of other points of P . For each such p, the triangle apb along with19

a triangular path starting at p forms a separator, see Figure 5. We20

enumerate such separators and all possible annotations for each21

one of them. Each such annotated separator splits CH(P ) into22

two smaller regions, which we solve recursively. In each such23

recursive sub-problem we count legal annotated constrained De-24

launay triangulations consistent with the annotated separator, i.e.,25

for example, if two adjacent vertices of the separator have been26

annotated, and they agree to be matched to each other and the27

edge connecting them is annotated to be in the matching, then in28

future recursive sub-problems other edges adjacent to those two29

vertices cannot be annotated to be in a matching as well. Clearly,30

the only sub-problems that will contribute to the final computed31

number of matchings are the ones for which the algorithm, in its whole run, could complete a full32

annotated constrained Delaunay triangulation without finding any violation of the annotations33

inherited by the separators that led to that triangulation.34

Let us elaborate on why it is necessary to use triangular paths instead of sn-paths. Note that35

no edge of a separator, formed by a triangular path, lies on the boundary of more than one sub-36

problem. This allows us to verify flippability of edges separately, and independently, in each37

sub-problem. If an edge belonged to more than one sub-problem (as is the case for sn-paths),38

then the flippability of this edge would depend on the choices made in each sub-problem, thus39

introducing dependency between these sub-problems.40

11



As in the algorithm for counting triangulations, we use memoization, so that the running1

time is dominated by the number of triples of annotated triangular paths. The size of each2

triangular path is O(k), thus there are clearly at most nO(k) triangular paths. There are no more3

than nO(k) possible annotations per triangular path, as can be easily checked. In total, there are4

nO(k) triples of annotated triangular paths. Thus, the overall running time is nO(k), which even5

considers the polynomial overhead arising from checking flippability of edges and inclusion of6

points in triangles. This concludes the first part of Theorem 2.7

In contrast to our algorithm for counting triangulations that runs in time O∗(3.1414n) (see8

§ 4.3), for counting matchings we cannot prove a running time of the form cn with a reasonably9

small constant c. The reason is that triangular paths not only consist of descending paths, but10

also of dangling triangles, whose third point can be on a arbitrary layer. Specifically, if we11

consider the layers of the third vertices of all dangling triangles, then they are not sorted. This12

makes it hard to bound the number of triangular paths.13

The annotations required for counting matchings are not very complicated, but for many14

other counting problems this is a highly non-trivial task. An example of more involved annota-15

tions is given in the next section, where we consider the problem of counting spanning cycles.16

5.5 Algorithm for counting spanning cycles17

Counting spanning cycles is more complicated than counting matchings. We first reduce the18

problem to counting rooted and oriented spanning cycles: Given any spanning cycle, we make19

it rooted by designating a starting vertex, and we make it oriented by assigning an orientation20

(clockwise or counter-clockwise). We then number the vertices in the spanning cycle from 121

to n, beginning at the starting vertex (which is the root of the cycle), and continuing along the22

assigned direction. We also direct the edges along this direction. This way, each spanning cycle23

corresponds to exactly 2n rooted and oriented spanning cycles, so it suffices to count the latter24

and divide by 2n. In the remainder we use the term HamCycle for rooted and oriented spanning25

cycles.26

Given a HamCycle H let △H be the CDT of H . We annotate △H as follows:27

• each edge e in △H is annotated with a bit be that indicates whether e belongs to H or not.28

• each vertex p of △H is annotated with (posp, prevp, nextp), where posp is the number29

assigned to p in H , prevp is the point lying immediately before p in H , and nextp is the30

point lying immediately after p in H .31

As in the case of matchings, we denote the annotated △H by △H
. A separator S contained32

in △H inherits all annotations of the vertices in S. Thus, from the annotated separator △H
S33

we know for each point p of S its position on the HamCycle as well as its predecessor and34

successor points. Note that since S contains O(k) vertices, there are again at most nO(k) possible35

annotations of S.36

The algorithm for counting matchings now carries over verbatim, if we appropriately enu-37

merate annotations and check their consistency. The running time is again nO(k). This concludes38

the proof of Theorem 2.39
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6 Conclusions1

