
Top-k Query Processing in Probabilistic Databases
with Non-Materialized Views

Maximilian Dylla #1, Iris Miliaraki #2, Martin Theobald†3
Max Planck Institute for Informatics

Campus E1.4, 66123 Saarbrücken, Germany
{1mdylla,2miliaraki}@mpi-inf.mpg.de

† University of Antwerp
Middelheimlaan 1, 2020 Antwerp, Belgium

3 martin.theobald@ua.ac.be

Abstract—We investigate a novel approach of computing
confidence bounds for top-k ranking queries in probabilistic
databases withnon-materialized views. Unlike related approaches,
we present an exact pruning algorithm for finding the top-
ranked query answers according to their marginal probabilities
without the need to first materialize all answer candidates via
the views. Specifically, we consider conjunctive queries over
multiple levels of select-project-join views, the latter of which
are cast into Datalog rules which we ground in a top-down
fashion directly at query processing time. To our knowledge,
this work is the first to address integrated data and confidence
computationsfor intensional query evaluations in the context of
probabilistic databases by considering confidence bounds over
first-order lineage formulas. We extend our query processing
techniques by a tool-suite of scheduling strategiesbased on
selectivity estimation and the expected impact on confidence
bounds. Further extensions to our query processing strategies
include improved top-k bounds in the case whensorted relations
are available as input, as well as the consideration ofrecursive
rules. Experiments with large datasets demonstrate significant
runtime improvements of our approach compared to both exact
and sampling-based top-k methods over probabilistic data.

I. I NTRODUCTION

Managing uncertain data via probabilistic databases (PDBs)
has evolved as an established field of research in recent years,
with a plethora of applications ranging from scientific data
management, sensor networks, data integration, to knowledge
management systems [1]. Despite the polynomial runtime
complexity for the data computation step involved in finding
probabilistic answer candidates, confidence computationsfor
these answers are known to be #P-hard already for fairly
simple select-project-join (SPJ) queries [2], [3]. Thus, efficient
strategies for confidence computation and early pruning of
low-confidence query answers remain a key challenge for the
scalable management of uncertain data.

Recent work on efficient confidence computations in PDBs
has addressed this problem mainly from two ends, namely
by restricting the class of queries, i.e., by focusing on
safe query plans[2], or by considering a specific class of
tuple-dependencies, commonly referred to asread-once func-
tions [4]. Intuitively, safe query plans denote a class of queries
for which confidence computations can directly be coupled
with the relational operators and thus be performed by an
extensional query plan [1]. On the other hand, read-once for-

mulas denote a class of propositional lineage formulas which
can be factorized (in polynomial time) into a form where every
variable representing a database tuple appears at most once,
thus again permitting efficient confidence computations.

While safe plans focus on the characteristics of the query
structure, and read-once formulas focus on the logical depen-
dencies among individual data objects, top-k style pruning
approaches, which are the subject of this work, have recently
been proposed as an alternative way to address confidence
computations in PDBs [5], [6], [7]. These approaches aim
to efficiently identify the top-k most probable answers, us-
ing lower and upper bounds for their marginal probabilities,
without the need to compute the exact probabilities of these
answers. Suciu et al. [5], [7] addressed this by approximating
the probabilities of the top-k answers using Monte-Carlo-
style sampling techniques. Olteanu and Wen [6] have further
developed their idea of decomposing propositional formulas
for deriving confidence bounds based on partially expanded,
ordered binary decision diagrams (OBDDs) [8], which can
again be exploited by top-k algorithms for early candidate
pruning. In particular the latter top-k algorithm [6] can effec-
tively circumvent the need for exact confidence computations
and can still—in many cases—return the top-ranked query
answers in an exact way. However, as opposed to top-k
approaches in traditional DBs [9], [10], none of the former
saves upon the data computation step needed to find the answer
candidates. Thus, extensive data materialization is required for
queries with multiple nested subqueries or over multiple levels
of potentially convoluted views.

In this paper, we specifically focus on the case whenviews
are not materialized. We are aiming to identify the top-
ranked query answers, based on their marginal probabilities,
before all input tuples that would be needed to compute the
query answers in an exhaustive way have been seen by the
query processor. Following the line of works on intensional
query evaluation [1], [11], [12], [13], we employ lineage
formulas to capture the logical dependencies between query
answers and the input tuples that were employed to derive
these answers via the views. In contrast to all lineage models
known to us, which consider lineage as purely propositional
formulas [1], [14], and where each formula represents a single
query answer, we more generally introducefirst-order lineage

Directed
Director Movie p

t1 Coppola ApocalypseNow 0.8
t2 Coppola Godfather 0.9
t3 TarantinoPulpFiction 0.7

ActedIn
Actor Movie p

t4 Brando ApocalypseNow0.6
t5 Pacino Godfather 0.3
t6 TarantinoPulpFiction 0.4

WonAward
Movie Award p

t7 ApocalypseNowBestScript 0.3
t8 Godfather BestDirector0.8
t9 Godfather BestPicture 0.4
t10 PulpFiction BestPicture 0.9

Category
Movie Category p

t11 ApocalypseNowWar 0.9
t12 Godfather Crime 0.5
t13 PulpFiction Crime 0.9
t14 Inception Drama 0.6

