
Interactive Reasoning in Uncertain RDF Knowledge Bases

Timm Meiser, Maximilan Dylla, Martin Theobald
Max Planck Institute for Informatics

Saarbrücken, Germany
tmeiser@mpi-inf.mpg.de, mdylla@mpi-inf.mpg.de, mtb@mpi-inf.mpg.de

ABSTRACT
Recent advances in Web-based information extraction have
allowed for the automatic construction of large, semantic
knowledge bases, which are typically captured in RDF for-
mat. The very nature of the applied extraction techniques
however entails that the resulting RDF knowledge bases may
face a significant amount of incorrect, incomplete, or even in-
consistent (i.e., uncertain) factual knowledge, which makes
query answering over this kind of data a challenge. Our
reasoner, coined URDF1, supports SPARQL queries along
with rule-based, first-order predicate logic to infer new facts
and to resolve data uncertainty over millions of RDF triplets
directly at query time. We demonstrate a fully interactive
reasoning engine, combining a Java-based reasoning back-
end and a Flash-based visualization frontend in a dynamic
client-server architecture. Our visualization frontend pro-
vides interactive access to the reasoning backend, including
tasks like exploring the knowledge base, rule-based and sta-
tistical reasoning, faceted browsing of large query graphs,
and explaining answers through lineage.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process

General Terms
Algorithms, Design, Management

Keywords
Uncertain RDF, Interactive Reasoning, Visualization

1. INTRODUCTION
A plethora of free semantic knowledge bases (including

DBpedia and its inter-linked data sources, KnowItAll [8],
ReadTheWeb [7] and YAGO [9, 19]) as well as commercial
endeavors (including FreeBase.com, TrueKnowledge.com,
Sig.ma, EntityCube, Wolfram Alpha, or Google Squared)

1http://urdf.mpi-inf.mpg.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

Figure 1: An exploration of the knowledge base
around the entity “Seattle, Washington”, showing
both base and derived facts.

have emerged out of a variety of Web-based information ex-
traction frameworks in recent years. Many of these projects
employ Wikipedia as common source for extraction, with
their techniques ranging from extracting contents of highly
structured infoboxes [8] to free-text information extraction
and natural language processing [7]. Due to the very na-
ture of the applied (unsupervised or semi-supervised) extrac-
tion techniques, but also due to the collaborative and partly
highly transient way in which Web sources like Wikipedia
evolve, the resulting knowledge bases may contain a signif-
icant amount of false or contradictory facts. On the other
hand, they often remain highly incomplete and may miss a
large amount of facts about real-world entities. As a poten-
tial remedy, the underlying extraction tools sometimes pro-
vide confidence values attached to the extracted facts. Yet
it remains far from obvious how to incorporate issues like
incompleteness, incorrectness, and inconsistency into an in-
teractive information system, in order to provide consistent
query answers over this type of uncertain data.

Our reasoning engine provides a SPARQL-compliant query
interface and employs Datalog-style, deductive grounding
techniques of first-order logical rules (Horn clauses). Specif-
ically, we distinguish between soft rules and hard rules for

http://urdf.mpi-inf.mpg.de

reasoning. Soft rules can be employed in a deductive fash-
ion to derive new facts from existing ones (including facts
derived from other deduction steps), or to reinforce the con-
fidence of existing base facts. Hard rules, on the other hand,
enforce additional consistency constraints among both base
and derived facts. The resulting logical dependencies among
base and derived facts are captured via Boolean lineage for-
mulas. Processing queries consists of two phases: 1) ground-
ing the query against the rules and base facts contained
in the knowledge base, and 2) a subsequent (propositional
or probabilistic) consistency reasoning step. All reasoning-
related computations—including grounding and consistency
reasoning—are handled by URDF at query time.

2. RELATED WORK
State-of-the-art RDF engines (see, e.g., [1, 11]) primar-

ily focus on conjunctive queries on top of a relational en-
coding of RDF data. These engines generally follow a de-
terministic data and query processing model and do not
have a notion of rule-based inference or uncertain reason-
ing. Approaches for managing uncertainty in the context
of probabilistic databases [3, 4, 5, 18, 17] focus on rela-
tional data with fixed schemata and often employ strong
independence assumptions among data objects (the “base
tuples”). ULDBs [4] provide a lineage-based representa-
tion formalism for probabilistic data, which has been shown
to be closed and complete under any combination of SQL
operators and across arbitrary levels of materialized views.
Here, the lineage (aka. “history” in [18] or “repair-key” op-
erator in [3]) of a derived tuple is captured as a Boolean
formula, which recursively unrolls the logical dependencies
from the derived tuple back to the base tuples. In probabilis-
tic databases, SQL is employed for formulating queries and
for defining views. SQL statements generally yield “hard”
Boolean constraints among tuples, but lack the notion of
“soft” dependencies among data items. Moreover, captur-
ing correlated tuples [16] with probabilistic graphical models
such as Bayesian Nets [6, 21] and Markov Random Fields [17]
is finding increasing attention also in the database commu-
nity. Also in the context of these graphical models, lineage
remains the key for a closed representation model [10].

