Feature Sensitive Bas Relief Generation

Jens Kerber ¹, Art Tevs ¹, Alexander Belyaev ², Rhaleb Zayer ³, and Hans-Peter Seidel ¹

¹ Max-Planck-Institut für Informatik, Saarbrücken
² Joint Research Institute for Image and Signal Processing, Edinburgh
³ LORIA-INRIA Loraine, CNRS, Nancy
Motivation

- **Aim**
 - Compress depth-interval size of height field
 - No loss of important features

- **Applications for Bas-Reliefs**
 - Coinage
 - Packaging
 - Shape Decoration
 - Embossment
 - Engraving
 - Carving
 - Displacement Maps

SMI 2009, Tsinghua University, Beijing, China

1 http://www.cachecoins.org/
2 Real-time relief mapping on arbitrary polygonal surfaces
 Policarpoo F., Oliveira M., Comba J. L. D., SIGGRAPH 2005
Naïve Approach

- Linear Rescaling
Related Work

- Automatic generation of bas-reliefs from 3D shapes
 W. Song, A. Belyaev, H.-P. Seidel, SMI 2007 (short paper)
 + Introducing the problem and attempting to solve it

- Digital Bas-Relief from 3D Scenes
 + Impressive results - Much user interaction required, computationally expensive

- Feature Preserving Depth Compression of Range Images
 J. Kerber, A. Belyaev, H.-P. Seidel, SCCG 2007
 + Simple and fast - Spherical parts not well reproduced, problems with noise

- Bas-Relief Generation Using Adaptive Histogram Equalization
 X. Sun, P. Rosin, R. Martin, TVCG 2009
 + Very good results - Time consuming

SMI 2009, Tsinghua University, Beijing, China
Pipeline

I

Gradient Extraction Silhouette Removal Outlier Detection Attenuation

R

Rescaling Re-assembling Re-weighting Decomposition

SMI 2009, Tsinghua University, Beijing, China
Silhouette Treatment

- Gradient of the Background mask = 1 ?
Outlier Detection

- Tollerance parameter
 - Deviation to mean gradient value
Signal Decomposition

- Base-layer and Detail-layer
- Detail Enhancement
- Base Compression

\(\frac{1}{\lambda} \cdot \text{Base + Detail} \)
Bilateral Filter

Gradient domain
- Edge preservation
- Gradient extrema preservation

Spatial Domain
- Preservation of ridges and valleys
- Curvature extrema preservation
Reweighting

- X-Gradient

- Y-Gradient
Poisson Reconstruction

- Given \(I_x, I_y \)

- Compute \(I_{xx} + I_{yy} = \Delta I \)

- Partial Differential Equation

- Well studied Problem

- Multi-Grid-Solver
 - Assumption: Frame equals background

SMI 2009, Tsinghua University, Beijing, China
Results
Cubism

- Ancient technique in art
- Combine multiple viewpoints in a single painting

- Aim: extend this effect from 2D to sculpting

http://picasso.tamu.edu/picasso/
Height Field Capturing

- Open GL Application
- 180° in 15° steps
- Composition in 2D

SMI 2009, Tsinghua University, Beijing, China
Transition Problems

- Transition areas
 - Seams are automatically detected as outliers
 - But set to 0
 - Flat transitions would emphasize the impression of having two different parts
Transition Problems (ctd.)

- 0-Gradient affects 3x3 neighborhood
- Re-fill affected area
- Weighted average (Gauss) excluding masked entries

- Seamless results
Results
Performance

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution / pixel</th>
<th>Time / seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucy</td>
<td>950x800</td>
<td>6.2</td>
</tr>
<tr>
<td>Lion-Vase</td>
<td>950x800</td>
<td>6.8</td>
</tr>
<tr>
<td>XYZRGB Dragon</td>
<td>980x1700</td>
<td>13.5</td>
</tr>
<tr>
<td>David Cubism 1</td>
<td>1200x1200</td>
<td>17.2</td>
</tr>
<tr>
<td>David Cubism 2</td>
<td>800x800</td>
<td>8.1</td>
</tr>
</tbody>
</table>

- Intel 4x2.6 GHz, 8GB, Matlab64 Implementation
- Bottleneck
 - Bilateral Filter
 - Poisson Reconstruction
- Not optimized yet, possible acceleration
Conclusion

- **Contribution**
 - Little user intervention
 - Preservation of fine and sharp structural details
 - More artistic freedom
 - Potentially Fast
 - Independent of complexity
 - Commercial applications
Future work

- Dynamic extension
 - Video

- Thank you for your attention!