ν1 : ∀X, Y KnownFor(X, Y) :– ∃Z BestDirector(X, Z),Category(Z, Y)
ν2 : ∀X, Y KnownFor(X, Y) :– ∃Z WonAward(Z, BestP icture),ActedOnly(X, Z),Category(Z, Y)
ν3 : ∀X, Y BestDirector(X, Y) :– Directed(X, Y),WonAward(Y, BestDirector)
ν4 : ∀X, Y ActedOnly(X, Y) :– ActedIn(X, Y),¬Directed(X, Y)

Fig. 1. A Movie Database and a Partially Grounded Lineage Formula for the QueryKnownFor(X,Crime)

formulas, where each formula may represent an entireset of
query answers. Our main observation is that each intermediate
step of query processing can be unambiguously described and
thus be captured by such a first-order lineage formula, which
is our key for combining data and confidence computations
in a probabilistic database setting. We illustrate this by the
following example.

Example 1:Fig. 1 depicts a probabilistic database that con-
sists of the extensional relationsDirected, ActedIn, Category,
and WonAward, as well as viewsν1–ν4 in Datalog notation
which define the intensional relationsKnownFor, BestDirector
and ActedOnly. (We explicitly show the variable quantifiers
in the views as they will be needed to construct the first-
order lineage formulas.) Viewν1, for example, expresses that
directors are known for a movie category if they occur in the
relation BestDirectortogether with a movie of that category.
Likewise, viewν2 expresses that actors are known for movies
that won a best picture award, but only if they appear together
in the ActedOnlyrelation. Fig. 1 also depicts a partially eval-
uated lineage formula for the queryKnownFor(X ,Crime)
over the views and base tuples of our example, thus asking
for directors or actorsX who are known forCrime movies.
As is shown by the figure, the lineage encodes a first-order
formula that captures an intermediate step of processing the
query via the views in a top-down fashion. Bothν1 and ν2

have only been partially resolved to their body literals (aka.
“subgoals” in Datalog terminology), but the remaining partof
the lineage is still unexplored.⋄

A. Contributions

• To our knowledge, our approach is the first to consider
integrated data and confidence computationsfor queries
that do not permit safe query plans and hence do not allow
for efficient extensional query evaluations [1], [2]. Thus,
early pruning of low-confidence answer candidates may
yield significantly reduced data computation and storage
costs in PDBs with non-materialized views.

• We present a generic bounding approach for confidence
computations overfirst-order lineageformulas. Our algo-
rithm provideslower and upper boundsfor the marginal

probability of an individual query answer, or for an entire
set of query answers if not all query variables are bound
to constants yet. We show that both our lower and upper
boundsconverge monotonicallyto the final confidences of
the query answers as we gradually expand these formulas.

• Our approach allows for plugging indifferent schedulers
which aim to select the subgoal (represented by a first-
order literal inside a lineage formula) that is most benefi-
cial for top-k pruning at each query processing step.

• We extend our algorithm for the case whensorted input
lists for extensional relations are available, and for adapting
our top-k pruning techniques torecursive rules.

• We present an extensive experimental evaluation and com-
parison to existing top-k pruning strategies in probabilistic
databases. In particular, we are the first to report an
improved runtime of our top-k algorithm in a probabilistic
database setting in comparison to full query evaluations in
a corresponding deterministic database setting.

II. COMPUTATIONAL MODEL

In this section, we introduce our data model, which fol-
lows the common possible-worlds semantics [15] over tuple-
independent probabilistic databases, along with the operations
we allow over this kind of uncertain data. Our computational
model builds upon (and thus is consistent with) prior work on
probabilistic databases [7], [16], [17], [18], and specifically
upon the one considered in the context ofuncertain databases
with lineage [12], [13], which is known to beclosed and
completeunder the common semantics of relational operations.

A. Probabilistic Database

We define atuple-independent probabilistic database with
viewsDB = (T ,V, p) as a triplet consisting of a set ofbase
tuples T , a set ofviews V, and aprobability measurep :
T → (0, 1] which assigns a probability valuep(t) to each
uncertain base tuplet ∈ T .1 As in a regular database, we
assume the set of base tuplesT to be partitioned into a set of

1Usually a PDB is defined as a probability distribution over possible
instances of the database. In the case of a tuple-independent PDB, this
distribution corresponds to the one defined by Equation (1).

extensional relations. The probability valuep(t) denotes the
confidence in the existence of the tuple in the database, i.e.,
a higher valuep(t) denotes a higher confidence int being
valid. Uncertainty of base tuples is modeled by associating
a Boolean random variableXt with each base tuplet ∈ T .
The case whenXt = true denotes the probabilistic event that
t is present in the probabilistic database. We assume globally
unique identifiers for base tuples. For convenience of notation,
and if it is clear from the context, we will uset to denote both
the identifier and the random variableXt associated witht.
Possible Worlds Semantics.A possible worldW ⊆ T is a
subset of base tuples inT . Since we assume independence
among all Boolean random variables associated with tuples,
the probability P (W) of a possible worldW is defined as
follows.