Statistical Relational Learning (SRL) has been gaining
an increasing momentum in the machine learning, database,
and knowledge management communities recently. Markov
Logic Networks (MLNs) [14] are one of the most generic
approaches for combining first-order logic and probabilis-
tic graphical models. MLNs work by grounding a set of
first-order logical rules against a knowledge base, and by
sampling states (“worlds”) over a Markov network that rep-
resents the grounded (i.e., propositional) formulas. Markov
Logic however does not easily scale to very large knowledge
bases. Even the most efficient, recent database approaches
which adopt inference methods for probabilistic graphical
networks, such as [21], [12] or [22], are designed for batch
processing and are not well suited for interactive querying.

3. SYSTEM ARCHITECTURE
The reasoning backend is deployed under an Apache Tom-

cat Web server and accesses a PostgreSQL database which
captures the knowledge base. Our visualization frontend has
been developed under Adobe Flex to run via Flash in almost
any common Web browser, thus supporting a variety of oper-
ating systems (e.g., Windows, Linux, Android) and clients

(e.g., laptops, tablets). Using the Flex framework (via a
combination of ActionScript and MXML components), our
visualization follows a so-called Rich Internet Application
(RIA) architecture and delivers a desktop-like look-and-feel
in a regular browser. The data transfer between the visu-
alization frontend and the reasoning backend is handled by
the Adobe-specific data exchange service BlazeDS. This ser-
vice allows for a fast binary data exchange between server
and client via object serialization. Moreover, we integrate
the Flare2 visualization libraries for rendering graphs with
different layouts. An example graph, as it can be obtained
by exploring the YAGO [9, 19] knowledge base around the
entity “Seattle, Washington”, is depicted in Figure 1.

4. REASONING BACKEND
We adopt the common possible worlds [2] model as ba-

sis for our data model and for defining the semantics of
queries. Intuitively, every fact and first-order soft rule in
the knowledge base corresponds to a binary random vari-
able, which may hold in the knowledge base (i.e., be “true”)
with some marginal probability. Via soft and hard rules,
facts may be correlated with each other, such that rules
(when grounded) may impose intricate dependencies among
facts. In the following, we formally consider a knowledge
base KB = 〈F , C,S〉 as a triplet consisting of propositional
facts F , first-order soft rules C (clauses used for deduction),
and first-order hard rules S (strict consistency constraints).

Base Facts. We presume a set of RDF base facts Fdb ⊆
F to be contained as extensional knowledge in our database.
These facts are not derived from other facts and thus are
assumed as input (e.g., from an information extraction tool).
Base facts may be uncertain, i.e., every fact f ∈ Fdb has a
confidence weight w(f) ∈ [0, 1] attached, which corresponds
to a prior probability of this fact being true.

Soft Rules. To tackle the inherent incompleteness of Fdb ,
we also assume a set of soft deduction rules C as input to
our knowledge base. Just like base facts, soft rules may be
uncertain, i.e., they may hold only for a fraction of entities
in the real world, which is again reflected by a confidence
weight w(C) ∈ [0, 1] for each soft rule C ∈ C. Soft rules
have the shape of Datalog-style (but definite) Horn clauses.
They could state, for example, that“married couples usually
live at the same place”, with a confidence of 0.38 of being
correct, which we would write as follows:

livesIn(p1, loc1)← (1)

marriedTo(p1, p2) ∧ livesIn(p2, loc1) [0.38]

Grounding the rules in C over the facts Fdb results in new
intensional knowledge, which we denote by the set Fin ⊆
F . For intensional facts, we do not know their marginal
probabilities upfront, i.e., we need to compute their posterior
probabilities via lineage.

Hard Rules. The set of base and derived facts may
contain inconsistent information. For example, if we observe
two different birth dates for a person, clearly something went
wrong either during extraction or when reasoning with soft
rules. We can formally express such a consistency constraint
as follows:

(date1 = date2)← (2)

bornOn(p1, date1) ∧ bornOn(p1, date2)

2http://flare.prefuse.org

http://flare.prefuse.org

Figure 2: Dependency graph for the query “Where
does Bill Gates live, and where is this place located?”

In contrast to soft rules, hard rules (i.e., consistency con-
straints) have no intensional predicate as head literal and are
not used for deriving new facts. Consistency constraints ei-
ther have an arithmetic predicate (as above) or the constant
false as head literal.

