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Abstract

In this work we propose a framework for image processing in a vi-
sual response space, in which contrast values directly correlate with
their visibility in an image. Our framework involves a transforma-
tion of an image from luminance space to a pyramid of low-pass
contrast images and then to the visual response space. After mod-
ifying response values, the transformation can be reversed to pro-
duce the resulting image. To predict the visibility of suprathreshold
contrast, we derive a transducer function for the full range of con-
trast levels that can be found in High Dynamic Range images. We
show that a complex contrast compression operation, which pre-
serves textures of small contrast, is reduced to a linear scaling in
the proposed visual response space.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.2 [Image Processing and
Computer Vision]: Enhancement—Greyscale manipulation, sharp-
ening and deblurring

Keywords: visual perception, high dynamic range, contrast pro-
cessing, tone mapping

1 Introduction

Operations on image contrast or image gradient have recently at-
tracted much attention in the fields of lightness determination [Horn
1974], tone mapping [Fattal et al. 2002], image editing [Perez et al.
2003; Agarwala et al. 2004], image matting [Sun et al. 2004], and
color-to-gray mapping [Gooch et al. 2005]. However, all these
works focus mainly on image processing aspects without consid-
ering perceptual issues. In this work we incorporate perceptual is-
sues by deriving a framework for processing images in perceptually
linearized visual response space.

The overview of our framework is shown in Figure 1. Pixel lumi-
nance values of an image are first transformed to physical contrast
values, which are then transduced to response values of the Human
Visual System (HVS). The resulting image is then modified by al-
tering the response values, which are closely related to a subjective
impression of contrast. The modified response values can later be
converted back to luminance values using an inverse transforma-
tion. As an application of our framework we demonstrate two tone
mapping methods which can effectively compress dynamic range
without losing low-contrast information. We show that a complex
contrast compression operation, which preserves textures of small
contrast, is reduced to a linear scaling in our visual response space.
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Figure 1: Data flow in the proposed framework of the perceptual
contrast processing.

Several models that compute the representation of images as the re-
sponse of the HVS have been proposed (e.g. [Pattanaik et al. 1998;
Fairchild and Johnson 2003]). These models either operate in the
luminance domain or decompose an image into band-pass limited
contrast channels, similar to those proposed by Peli [1990]. The
drawback of the latter approach is that band-pass limited contrast
tends to result in severe halo artifacts when each band is modified
separately. On the other hand, the methods operating on gradients
or contrast were shown to be free from such artifacts. Therefore,
we base our framework on a low-pass pyramid of contrast values,
which ensures that all spatial frequencies are modified simultane-
ously. Another major issue that we address in our framework is the
perception of High Dynamic Range (HDR) images. To ensure that
this aspect is well modelled, we base our framework on data that
accounts for high contrast.

In Section 2 we review less well known psychophysical data that
was measured for high-contrast stimuli. We also describe a model
for suprathreshold contrast discrimination. In Section 3 we intro-
duce the components of our framework, in particular a multi-scale
representation of low-pass physical contrast and a transducer func-
tion designed for HDR data. As an application of our framework,
we propose two tone mapping methods in Sections 4 and 5. Details
on how the framework can be implemented efficiently are given in
Section 6. We discuss strengths and weaknesses of the proposed
framework in Section 7. Finally, we conclude and discuss future
work in Section 8.

2 Background

In the following two sections we review some fundamentals of the
perception of contrast and summarize the results of a study on the
HVS performance in contrast discrimination for HDR images. We
use this contrast discrimination characteristic to derive our contrast
processing framework.