P (W) :=
∏

t∈W

p(t)
∏

t/∈W

(1 − p(t)) (1)

Intuitively, all tuples in W are valid (i.e., true) in the
possible worldW, whereas all tuples inT \W are false
(i.e., they are not contained inW). In the absence of further
constraints restricting the set of possible worlds, each subset
of base tuplesW ∈ 2T forms a valid possible world. Hence,
there are exponentially many such possible worlds.

B. Views

We represent a viewν ∈ V as a rule in Datalog notation.
HenceV together with the set of base tuples (aka. “facts”)
T is also called aDatalog program. We will denote the
deductive query processing steps applied for processing these
rules asdeductive grounding. Syntactically, a Datalog rule is a
disjunctive clause with a positive head literal and a conjunction
of both positive and negative literals in its body (see Fig. 1for
examples). The views’ head literals define a set ofintensional
relations. An intensional relation may be defined via multiple
rules; however, no extensional relation may occur as the head
literal of a rule. Variables occurring in the head literal are
universally quantified, while variables occurring only in the
body literals are existentially quantified (see, e.g.,ν1 andν2 in
Fig. 1). Following common Datalog conventions, each variable
that occurs in the head literal or in a negated body literal
must also occur in at least one of the positive body literals.
This form of safe Datalogprograms ensures that grounding
terminates, and the variables are properly bound to constants
after grounding the rules. For the rest of the paper, we will
use the termsview and rule interchangeably.

We remark that we do not focus on safe query plans [2], and
hence we do not pose any further restrictions on the views’
shape. Also, we note that this class of safe, non-recursive
Datalog programs with negation corresponds to the class of
queries expressible in unrestricted relational algebra (however
without grouping and aggregations) [19]. For any given in-
stance of non-recursive Datalog rules, the data complexityis
of polynomial time in the size of the base tuples [20].

C. Queries

We consider aqueryas a conjunction of first-order literals
whose arguments are tuples of constants and free (aka. “dis-

tinguished”) variables, which we will refer to as thequery
variables. Again, every variable occurring in a negated literal
must also occur in at least one of the non-negated literals.
Tuples of constants, which become bound to tuples of query
variables by the grounding procedure, yield the query answers.

D. Lineage

In contrast to base tuples, which are assumed to be inde-
pendent, a derived tuple is completely defined via (and thus
dependent of) the base tuples that were employed to derive that
tuple. Thus, when completely grounded against the base tuples,
we will refer to a derived tuplet directly via its propositional
lineage formulaφt.

As opposed to all probabilistic database approaches we are
aware of (see, e.g., [1], [12], [14]), which consider lineage
only in propositional form, we more generally allow lineage
to be a well-formed formulaΦ over a restricted class of first-
order predicate logic. Awell-formed lineage formulamay
incorporate the Boolean constantstrue and false, Boolean
connectives (∧, ∨, ¬), Boolean (random) variables denoting
tuplest ∈ T , existential quantifiers (∃), and first-order literals
of the formRγ(X̄). Following common Datalog terminology,
we refer to a first-order literalRγ(X̄) as asubgoal, whereR
denotes the relation name and̄X is a tuple consisting of both
constants and variables. Subgoals represent yet unexplored
(i.e., not yet grounded) parts of the lineage formula. We
employ adornmentsin the form of a superscriptγ to denote
which variables of a subgoal are bound or free.

As opposed to propositional lineage, a first-order lineage
formula is able to capture any intermediate step of a top-
down grounding procedure. If at least one query variable in a
first-order lineage formula is not yet bound to a constant, the
lineage formula represents a (potentially empty) set of query
answers. In the example in Fig. 1, the single query variable
X is not yet bound, and hence the lineage formula captures
all answers which can be obtained by bindingX to constants.

E. Deductive Grounding & Lineage

We next provide an inductive definition oflineage which
is obtained from grounding a subgoalRγ(X̄) over viewsV
and uncertain base tuplesT . The definition is based on two
rewriting rules which follow the general course of a top-
down grounding procedure. We choose top-down grounding
over bottom-up grounding [19] in order to be able to save
data computations, i.e., to avoid touching base tuples of lower
ranked answers whenever possible. In Section V, we provide
a grounding algorithm, based onSLD resolution[19], which
implements these two rewriting rules.
Rule (1) (Disjunctive Lineage)Let Rγ(X̄) be a subgoal, and
let X̄ be a tuple of constants and variables not bound inγ.
Then groundingRγ(X̄) over viewsV and base tuplesT yields
a disjunction over the lineages of base tuples or tuples derived

from views that unify withRγ(X̄).

Φ
(
Rγ(X̄)

)
:=

∨

ν (Φ(ν)) • if R is intensional
andhead(ν) of ν ∈ V
unifies withRγ(X̄)

∨

t Xt • if R is extensional
and t ∈ T unifies
with Rγ(X̄)

false • else

Rule (2) (Conjunctive Lineage)Let Rγ(X̄) be a subgoal, and
let X̄ be a tuple of constants and variables not bound inγ.
Further, let

ν : ∀X̄ ′ R(X̄0) :– ∃X̄ ′′ L1(X̄1), . . . , Ln(X̄n)

be a safe Datalog rule whose head literalR(X̄0) unifies
with Rγ(X̄), and let X̄0, . . . , X̄n be tuples of constants
and existentially quantified variables. Then groundingRγ(X̄)
againstν yields a conjunction over the lineages of literals
L1, . . . , Ln in the body ofν.