Lineage. The reasoner employs SLD resolution for ground-
ing soft rules, while hard rules are not used for deduction
and thus are grounded separately (see [20] for details on the
grounding algorithm). Tracing lineage through SLD resolu-
tion resolves to capturing the logical dependencies of derived
facts back to the base facts. In analogy to [4, 17], we repre-
sent lineage of derived facts as Boolean formulas.

• Positive Lineage. SLD resolution with soft rules creates
positive lineage. We obtain conjunctive lineage whenever
we combine (ground) two or more positive literals that co-
occur in the body of a rule. We obtain disjunctive lineage
whenever two or more rules (including base facts) imply
the same derived fact.

• Negations. Hard rules offer a way to formulate negations
in order to constrain the set of possible worlds. A special
type of hard rules we consider in [20] partitions F into
disjoint sets of mutually exclusive facts. In this case, each
fact in such a “competitor set” may only be true if none
of the facts it is in conflict with are true.

Propositional Reasoning. In propositional reasoning,
we aim to find a truth assignment to facts in F that is con-
sistent with all hard rules. In [20], we present a constrained
and weighted MaxSAT solver that is specifically tailored to
the combination of soft and hard rules we consider in our
reasoning framework. It operates on a Boolean formula in
conjunctive normal form (CNF), which is constructed as a
conjunction of all clauses (including base facts, soft, and
hard rules) that are grounded in response to a query.

Probabilistic Reasoning. In contrast to propositional
reasoning, probabilistic reasoning does not consider only a
single consistent truth assignment to facts (i.e., one possible
world), but—at least conceptually—all consistent worlds. In
other words, the marginal probability of a derived fact f ∈
Fin is nothing else but the sum of probabilities of consistent
worlds (i.e., those that do not violate any hard rule), for
which the Boolean lineage formula of f evaluates to true. For
general lineage formulas, probabilistic inference is known to

Figure 3: Faceted browsing panel and a filtered ver-
sion of the graph of Figure 1.

be #P-complete. We thus employ Gibbs sampling or MC-
SAT (depending on the shape of the hard rules, see [13]) for
approximate inference when exact inference is intractable.

5. VISUALIZATION FRONTEND
Exploration Mode. This is our default visualization

mode. For entering a query, the user can switch between
a plain-text input field (to enter a SPARQL-style join pat-
tern) and a structured form field (to enter individual subject-
predicate-object patterns into predefined forms). When the
query is submitted, the reasoner is triggered, and a graph
containing all isomorphic embeddings of the query pattern
in the knowledge base (consisting of both base and derived
facts) is displayed. In addition, the complete dependency
graph of the query can be shown. The dependency graph
contains all facts that are relevant for answering the query,
including facts used for grounding the rules (see Figure 2).
The graph layouts in exploration mode correspond to entity-
relationship graphs, where the nodes represent the entities
in the knowledge base, and the edges represent RDF facts.
Edges are colored in green or red, according to the truth
value assigned to the facts by the MaxSAT solver. Different
alpha values for the edges visually encode the confidences
(in the range of [0, 1]) of the facts as they were computed
by the possible-worlds-based probabilistic model. The vi-
sualization frontend supports the radial and force-directed
layouts of Flare, which can both be customized in various
ways. Moreover, several options to control and interact with
the graph (such as panning and zooming) are supported. By
double-clicking on a node, we can dynamically load more
facts from the knowledge base in order to iteratively explore
the neighborhood of a particular entity. A possible result of
such an exploration is shown in Figure 1.

Faceted Browsing. The graphs displayed in exploration
mode can quickly grow fairly large. The faceted browsing
filter automatically extracts facets from the current graph by
grouping the facts along various dimensions. An example for
this functionality is depicted in Figure 3, where the user has
specified a filter on the predicates bornIn, isMarriedTo and
livesIn to restrict the graph of Figure 1, thus showing only
facts that match either one of those predicates.

Explanation Mode. By clicking on an edge (i.e., fact)
for which lineage is available, the visualization switches into

explanation mode. In this mode, the graph granularity
changes from an entity-relationship graph into a lineage graph,
where the nodes represent entire facts, and the edges denote
the logical dependencies among those facts. Additional con-
junction (AND) and disjunction (OR) nodes group outgoing
edges according to the logical dependencies among facts ob-
tained from the deductive grounding steps. Lineage may
not be cyclic, but it may form a DAG structure over the
grounded facts. For better readability, lineage DAGs are
flattened into trees, where a same fact may occur in mul-
tiple branches of the tree. Fact nodes are again colored in
green and red, according to the truth values assigned by the
MaxSAT solver. An example explanation tree rooted at the
fact livesIn(Bill Gates,Seattle, Washington) is shown in Fig-
ure 4. The upper OR node indicates that several derivations
for this fact exist. The second level of the expanded lineage
branch has been obtained from the same soft rule as shown
in Rule (1). Several sub-trees have been collapsed for better
readability (as indicated by the dots).