∆W (W ) – function of threshold contrast discrimination
W – contrast expressed as Weber fraction (see Table 2)
G – contrast expressed as logarithmic ratio (see Table 2)

Gk
i, j – contrast between pixel i and j at the k’th level of a Gaus-

sian pyramid

Lk
i – luminance of the pixel i at k’th level of a Gaussian pyramid

xk
i – log10 of luminance Lk

i
T (W ) – transducer function
R – response of the HVS scaled in JND units
R̂ – modified response R

Table 1: Used symbols and notation

Simple Contrast
Cs = Lmax

Lmin

Weber Fraction
W = ∆L

Lmin

Logarithmic Ratio
G = log10(

Lmax
Lmin

)

Michelson Contrast
M = Lmax−Lmin

Lmax+Lmin

Signal to Noise Ratio
SNR = 20 · log10(

Lmax
Lmin

)

Decrement

Increament

∆L

Lmax

∆L

Lmin

LmaxLmin

Lmax

Lmean

Lmin

Table 2: Definitions of contrast and the stimuli they measure.

2.1 Contrast

The human eye shows outstanding performance when comparing
two light patches, yet it almost fails when assessing the absolute
level of light. Such an effect can be achieved in a ganzfeld, an ex-
perimental setup where the entire visual field is uniform. In fact, it
is possible to show that the visual system cannot discern mean level
variations unless they fluctuate in time or with spatial signals via
eye movements, thus having a higher temporal frequency compo-
nent. Low sensitivity to absolute luminance can be easily explained
by the adaptation of the HVS to the real word conditions. Because
the HVS is mostly sensitive to relative luminance ratios (contrast)
rather than absolute luminance, the effect of huge light changes over
the day is reduced and therefore we perceive the world in a similar
way regardless of the light conditions. This and other sources of ev-
idence strongly suggest that the perception of contrast (difference
between two light stimuli) is the fundamental ability of the HVS.

Many years of research on contrast have resulted in several defini-
tions of contrast, some of them listed in Table 2. The variety of con-
trast definitions comes from the different stimuli they measure. For
example, the Michelson contrast [Michelson 1927] is commonly
used to describe a sinusoidal stimulus, while the Weber fraction is
often used to measure a step increment or decrement stimulus. In
the next section we show that certain contrast definitions are more
suitable for describing the performance of the HVS than others.
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Figure 2: Contrast discrimination thresholds plotted using Michel-
son contrast M. Michelson contrast does not give a good prediction
of the discrimination performance, especially for high contrast.

2.2 Contrast Discrimination

Contrast detection and contrast discrimination are two of the most
thoroughly studied perceptual characteristics of the eye [Barten
1999]. The contrast discrimination threshold is the smallest visible
difference between two nearly identical signals, for example two si-
nusoidal patterns that differ only in their amplitudes. In the case of
contrast detection, only the presence of a signal has to be detected,
i.e. the smallest contrast for which a sinusoidal signal becomes
visible on a uniform field has to be found. Detection can be con-
sidered as a special case of discrimination when the masking signal
has zero amplitude. Contrast discrimination is associated with the
suprathreshold characteristics of the HVS and in particular with vi-
sual masking. Contrast detection, on the other hand, describes the
performance of the HVS for subthreshold and threshold stimulus,
which can be modelled by the Contrast Sensitivity Function (CSF),
the threshold versus intensity function (t.v.i), or Weber’s law for
luminance thresholds.

Since suprathreshold contrast plays a dominant role in the percep-
tion of HDR images, we will consider contrast discrimination data
(suprathreshold) in detail and simplify the character of contrast de-
tection (threshold). Although discrimination thresholds of the HVS
have been thoroughly studied in psychophysics for years, most of
the measurements consider only small contrast levels up to 50%
of the Michelson contrast. Such limited contrast makes the useful-
ness of the data especially questionable in the case of HDR images,
for which the contrast can easily exceed 50%. The problem of in-
sufficient scale of contrast in psychophysical experiments was ad-
dressed by Whittle in [1986]. By measuring detection thresholds
for the full range of visible contrast, Whittle showed that the dis-
crimination data plotted with Michelson contrast does not follow
increasing slope, as reported in other studies (refer to Figure 2).
He also argued that Michelson contrast does not describe the data
well. Figure 2 shows that the data is very scattered and the charac-
ter of the threshold contrast is not clear, especially for large contrast
values. However, when the same data is plotted using the contrast
measure W = ∆L/Lmin, the discrimination thresholds for all but the
smallest contrast values follow the same line on log-log plot, which
resembles Weber’s law, but for suprathreshold contrast: ∆W/W = c
(see Figure 3). To model suprathreshold contrast thresholds, we fit
Whittle’s original data [1986, Figure 2] to a continuous function:

∆W (W ) = 0.0928 ·W 1.08 +0.0046 ·W−0.183 (1)

The shape of the fitted function is shown as a solid line in Fig-
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Figure 3: Contrast discrimination thresholds plotted using contrast
W . Inset: the stimulus used to measure increments.

ure 3. In Section 3.2 we use the above function rather than Whit-
tle’s original model ∆W/W = c to properly predict discrimination
thresholds for lower contrast values. But before we utilize the above
discrimination function, we have to consider whether it can be gen-
eralized for different stimuli and spatial frequencies. In a later
study Kingdom and Whittle [1996] showed that the character of the
suprathreshold discrimination is similar for both a square-wave and
sine-wave patterns of different spatial frequencies. This is consis-
tent with other studies that show little variations of suprathreshold
contrast across spatial frequencies [Georgeson and Sullivan 1975;
Barten 1999].

3 Framework for Perceptual

Contrast Processing

In the next two sections we introduce a framework for image pro-
cessing in a visual response space. Section 3.1 proposes a method
for transforming complex images from luminance to physical con-
trast domain (blocks Transform to Contrast and Transform to Lu-
minance in Figure 1). Section 3.2 explains how physical contrast
can be converted into a response of the HVS, which is a percep-
tually linearized measure of contrast (blocks Transducer Function
and Inverse Transducer Function in Figure 1).

3.1 Contrast in Complex Images

Before we introduce contrast in complex images, let us consider
the performance of the eye during discrimination of spatially dis-
tant patches. We can easily observe that contrast can be assessed
only locally for a particular spatial frequency. We can, for exam-
ple, easily see the difference between fine details if they are close to
each other, but we have difficulty distinguishing the brighter detail
from the darker if they are distant in our field of view. On the other
hand, we can easily compare distant light patches if they are large
enough. This observation can be explained by the structure of the
retina, in which the foveal region responsible for the vision of fine
details spans only about 1.7 visual degrees, while the parafoveal vi-
sion can span over 160 visual degrees, but has almost no ability to
process high frequency information [Wandell 1995]. When seeing
fine details in an image, we fixate on a particular part of that image
and employ the foveal vision. But at the same time the areas fur-
ther apart from the fixation point can only be seen by the parafoveal

vision, which can not discern high frequency patterns. The con-
trast discrimination for spatial patterns with increasing separation
follows Weber’s law when the eye is fixed to one of the patters and
this is the result of the increasing eccentricity of the other pattern
[Wilson 1991]. Therefore, due to the structure of the retina, the
distance at which we can correctly assess contrast is small for high
frequency signals, but grows for low frequency signals.

While several contrast definitions have been proposed in the litera-
ture (refer to Table 2), they are usually applicable only to a simple
stimulus and do not specify how to measure contrast in complex
scenes. This issue was addressed by Peli in [1990], in which he no-
ticed that the processing of images is neither periodic nor local and
therefore the representation of contrast in images should be quasi-
local as well. Drawing analogy from the center-surround structures
in the retina, he proposed to measure contrast in complex images as
a difference between selected levels of a Gaussian pyramid. How-
ever, the resulting difference of Gaussians leads to a band-pass lim-
ited measure of contrast, which tends to introduce halo artifacts at
sharp edges when it is modified. To avoid this problem, we intro-
duce a low-pass measure of contrast. We use a logarithmic ratio G
as the measure of contrast between two pixels, which is convenient
in computations since it can be replaced with the difference of log-
arithms. Therefore, our low-pass contrast is defined as a difference
between a pixel and one of its neighbors at a particular level of a
Gaussian pyramid, which can be written as:

Gk
i, j = log10(Lk

i /Lk
j) = xk

i − xk
j (2)

where Lk
i and Lk

j are luminance values for neighboring pixels i and
j at a particular level k of the Gaussian pyramid (for brevity we
denote xk

i = log10Lk
i ). For a single pixel i there are two or more

contrast measures Gk
i, j , depending on how many neighbouring pix-

els j are considered. Note that both L and x cover a larger and larger
area of an image when moving to the coarser levels of the pyramid.
This way our contrast definition takes into account the quasi-local
perception of contrast, in which fine details are seen only locally,
while variations in low frequencies can be assessed for the entire
image.

Equation 2 can be used to transform luminance to contrast. Now we
would like to perform the inverse operation that restores an image
from the modified contrast values Ĝ. The problem is that there is
probably no image that would match such contrast values. There-
fore, we look instead for an image whose contrast values are close
but not necessarily exactly equal to Ĝ. This can be achieved by the
minimization of the distance between a set of contrast values Ĝ that
specifies the desired contrast, and G, which is the contrast of the
actual image. This can be formally written as the minimization of
the objective function:

f (x1,x2, . . . ,xN) =
K

∑
k=1

N

∑
i=1

M

∑
j=1

(Gk
i, j − Ĝk

i, j)
2 (3)

with regard to the pixel values x1
i on the finest level of the pyramid.

An efficient solution of the above equation is given in Section 6.

Note that restoring images from contrast does not produce halo ar-
tifacts as long as the solution of the minimization problem comes
close enough to the objective goal Ĝ and the modified contrast Ĝ
has the same sign as the original. The problem may appear only for
pixel pairs of very low contrast, for which the error of the minimiza-
tion procedure may be large enough to reverse the ratio between
them. This can be alleviated if the square difference terms in Equa-
tion 3 are weighted by a factor that increases for lower magnitude
of the contrast Ĝk

i, j .



3.2 Transducer Function

A transducer function predicts the hypothetical response of the
HVS for a given physical contrast. As can be seen in Figure 1,
our framework assumes that the processing is done on the response
rather than on the physical contrast. This is because the response
closely corresponds to the subjective impression of contrast and
therefore any processing operations can assume the same visual
importance of the response regardless of its actual value. In this
section we would like to derive a transducer function that would
predict the response of the HVS for the full range of contrast, which
is essential for HDR images.

Following [Wilson 1980] we derive the transducer function T (W )
based on the assumption that the value of the response R should
change by one unit for each Just Noticeable Difference (JND)
both for threshold and suprathreshold stimuli. However, to sim-
plify the case of threshold stimuli, we assume that T (0) = 0 and
T (Wthreshold) = 1, or T−1(0) = 0 and T−1(1) = Wthreshold for the
inverse transducer function T−1(R), where the detection threshold
is approximated with the value commonly used for digital images
Wthreshold = 0.01 [Wyszecki and Stiles 2000, Section 7.10.1]. For
a suprathreshold stimulus we approximate the response function T
by its first derivative:

∆T ≈
dT (W )

dW
∆W (W ) = 1 (4)

where ∆W (W ) is the discrimination threshold given by Equation 1.
The above equation states that a unit increase of response R (right
hand side of the equation) should correspond to the increase of W
equal to the discrimination threshold ∆W for the contrast W (left
side of the equation). The construction of function R = T (W ) is
illustrated in the inset of Figure 4. Although the above equation can
be solved by integrating its differential part, it is more convenient
to solve numerically the equivalent differential equation:

dT−1(R)

dR
= ∆W (T−1(R)) (5)

for the inverse response function T−1(R) =W and for the boundary
condition T−1(1) = Wthreshold . W is a non-negative Weber fraction
(refer to Table 2) and R is the response of the HVS. Since the func-
tion T−1 is strictly monotonic, finding the function T is straight-
forward. We numerically solve Equation 5 to find the transducer
function T (W ) = R shown in Figure 4.