Φ(ν) := ∃X̄ ′′

(
∧

i=1,...,n

{
Φ

(
Rγ

i (X̄i)
)
• if Li = Ri

¬
(
Φ

(
Rγ

i (X̄i)
))

• if Li = ¬Ri

)

Query Processing.For a subgoalRγ(X̄) over an extensional
relation R, only Rule (1) applies. It replacesRγ(X̄) by
either a disjunction of Boolean variables representing base
tuples or by the constantfalse, if no such tuples exist (which
corresponds to the common “negation-as-failure” semantics
in Datalog [19]). If R is intensional, Rule (1) is utilized to
create a disjunction over all rules whose head literal unifies
with the subgoal. Then, the subsequent application of Rule (2)
results in a conjunction of literals in each such rule’s body,
where existential quantifiers over the variables that occurin
the rule’s body are added to the lineage. In SLD resolution,
this process is repeated by using the body literals of the rule
as new subqueries in the subsequent grounding steps.
Creating Query Answers. If a tuple of argumentsX̄ of
a subgoalRγ(X̄) becomes bound to one or more tuples
of constantsC̄1, . . . , C̄n, we distinguish two cases. First, if
Rγ(X̄) relates to a top-level query literal, then each distinct
tuple C̄i corresponds to a new query answer and its lineage
is copied correspondingly. Second, if̄X contains existentially
quantified variables, then these can be eliminated through a
standard quantifier elimination step [19]. In general, if the
bindings to a variableX in Φ are C1, . . . , Cn, then we
transformΦ into a disjunction of formulasΦ[X→Ci] as follows.

∃XΦ≡Φ[X→C1] ∨ · · · ∨ Φ[X→Cn] (2)

In this case, no new answers are introduced, but the quanti-
fier elimination results in a corresponding disjunction in the
lineage formula that is currently being processed.
Complete Lineage.In a non-probabilistic Datalog setting, it
is sufficient to find a single deductive proof for an answer
to show that this answer exists. In contrast, for Datalog rules
over probabilistic data,all such proofs over the given rules and
base tuples are required to correctly capture all the possible

worlds (and only those) for which a query answer exists. SLD
resolution yields this “all-proofs” semantics [21].

Example 2:For the queryKnownFor(X,Crime) over the
base tuples and views of Fig. 1, we observe that the head
literals of both ν1 and ν2 unify with this query literal.
Applying one step of SLD resolution along with the two
lineage rewriting rules, Rule (1) and (2), to the query literal
yields the following lineage formula (also depicted in Fig.1).

∃Z

(
BestDirector(X,Z)

∧ Category(Z,Crime)

)

∨

∃Z

WonAward(Z,BestP icture)
∧ ActedOnly(X,Z)

∧ Category(Z,Crime)

In the next two SLD steps, we resolve the two remaining inten-
sional subgoalsBestDirector(X,Z) and ActedOnly(X,Z)
via viewsν3 andν4, respectively.

∃Z

(
Directed(X,Z)

∧ WonAward(Z,BestDirector)

)

∧ Category(Z,Crime)

∨

∃Z

WonAward(Z,BestP icture)
∧ (Acted(X,Z) ∧ ¬Directed(X,Z))

∧ Category(Z,Crime)

Finally, by applying the first rewriting rule, Rule (1), to
the remaining extensional subgoals, we obtain the two
possible query answersKnownFor(Coppola,Crime) and
KnownFor(Tarantino,Crime) with lineages(t2 ∧ t8 ∧ t12)
and (t10 ∧ (t6 ∧ ¬t3) ∧ t13), respectively.⋄

F. Confidence Computations

For a propositional lineage formulaφ, let M(φ) be the
set of possible worlds (aka. “models”) satisfyingφ. Then, the
marginal probabilityP (φ) of a derived tuple (represented by
its propositional lineage formulaφ) is defined as the sum of the
probabilities of all the possible worlds for whichφ evaluates
to true.

P (φ) :=
∑

W∈M(φ)

P (W) (3)

We note that the above sum may range over exponentially
many terms because there are exponentially many possible
worlds. In fact, computingP (φ) is known to be#P-hard for
general propositional formulas [2], [3].

Alternatively, to avoid computing the sum of Equation (3),
we can compute marginals by incrementally decomposing the
propositional lineage formulas into variable-disjoint subfor-
mulas [8], [22]. Generally, for two propositional formulas
φ, ψ over disjoint sets of independent random variables, the
following relationships hold:

P (φ ∧ ψ) :=P (φ) · P (ψ) (4)

P (φ ∨ ψ) :=1 − (1 − P (φ)) · (1 − P (ψ)) (5)

P (¬φ) :=1 − P (φ) (6)

If the above principles are not directly applicable toφ and
ψ due to a shared variablet, this variable can be eliminated
by a Shannon expansion. This is based on the equivalence

φ ≡ (t ∧ φ[t→true]) ∨ (¬t ∧ φ[t→false])

whereφ[t→true] denotes the restriction ofφ to the case when
t is true, i.e., all occurrences oft in φ[t→true] are substituted
by the constanttrue. Then, it holds that:

P (φ) = P (t) P (φ[t→true]) + (1 − P (t)) P (φ[t→false]) (7)

Repeated Shannon expansions can increase the size of a
formula exponentially. This issue can be addressed to some
extent by incremental decompositions as shown in [22].