In this paper we have presented algorithms to count triangulations, crossing-free matchings, and2

crossing-free spanning cycles of a given set of points P . All algorithms use the onion layers3

of P and the divide-and-conquer paradigm.4

The algorithm to count triangulations presented in this paper has a provable worst-case run-5

ning time of O∗(3.1414n). Moreover, it runs in polynomial time whenever the number of onion6

layers of the given set of points is constant. No other algorithm is currently known that runs in7

polynomial time restricted to any non-trivial set of instances. Finally, recent experiments [8, 11]8

indicate that our algorithm is highly relevant in practice as well.9

Regarding other crossing-free structures, we presented a general framework that allows us10

to exactly count crossing-free structures that can be unequivocally encoded with an annotation11

scheme. We showed how to use our framework by giving annotation schemes that encode (per-12

fect) matchings and spanning cycles. Very recently an annotation scheme for spanning trees,13

which is fully compatible with our framework, was designed by Alvarez at al. [10] (in the con-14

text of approximate counting). We obtained algorithms to exactly count these structures in time15

nO(k), where k is the number of onion layers. This implies polynomial-time algorithms for fixed16

k. Algorithms with this property were not known before for these problems, and this, in partic-17

ular, gives a partial answer to Problem 16 of The Open Problems Project, which asks whether18

|FC(P )| can always be computed in polynomial time [18].19

In presence of very recent developments on counting crossing-free structures [10, 11, 35],20

the most interesting question at this point is whether exact counting can always be done in sub-21

exponential time (2o(n)), or, even more, whether it can always be done in polynomial time.22

Our counting algorithms also allow us to generate crossing-free structures uniformly at ran-23

dom. For example, the problem of generating spanning cycles (uniformly) at random has at-24

tracted the attention of researchers for almost 20 years [13], in the form of generating random25

simple polygons on P . Since our algorithms are based on the divide-and-conquer paradigm,26

we can easily adapt the method explained by Aichholzer [1] to produce such random structures,27

after running the counting algorithm.28
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[6] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In G. S. Peter L. Hammer,40

Alexander Rosa and J. Turgeon, editors, Theory and Practice of Combinatorics A collection of articles honoring41

13



Anton Kotzig on the occasion of his sixtieth birthday, volume 60 of North-Holland Mathematics Studies, pages1

9 – 12. North-Holland, 1982.2

[7] V. Alvarez, K. Bringmann, R. Curticapean, and S. Ray. Counting crossing-free structures. In Proceedings of3

the 28th annual Symposium on Computational Geometry, SoCG ’12, pages 61–68. ACM, 2012.4

[8] V. Alvarez, K. Bringmann, R. Curticapean, and S. Ray. Counting triangulations and other crossing-free struc-5

tures via onion layers. Computing Research Repository (CoRR), 2013. Available at http://arxiv.org/6

abs/1312.4628.7

[9] V. Alvarez, K. Bringmann, and S. Ray. A simple sweep line algorithm for counting triangulations and pseudo-8

triangulations. Computing Research Repository (CoRR), 2013. Available at http://arxiv.org/abs/9

1312.3188.10

[10] V. Alvarez, K. Bringmann, S. Ray, and R. Seidel. Counting triangulations and other crossing-free structures11

approximately. Computational Geometry, To appear, 2015. Available at http://dx.doi.org/10.1016/12

j.comgeo.2014.12.006.13

[11] V. Alvarez and R. Seidel. A simple aggregative algorithm for counting triangulations of planar point sets and14

related problems. In Proceedings of the 29th Annual Symposium on Computational Geometry, SoCG ’13, pages15

1–8. ACM, 2013.16

[12] E. Anagnostou and D. Corneil. Polynomial-time instances of the minimum weight triangulation problem.17

Computational Geometry, 3(5):247 – 259, 1993.18

[13] T. Auer and M. Held. Heuristics for the generation of random polygons. In Proceedings of the 8th Canadian19

Conference on Computational Geometry, CCCG ’96, pages 38–43, 1996.20

[14] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1–3):21–46, 1996.21

[15] S. Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Computational Geometry,22

23(3):271–279, 2002.23

[16] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4(1-4):97–108, 1989.24

[17] K. Dalal. Counting the onion. Random Structures & Algorithms, 24(2):155–165, 2004.25

[18] E. Demaine, J. S. B. Mitchell, and J. O’Rourke. Problem 16: Simple polygonalizations, May 2014. http://26

cs.smith.edu/˜orourke/TOPP/P16.html#Problem.16. Accessed on 12.05.2014.27

[19] A. Dumitrescu, A. Schulz, A. Sheffer, and C. D. Tóth. Bounds on the maximum multiplicity of some common28
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