Before we can use the transducer function in our framework (Trans-
ducer Function and Inverse Transducer Function in Figure 1) we
have to unify contrast measures. Note that in the previous section
we used logarithmic ratio G for computational efficiency. Contrast
can be easily converted between G and W units using the formulas:

W =

{

10G −1 if G ≥ 0
−10−G −1 otherwise

(6)

and

G =

{

log10(W +1) if W ≥ 0
−log10(−W +1) otherwise (7)

The above formulas make sure that the sign of contrast is properly
handled. Since the sign contains important information, it should
also be preserved when converting contrast W to response R and
then later response R to contrast W .

The transducer function derived in this section has a similar
derivation and purpose as the Standard Grayscale Function from
the DICOM standard [DICOM 2001] or the capacity function
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Figure 4: Transducer function derived from the contrast discrimi-
nation data [Whittle 1986]. The transducer function can predict the
response of the HVS for the full range of contrast. The inset de-
picts how the transducer function is constructed from the contrast
discrimination thresholds ∆W (W ).

in [Ashikhmin 2002]. The major difference is that the transducer
function operates in the contrast domain rather than in the lumi-
nance domain. It is also different from other transducer functions
proposed in the literature (e.g. [Wilson 1980; Watson and Solomon
1997]) since it is based on the discrimination data for high contrast
and operates on contrast measure W . This makes the proposed for-
mulation of the transducer function especially suitable to HDR data.
The derived function also simplifies the case of the threshold stimuli
and assumes a single detection threshold Wthreshold . Such a simplifi-
cation is acceptable, since our framework focuses on suprathreshold
rather than threshold stimuli.

4 Application: Contrast Mapping

In previous sections we introduce our framework for converting im-
ages to perceptually linearized contrast response and then restoring
images from the modified response. In this section we show that
one potential application of this framework is to compress the dy-
namic range of HDR images to fit into the contrast reproduction ca-
pabilities of display devices. We call this method contrast mapping
instead of tone mapping because it operates on contrast response
rather than luminance.

Tone mapping algorithms try to overcome either the problem of the
insufficient dynamic range of a display device (e.g. [Tumblin and
Turk 1999; Reinhard et al. 2002; Durand and Dorsey 2002; Fattal
et al. 2002]) or the proper reproduction of real-word luminance on a
display (e.g. [Pattanaik et al. 1998; Ashikhmin 2002]). Our method
does not address the second issue of trying to make images look
realistic and natural. Instead we try to fit to the dynamic range of
the display so that no information is lost due to saturation and at the
same time, small contrast details, such as textures, are preserved.
Within our framework such non-trivial contrast compression opera-
tion is reduced to a linear scaling in the visual response space. Since
the response Rk

i, j is perceptually linearized, contrast reduction can
be achieved by multiplying the response values by a constant l:

R̂k
i, j = Rk

i, j · l (8)

where l is between 0 and 1. This corresponds to lowering the maxi-
mum contrast that can be achieved by the destination display. Since



Figure 5: The results of the contrast mapping algorithm. The images from left to right were processed with the compression factor l =
0.1,0.4,0.7,1.0. After the processing images were rescaled in the log10 domain to use the entire available dynamic range.

the contrast response R is perceptually linearized, scaling effec-
tively enhances low physical contrast W , for which we are the most
sensitive, and compresses large contrast magnitudes, for which the
sensitivity is much lower. The result of such contrast compression
for the Memorial Church1 image is shown in Figure 5.

In many aspects the contrast compression scheme resembles the
gradient domain method proposed by Fattal et al. [2002]. How-
ever, unlike the gradient method, which proposes somewhat ad-hoc
choice of the compression function, our method is entirely based on
the perceptual characteristic of the eye. Additionally, our method
can avoid low frequency artifacts as discussed in Section 7.