III. C ONFIDENCEBOUNDS

In this section, we develop lower and upper bounds for the
marginal probability of any query answer that can be obtained
from grounding a first-order lineage formula. We will proceed
by constructing two propositional lineage formulasφlow and
φup from a given first-order lineage formulaΦ. Then, the
confidences ofφlow and φup will serve as lower and upper
bounds on the confidences of all query answers captured by
Φ. More formally, if φ1, . . . , φn represent all query answers
we would obtain by fully groundingΦ, then it holds that:

∀i ∈ {1, . . . , n} : P (φlow) ≤ P (φi) ≤ P (φup)

Building upon results of [8], [22], [23], we next develop two
theorems, which (1) provide a mechanism for obtaining lower
and upper bounds for formulas with first-order literals, and
which (2) guarantee that these bounds converge monotonically
to the marginal probabilitiesP (φi) of each query answerφi

as we continue to groundΦ.

A. Bounds for Propositional Lineage

As a first step, we relate the confidence of two propositional
lineage formulasφ andψ via their sets of modelsM(φ) and
M(ψ), i.e., the sets of possible worlds over whichφ and ψ
evaluate totrue, respectively.

Proposition 1: Following [22], for two propositional lin-
eage formulasφ andψ, it holds that:

M(φ) ⊆ M(ψ) ⇒ P (φ) ≤ P (ψ)

That is, M(φ) includes all possible worlds for whichφ
evaluates totrue. Since we assumeM(φ) ⊆ M(ψ), the same
worlds satisfyψ as well. However, there might be more worlds
fulfilling ψ but notφ. This might yield more terms over which
the sum of Equation (3) ranges, and thus we obtainP (φ) ≤
P (ψ).

Example 3:Consider the two propositional formulasφ ≡
t1 and ψ ≡ t1 ∨ t2. From M(t1) ⊂ M(t1 ∨ t2) it follows
that P (t1) < P (t1 ∨ t2), which we can easily verify using
Equation (3).⋄
Conjunctive Clauses.To turn Proposition 1 into upper and
lower bounds, we proceed by consideringconjunctive clauses
in the form of conjunctions of propositional literals, where
Literals(φ) denotes the set of literals contained in a clause.

Proposition 2: Let φ, ψ be two propositional, conjunc-
tive clauses. It holds, thatM(φ) ⊆ M(ψ) if and only if
Literals(φ) ⊇ Literals(ψ) [22] .
The above statement expresses that adding literals to a con-
junction φ removes satisfying worlds fromM(φ).

Example 4:For the two clausest1∧ t2 andt1, it holds that
Literals(t1∧t2)⊇Literals(t1) and thusM(t1∧t2)⊆M(t1). ⋄
Disjunctive Normal Form. Moreover, we say that a proposi-
tional formulaφ is in disjunctive normal form(DNF), if it is
a disjunction of conjunctive clauses.

Lemma 1:For two propositional DNF formulasφ and ψ,
it holds that
M(φ) ⊆ M(ψ) ⇔ ∀φ′ ∈ φ ∃ψ′ ∈ ψ : M(φ′) ⊆ M(ψ′)

whereφ′ andψ′ are conjunctive clauses[22], [23] .
The lemma establishes a relationship between two formulas in
DNF. If we can map all clausesφ′ of a formulaφ to a clause
ψ′ of ψ with more satisfying worlds, i.e.,M(φ′) ⊆ M(ψ′),
then ψ has more satisfying worlds thanφ. This mapping of
clauses is established via Proposition 2.

Example 5:For the propositional DNF formulaφ ≡ (t1 ∧
t2)∨ (t1∧ t3)∨ t4, we can map each clause inφ to a clause in
ψ ≡ t1 ∨ t4. Hence,ψ has more models thanφ, i.e.,M(φ) ⊆
M(ψ). ⋄

Thus, Lemma 1 together with Proposition 1 enables us to
compare the marginal probabilities of propositional formulas
in DNF based on their clause structure.

Any propositional formula can equivalently be transformed
into DNF by iteratively applying De Morgan’s law and there-
after the distributive law.

Observation 1:If a variable t occurs exactly once in a
propositional formulaφ, then all occurrences oft in the DNF
of φ have the same sign.

The reason is that the sign of a variablet changes only by
using De Morgan’s law. However, when applying De Morgan’s
law, no variables are duplicated. When utilizing the distributive
law, variables are duplicated but preserve their signs.

B. Bounds for First-Order Lineage

Analogously to the DNF for propositional formulas, any
first-order formula can equivalently be transformed into prenex
normal form by pulling all quantifiers in front of the formula.
The remaining formula can again be transformed into DNF,
which is then called prenex DNF (PDNF). For our following
constructions on first-order formulas, we will assume the first-
order formulas to be given in PDNF. In general, such a
normalization may lead to an exponential increase of the size
of the formula. However, this construction is employed for
theoretical considerations only, and never actually needsto be
performed by the algorithms described in Section V.