Comparison Mode. Finally, the comparison feature al-
lows for comparing the answers of any two subsequently ex-
ecuted queries, including changes obtained from updating
soft or hard rules. Nodes and edges, which are only con-
tained in the first answer set, are colored in black borders;
those contained in the second set are colored in white bor-
ders; and those shared by both sets have yellow borders.

6. DEMONSTRATION DESCRIPTION
Our demo currently runs interactively on the latest ver-

sion of the YAGO [9] knowledge base, consisting of more
than 10 million entities and more than 80 million facts about
these entities. To demonstrate all features of our inter-
active reasoning framework, we have prepared more than
10 SPARQL queries, ranging from single-literal queries like
“Who is Woody Allen married to?” to multi-join query pat-
terns which require intricate reasoning steps. The demo will
focus on queries and rules about people and locations (such
as universities and people’s advisors or alma maters, merged
with gazetteer data from geonames.org), as these domains
are particular strengths of YAGO. Following the scenario
shown in Figures 1–4, we start by showing the difference be-
tween results obtained from plain SPARQL-style query pro-
cessing in comparison to rule-based reasoning. We then iter-
atively explore the knowledge base around the initial result
entities, thus constantly growing the graph. As the informa-
tion displayed by the expanded graph becomes increasingly
cluttered, we can take advantage of the faceted browsing fil-
ter which provides a fine-grained control over the visualized
information. We finally demonstrate how the explanation
and comparison modes can be employed to effectively visu-
alize how rule updates affect the query answers. At all steps
of the demonstration, there will be ample opportunity for
the audience to propose new queries, update rules, and try
out different features of the reasoner.

7. REFERENCES
[1] D. J. Abadi, A. Marcus , S.R. Madden, and K. J. Hollenbach.

Scalable semantic web data management using vertical
partitioning. VLDB, 2007.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the
representation and querying of sets of possible worlds. Theor.
Comput. Sci., 78(1), 1991.

[3] L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing
incomplete information with probabilistic world-set
decompositions. ICDE, 2007.

Figure 4: Explanation tree for the derived fact
livesIn(Bill Gates, Seattle, Washington).

[4] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. VLDB, 2006.

[5] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and
D. Suciu. MYSTIQ: a system for finding more answers by
using probabilities. SIGMOD, 2005.

[6] H. C. Bravo and R. Ramakrishnan. Optimizing MPF queries:
decision support and probabilistic inference. SIGMOD, 2007.

[7] A. Carlson, J. Betteridge, R. C. Wang, E. R. H. Jr., and T. M.
Mitchell. Coupled semi-supervised learning for information
extraction. WSDM, 2010.

[8] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Web-scale
information extraction in KnowItAll. WWW, 2004.

[9] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham,
G. de Melo, and G. Weikum. YAGO2: Exploring and Querying
World Knowledge in Time, Space, Context, and Many
Languages. WWW, 2011.

[10] B. Kanagal and A. Deshpande. Lineage processing over
correlated probabilistic databases. SIGMOD, 2010.

[11] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for
RDF. PVLDB, 1(1), 2008.

[12] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: scaling up
statistical inference in Markov logic networks using an
RDBMS. PVLDB, 4(6), 2011.

[13] H. Poon, P. Domingos, and M. Sumner. A general method for
reducing the complexity of relational inference and its
application to MCMC. AAAI, 2008.

[14] M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 62(1-2), 2006.

[15] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage
for confidence computation in uncertain and probabilistic
databases. ICDE, 2008.

[16] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. ICDE, 2007.

[17] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and
exploiting rich correlations in probabilistic databases. VLDB
J., 18(5), 2009.

[18] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch,
J. Neville, and R. Cheng. Database support for probabilistic
attributes and tuples. ICDE, 2008.

[19] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO - A Large
Ontology from Wikipedia and WordNet. Elsevier Journal of
Web Semantics, 6(3), 2008.

[20] M. Theobald, M. Sozio, F. Suchanek, and N. Nakashole.
URDF: Efficient Reasoning in Uncertain RDF Knowledge
Bases with Soft and Hard Rules. Tech-Report
MPI-I-2010-5-002, 2010.

[21] D. Z. Wang, E. Michelakis, M. N. Garofalakis, and J. M.
Hellerstein. BayesStore: managing large, uncertain data
repositories with probabilistic graphical models. PVLDB, 1(1),
2008.

[22] M. L. Wick, A. McCallum, and G. Miklau. Scalable
Probabilistic Databases with Factor Graphs and MCMC.
PVLDB, 3(1), 2010.

	Introduction
	Related Work
	System Architecture
	Reasoning Backend
	Visualization Frontend
	Demonstration Description
	References