We tested our contrast mapping method on an extensive set of HDR
images. The only visible problem was the magnification of the cam-
era noise on several HDR photographs. Those pictures were most
likely taken in low light conditions and therefore their noise level
was higher than in the case of most HDR photographs. Our tone
mapping method is likely to magnify camera noise if its amplitude
exceeds the threshold contrast Wthreshold of the HVS. Therefore, to
obtain good results, the noise should be removed from images prior
to the contrast mapping.

In Figure 8 we compare the results of our method with other tone
mapping algorithms. Our contrast mapping method produces very
sharp images without introducing halo artifacts. Sharpening is es-
pecially pronounced when the generated images are compared to
the result of linear scaling in the logarithmic domain (see Figure 9).

5 Application: Contrast Equalization

Histogram equalization is another common method to cope with
extended dynamic range. Even if high contrast occupies only a
small portion of an image, it is usually responsible for large dy-
namic range. The motivation for equalizing the histogram of con-
trast is to allocate dynamic range for each contrast level relative to
the space it occupies in an image. To equalize a histogram of con-
trast responses, we first find the Cumulative Probability Distribu-
tion Function (CPDF) for all contrast response values in the image

1Memorial Church image courtesy of Paul Debevec.

Rk
i, j . Then, we calculate the modified response values:

R̂k
i, j = sign(Rk

i, j) ·CPDF(|Rk
i |) (9)

where sign() equals −1 or 1 depending on the sign of the argument
and |Rk

i | is a root-mean-square of the contrast response between a
pixel and all its neighbors:

|Rk
i | =

√

√

√

√

M

∑
j=1

Rk
i, j

2 (10)

The histogram equalization scheme produces very sharp and visu-
ally appealing images, which may however be less natural in ap-
pearance than the results of our previous method (see some exam-
ples in Figures 8 and 9). Such a tone mapping method can be es-
pecially useful in those applications, where the visibility of small
details is paramount. For example, it could be used to reveal barely
visible details in forensic photographs or to improve the visibility
of small objects in satellite images.

6 Implementation Details

In this section we give an efficient solution to the optimization prob-
lem stated in Section 3.1 and explain how we handle color and the
dynamic range of images before display.

The major computational burden of our method lies in minimizing
the objective function given in Equation 3. Since the objective func-
tion reaches its minimum when all its derivatives ∂ f

∂xi
equal 0 for

i = 1, . . . ,N, the problem can be reformulated as solving the set of
linear equations A ·X = B, where X is the resulting image. To fur-
ther limit computational complexity, we consider only the closest
neighbors of each pixel: the contrast given by Equation 2 is com-
puted between a pixel and its four neighbors within the same level
of a Gaussian pyramid. To solve the set of linear equations effec-
tively, we use the biconjugate gradient method [Press et al. 2002].
The method requires computing the product Ψ = A ·X for the iter-
atively refined image X . The product can be efficiently calculated
by the following recursive formula:

Ψk(Xk) = Xk ×L +upsample[Ψk+1(downsample[Xk])] (11)



where Xk is a solution at the k-th level of the pyramid, the opera-
tor × denotes convolution, L is the kernel

L =





0 1 0
1 −4 1
0 1 0



 (12)

and upsample[] and downsample[] are image upsampling and
downsampling operators. The recursion stops when one of the im-
age dimensions is less than 3 pixels after several successive down-
samplings. The right-hand term B can be computed using another
recursive formula:

Bk(Ĝk) = Ĝk
:,x ×Dx+ Ĝk

:,y ×Dy+

+upsample[Bk+1(downsample[Ĝk])] (13)

where Ĝk is the modified contrast at the k-th level of the pyramid,
Ĝk

:,x and Ĝk
:,y are the subsets of contrast values Ĝk for horizontal and

vertical neighbors, and Dx, Dy are the convolution kernels:

Dx =
[

1 −1
]

Dy =

[

1
−1

]

(14)

If only the first level of the pyramid is considered, the problem is re-
duced to the solution of Poisson’s equation as in [Fattal et al. 2002].
Since the recursive operator from Equation 11 affects an image at
all spatial frequencies, there is no need to employ multi-grid tech-
niques to achieve fast convergence to the solution. To account for
the boundary conditions, we can pad each edge of an image with a
line or column that is a replica of the image edge.