Assume we are given a first-order lineage formulaΦR which
is in propositional form except for one subgoalRγ(X̄). We
also require the grounding ofRγ(X̄) (see Section II-D) to
yield only propositional terms, i.e., Boolean variables referring
to base tuples. Hence, we refer toφ1, . . . , φn as the proposi-
tional formulas, which we obtain by groundingRγ(X̄) in ΦR.

Following ideas for propositional lineage formulas from [24],
Theorem 1 provides bounds on eachP (φi) by means ofΦR.

Theorem 1:Given a first-order lineage formulaΦR, which
is in propositional form except for one subgoalRγ(X̄), and
propositional lineage formulasφ1, . . . , φn, which are obtained
from ΦR by groundingRγ(X̄).
We constructφup by substitutingRγ(X̄) with

• true if Rγ(X̄) occurs positive in the PDNF ofΦR, or

• false if Rγ(X̄) occurs negated in the PDNF ofΦR.

We constructφlow by substitutingRγ(X̄) with

• false if Rγ(X̄) occurs positive in the PDNF ofΦR, or

• true if Rγ(X̄) occurs negated in the PDNF ofΦR.

Then it holds that:
∀i ∈ {1, . . . , n} : P (φlow) ≤ P (φi) ≤ P (φup)

Proof: Choose an arbitrary but fixedi ∈ {1, . . . , n}.
W.l.o.g., we assumeΦR andφi to be in PDNF. The PDNF of
ΦR may consist of one or more clauses that containRγ(X̄),
which are either of the form(ψ ∧Rγ(X̄)) or (ψ ∧¬Rγ(X̄)).
For each of these clauses,φi may contain a number (due to
Equation (2)) of clauses of the form(ψ∧ϕ). Here, the literals
ϕ correspond to groundings ofRγ(X̄).

When substitutingRγ(X̄) by true or false as stated in
Theorem 1,ΦR’s clauses turn into(ψ∧ true) and(ψ∧ false)
for the upper and lower bounds, respectively. Subsequently,
considering the upper bound, we employ Proposition 2 which
yields M(ψ ∧ ϕ) ⊆ M(ψ ∧ true), sinceLiterals(ψ ∧ ϕ) ⊇
Literals(ψ ∧ true). Next, from Lemma 1 it follows that
M(φi) ⊆ M(φup). This matches exactly the precondition of
Proposition 1, from which we obtainP (φi) ≤ P (φup). The
case for the lower boundP (φlow) follows analogously.

Example 6:For the first-order lineage formula

ΦR ≡ t11 ∧ ∃XActedIn(Brando,X)

the upper bound is given byP (t11 ∧ true) = P (t11) =
p(t11) and the lower bound isP (t11 ∧ false) =
P (false) = 0. Thus, for any set of tuplest1, . . . , tn matching
∃X ActedIn(Brando,X), we haveφ ≡ (t11 ∧ (t1 ∨ · · · ∨ tn))
with 0 ≤ P (t11 ∧ (t1 ∨ · · · ∨ tn)) ≤ P (t11). ⋄

Since Rγ(X̄) has exactly one occurrence inΦR, all oc-
currences ofRγ(X̄) in the PDNF ofΦR have the same sign
(see Observation 1). Therefore, we replace all occurrencesof
Rγ(X̄) in the PDNF ofΦR by eithertrue or false.

More generally, for a general first-order lineage formula
Φ, which contains multiple distinct subgoals, we can apply
the substitution provided by Theorem 1 multiple times to
obtain these lower and upper bounds. That is, we replace every
occurrence of a subgoalRγ(X̄) in Φ by one application of
Theorem 1’s substitution to obtainφlow andφup of Φ.
Convergence of Bounds.Our last step is to show that, for
a fixed query answerφ (see Section II-E), the confidence
bounds converge monotonically to the marginal probabilityof
the propositional lineage formulaP (φ) with each SLD step.
The argument follows from the execution of the grounding
procedure, but backwards. In the following, letΦ1 denote the

original query, and letΦn correspond to the lineage formula
before the last grounding step, from which we obtain the final
propositional formulaφ.

Theorem 2:Let Φ1, . . . ,Φn denote a series of first-order
formulas obtained from iteratively grounding a conjunctive
query via SLD resolution. Then, rewriting eachΦi to φi,low

and φi,up according to Theorem 1 creates a monotonic se-
ries of lower and upper boundsP (φi,low), P (φi,up) for the
marginal probabilityP (φ). That is:

0 ≤ P (φ1,low) ≤ · · · ≤ P (φn,low) ≤ P (φ)
≤ P (φn,up) ≤ · · · ≤ P (φ1,up) ≤ 1

Proof: We prove the theorem by induction, wherei
denotes the number of grounding steps taken.
Basisi = n: P (φn,low) ≤ P (φ) ≤ P (φn,up) is covered by
one application of Theorem 1. That is, we have exactly one
occurrence of a subgoalRγ(X̄) in Φn, which we replace with
either true or false to obtainφn,low and φn,up , respectively,
such thatP (φn,low) ≤ P (φ) andP (φn,up) ≥ P (φ).
Stepi → i − 1: By the hypothesis, we are given a formulaΦi

with bounds characterized byP (φi,up) andP (φi,low).
Let us consider the grounding step which led toΦi. In Φi−1

a subgoalRγ(X̄) must have been processed from which we
obtainedΦi. Let Φi−1 ≡ Ψ Rγ(X̄) Ψ′, whereΨ, Ψ′ are a
prefix and suffix ofΦi−1. One step of groundingRγ(X̄) via
SLD resolution thus leads to the formulaΦi ≡ Ψ Φ′

i Ψ′,
where Φ′

i is a first-order formula that consists of one or
more subgoals or ground terms (including the constantstrue
and false). If we replace every occurrence ofRγ(X̄) in the
conjunctive clauses of the PDNF ofΦi−1 by Φ′

i, we obtain a
formula that is equivalent toΦi (but which is not necessarily
in PDNF), and whose clauses contain more terms than the
clauses inΦi−1 and hence are more specific. From this, it
follows that applying Theorem 1 to all subgoals in the actual
PDNF’s of Φi and Φi−1 yields propositional formulasφi,up

and φi−1,up, such thatM(φi,up) ⊆ M(φi−1,up). That is,
P (φi,up) ≤ P (φi−1,up). Again, the case for the lower bounds
P (φi,low) follows analogously.

IV. SUBGOAL SCHEDULING

We now present our scheduling techniques for determining
the benefit of exploring a particular subgoal. A major differ-
ence of Datalog to a traditional DB setting is the lack of a static
query plan. Instead, we aim todynamically and adaptively
determine the best join order among the literals in a rule’s
body at each grounding step. As in a deterministic setting,
we aim to ground subgoals with a low selectivity first. Given
our probabilistic setting, we moreover prioritize those subgoals
that also have a high impact on the confidence of the answers.

A. Selectivity Estimation

Selectivity estimation aims at computing how many answers
are expected from the database when a subgoal is expanded.
We employ a simple probabilistic model defined over both
the view structure and the extensional relations, with indepen-
dence assumptions for joins and unions. We will express this

by a functionS : Φ → [0, 1] that reflects the likelihood of
obtaining results whenΦ is grounded.

We recursively define theselectivity S(Φ) of a lineage
formula Φ involving only extensional subgoals of the form
Rγ(X̄) with binding patternγ and Boolean connectives∧, ∨
and¬ as follows:

S(Rγ(X̄)) := sγ
R if R is extensional

S(¬Φ) := 1 − S(Φ)
S(

∧n
i=1 Φi) :=

∏n
i=1 S(Φi)

S(
∨n

i=1 Φi) := 1 −
∏n

i=1 (1 − S(Φi))

Here,sγ
R denotes the selectivity of a subgoalRγ(X̄) over an

extensional relationR given the binding patternγ. To avoid
computingsγ

R for all constants that could possibly occur inγ,
we approximate it as follows. Given an extensional relationR,
we take the average amount of tuples inR that match the free
variables ofγ grouped by the constants in this set of tuples,
and divide this value by the size of the database|T |.

Example 7:Let us again consider the two intensional sub-
goalsBestDirector(X,Z) andActedOnly(X,Z) (with bind-
ing pattern γ1 = {Y = Crime}), which we obtain from
grounding the queryKnownFor(X,Crime) over viewsν1–ν4

in Fig. 1. After resolving the subgoals to extensional relations
via the views, selectivity estimation proceeds as follows.For
the selectivity ofBestDirector(X,Z), we obtain

S (BestDirectorγ1 (X ,Z))
= S (Directedγ2 (X ,Z) ∧ WonAwardγ2 (Z ,BestDirector))
= 3

14 · 4
3·14 ≈ 0.020

whereγ2 = {Y = Crime} and 3
14 results from the fact that

Directed returns3 tuples over a total of14 in the database
when none of the arguments are bound. Instead,WonAward
on average returns(1 + 1 + 2)/3 = 4/3 tuples (again over
a total of 14 in the database) when the second argument is
bound. For the selectivity ofActedOnly(X,Z), we obtain

S (ActedOnlyγ1 (X ,Z))
= S (Actedγ2 (X ,Z) ∧ ¬Directedγ2 (X ,Z))
= 3

14 · (1 − 3
14) ≈ 0.168

where againγ2 = {Y = Crime} and 3
14 results from the fact

that bothActed and Directed return 3 tuples over a total of
14 in the database when none of their arguments are bound.
Notice that the algorithm takes into account the propagation
of binding patterns fromγ1 to γ2 at the subsequent grounding
step via SLD resolution (see also Algorithm 2).⋄

B. Impact of Subgoals

In the next step, we aim to quantify the impact of the
confidencep(t) of a Boolean variablet on the marginal
probability P (φ) of a propositional formulaφ in which t
occurs. Later, the scheduler will exploit this to choose the
subgoal with the highest impact on the confidence bounds of
φ. Following results from [5], [25], this impact measure can
be captured by the following derivative.