After the contrast processing in our framework, the pixel luminance
values can fall within an arbitrary range of luminance. Therefore,
the final step of our framework involves scaling the color channels
to the range from 0 to 1. To achieve proper saturation of colors, we
scale each color channels using the formula:

Cout =
1

lmax − lmin
· (X − lmin + s(Cin −Lin)) (15)

where Cin and Cout are the input and output pixel values for the
red, green or blue color channel, Lin is the input luminance, and X
is the result of the optimization (all values are in the logarithmic
domain). The parameter s is responsible for the saturation of colors
and is usually set between 0.4 and 0.6. If Pk is k-th percentile of
X and d = max(P50 − P0.1,P99.9 − P50), then lmin = P50 − d and
lmax = P50 + d. This way, the average gray level is mapped to the
gray level of the display (r = g = b = 0.5) and overall contrast is
not lost due to a few very dark or bright pixels. Equation 15 is
similar to formulas proposed by Tumblin and Turk [1999] but it is
given in the logarithmic domain and includes a linear scaling. The
resulting color values, Cout , can be linearly mapped directly to the
pixel values of a gamma corrected (perceptually linearized) display.

7 Discussion

Although this paper only shows a tone mapping as an application
of our framework, we expect it can be also used for other image
processing algorithms as well. For example, Gooch et al. [2005]
proposed a method for converting color images to gray-scale in a
such way that important color differences are not lost. For this pur-
pose, they reconstruct a gray-scale image from a set of contrast val-
ues, which correspond to color differences between all pixels in the
image. This is equivalent to solving Equation 3 for the first level
of the pyramid, where the contrast values between all pixels in the

Figure 6: When an original signal (upper left) is restored from at-
tenuated gradients (upper right) by solving Poisson’s equation (or
integration in 1-D), the flat parts of the restored signal are shifted
relative to each other (lower left). However, if the minimization
constraints are set for multiple levels of the pyramid as in our pro-
posed method, the flat parts can be accurately restored although the
sharp peaks are slightly blurred (lower right).

image are considered instead of a limited number neighbors of each
pixel.

The proposed framework is most suitable for those problems where
the best solution is a compromise between conflicting goals. For
example, in the case of contrast mapping (Section 4), we try to
compress an overall contrast by suppressing low frequencies (low
frequency contrast has large values and thus is heavily compressed),
while preserving details. However, when enhancing details we also
lessen compression of overall contrast since details can span a broad
range of spatial frequencies (the lower levels of low-pass Gaussian
pyramid) including low-frequencies, which are primarily respon-
sible for an overall contrast. The strength of our method comes
from the fact that the objective function given in Equation 3 leads
to a compromise between the conflicting goals of compressing low-
frequency large contrast and preserving small contrast of the details.

The minimization problem introduced in Equation 3 seems simi-
lar to solving Poisson’s equation in order to reconstruct an image
from the attenuated gradients, as proposed by Fattal et al. [2002].
The difference is that our objective function puts additional opti-
mization constraints on the contrast at coarser levels of the pyramid
(summation over l), which improves a restoration of low frequency
information. When an objective function is limited only to the finest
level of the Gaussian pyramid (as it is done in Poisson’s equation),
the low frequency content may be heavily distorted in the result-
ing image2. This is illustrated on the examples of a 1-D signal in
Figure 6 and a tone-mapped image in Figure 73. In general, the al-
gorithm by Fattal et al. may lead to the reduction (or even reversal)
of global low-frequency contrast measured between distant image
fragments. High quality and visually pleasing images can be ob-
tained if the compression of contrast is reduced, though with a loss
in local contrast enhancement. Our framework can be considered
as a generalization of the Fattal et al. approach, whose distinctive
feature is that control over the global and local contrasts relies on
the minimization problem rather than on user-tuned parameters.

The major limitation of the proposed framework is the computa-
tional complexity of the contrast-to-luminance transformation. The

2Loss of low-frequency contrast is also visible in Figure 3 in the paper by
Fattal et al. [2002], where low intensity levels of the left and middle peaks
in the original image (a) are strongly magnified in the output image (f), so
that they eventually become higher than the originally brightest image part
on the right side.

3Aeroporto image courtesy of Greg Ward.



Figure 7: The algorithm by Fattal et al. [2002] (top) renders win-
dows panes of different brightness due to the local nature of the op-
timization procedure. The contrast compression on the multi-scale
contrast pyramid used in our method can maintain proper global
contrast proportions (bottom).

solution of the minimization problem for 1–5 Mpixel images can
take from several seconds up to half a minute to compute on a mod-
ern PC. This limits the application of the algorithm to off-line pro-
cessing. However, our solution is not much less efficient than multi-
grid methods (for example [Fattal et al. 2002]), since it solves the
linear problem simultaneously for low and high spatial frequencies,
and it is computationally much less expensive than some other gra-
dient methods (for example [Gooch et al. 2005]).

8 Conclusions and Future Work

In this paper we have presented a framework for image process-
ing operations that work in the visual response space. Our frame-
work is in many aspects similar to the gradient methods based on
solving Poisson’s equation, which prove to be very useful for im-
age and video processing. Our solution can be regarded as a gen-
eralization of these methods which considers contrast on multiple
spatial frequencies. We express a gradient-like representation of
images using physical and perceptual terms, such as contrast and
visual response. This gives perceptual basis for the gradient meth-
ods and offers several extensions from which these methods can
benefit. For instance, unlike the solution of Poisson’s equation, our

pyramidal contrast representation ensures proper reconstruction of
low frequencies and does not reverse global brightness levels. We
also introduce a transducer function that can give the response of
the HVS for the full range of contrast amplitudes, which is espe-
cially desired in case of HDR images. Some applications can also
make use of the contrast discrimination thresholds, which describe
suprathreshold performance of the eye from low to high contrast.
As a proof of concept, we implemented tone mapping inside our
framework as a simple linear scaling. The tone mapping was shown
to produce sharper images than the other contrast reduction meth-
ods. We believe that our framework can also find many applications
in image and video processing.

In the future, we would like to improve the performance of recon-
structing the image from the contrast representation, which would
make the framework suitable for real-time applications. We would
also like to include color information using a representation similar
to luminance contrast. The framework could be extended to han-
dle animation and temporal contrast. Furthermore, the accuracy of
our model can be improved for the threshold contrast if the Con-
trast Sensitivity Function were taken into account in the transducer
function. A simple extension is required to adapt our framework
to the task of predicting visible differences in HDR images: since
the response in our framework is in fact scaled in JND units, the
difference between response values of two images gives the map
of visible differences. One possible application of such HDR visi-
ble difference predictor could be the control of global illumination
computation by estimating visual masking [Ramasubramanian et al.
1999; Dumont et al. 2003]. Finally, we would like to experiment
with performing common image processing operations in the visual
response space.
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Figure 8: Comparison of the result produced by our contrast mapping (top left) and contrast equalization (top right) to those of Durand and
Dorsey [2002] (bottom left) and Fattal et al. [2002] (bottom right). Tahoma image courtesy of Greg Ward.

Figure 9: The linear rescaling of luminance in the logarithmic domain (left) compared with two proposed contrast compression methods:
contrast mapping (middle) and contrast equalization (right).