∂P (φ)

∂p(t)
=

P (φ[t→true]) − P (φ[t→false])

1 − 0

Lemma 2:For a propositional formulaφ, if we fix the
confidences of all variables exceptt, it holds that

P (Φ) = c p(t) + c′

wherec andc′ are two constants that are independent ofp(t).
Proof: One step of Shannon Expansion ont results in:

φ≡ (t ∧ φ[t→true]) ∨ (¬t ∧ φ[t→false])

⇒

P (φ)=p(t) P (φ[t→true]) + (1 − p(t)) P (φ[t→false])

=p(t) (P (φ[t→true]) − P (φ[t→false]))
︸ ︷︷ ︸

c

+P (φ[t→false])
︸ ︷︷ ︸

c′

Thus, to compute the above derivative, it suffices to compute
c. A general first-order lineage formulaΦ, however, may
contain subgoals which makes the above sensitivity analysis
not directly applicable toΦ. Again, by substituting all subgoals
in Φ according to Theorem 1, we can quantify the impact of a
subgoalRγ(X̄) on both the upper and lower boundsP (φlow),
P (φup) in the corresponding propositional formulasφlow, φup

of Φ. That is, to quantify the impact ofRγ(X̄) on the upper
bound, we substitute all other subgoals to obtainφup and then
computec by substitutingRγ(X̄) once by the constanttrue
and once byfalse.

Example 8:Consider the first-order lineage formula
(
BestDirector(Coppola,Godfather) ∧ t12

)

∨

(
t9 ∧ ActedOnly(Coppola,Godfather)

∧Category(Godfather ,Crime)

)

with the subgoals BestDirector(Coppola,Godfather),
ActedOnly(Coppola,Godfather), andCategory(Godfather ,
Crime) (which corresponds to the first query answer of Ex-
ample 2). The impact ofBestDirector(Coppola,Godfather)
on the formula’s upper bound is calculated as:

1 − (1 − P (true) · p(t12))(1 − p(t9) · P (true) · P (true))−
(1 − (1 − P (false) · p(t12))(1 − p(t9) · P (true) · P (true)))

= 1 − (1 − 1 · 0.5)(1 − 0.4 · 1 · 1)−
(1 − (1 − 0 · 0.5)(1 − 0.4 · 1 · 1))

= 1 − 0.3 − (1 − 0.6) = 0.3 ⋄

C. Benefit-oriented Subgoal Scheduling

We now define the combinedbenefitof scheduling a subgoal
Rγ occurring in a lineage formulaΦ as

ben(Φ, Rγ) :=
|imup(Φ, Rγ)| + |im low (Φ, Rγ)|

1 + S(Rγ)

where imup(Φ, Rγ) and im low (Φ, Rγ) denote the impact of
Rγ on the upper and lower bound lineage formulas ofΦ we
obtain from Theorem 1. As an additional scheduling rule, we
always prefer intensional over extensional subgoals, if wehave
the choice among both types of subgoals, and we perform one
SLD step at a time to resolve the intensional subgoals. We
remark that, albeit this form of scheduling employs a fairly
simple form of selectivity estimation for joins and unions,it
can be applied also to recursive Datalog rules, which is an
extension of our data model we consider in Section VI-B.

V. TOP-K ALGORITHM

Our top-k algorithm primarily operates on the lineage
formulas of answer candidates. Specifically, subgoals from
all answer candidates are kept in a priority queueQ ordered
according toben, the benefit function described in Section IV.
Moreover, we maintain two disjoint sets of answer candidates
Atop and Acand . Following the seminal line of threshold
algorithms [9],Atop comprises the current top-k answers with
respect to the lower confidence bounds, whileAcand consists
of all remaining answer candidates whose upper confidence
bounds are still higher than the worst lower bound of any of
the top-k answers. As an additional constraint, the top-k set
Atop consists only of query answers whose lower bound is
greater than 0. This coincides with those answers, for which
all query variables have already been bound to constants by the
grounding procedure, i.e., those for which we have at least one
proof, but not necessarily all proofs yet. The candidate set, on
the other hand, may also hold answer candidates with a lower
confidence bound of 0, i.e., also those for which the query
variables are not yet bound to constants.

Algorithm 1 Top-k(V, T , Φq, k)
Input: Views V, uncertain tuplesT , an intensional queryΦq, and

an integer valuek
Output: Top-k answersAtop for Φq according to their lower confi-

dence bounds
1: Initialize a global priority queueQ with subgoals fromΦq

2: Atop := ∅ ⊲ Current top-k answers
3: Acand := {Φq} ⊲ Answer candidates
4: while Acand 6= ∅ do
5: min-k := minΦi∈Atop{P (φi,low), 0} ⊲ Thm. 1
6: max-cand:= maxΦi∈Acand

P (φi,up) ⊲ Thm. 1
7: if min-k > max-candthen
8: break
9:

`

Φbest, R
γ
best(X̄)

´

:=
arg max(Φi∈Atop∪Acand,Ri(X̄)∈Q)ben(Φi, Ri(X̄))

⊲ Eqn. IV-C
10: Φ := SLD(V, T , Φbest , R

γ
best(X̄)) ⊲ Alg. 2

11: UpdateAtop , Acand , andQ usingΦ

12: return Atop

A. Top-k with Dynamic Subgoal Scheduling

At each processing step, the scheduler chooses the currently
best subgoalRγ

best(X̄) from the subgoal queueQ (Line 9),
and, by using Algorithm 2, we expand the lineage formula
of this subgoal by performing a single SLD step over both
V and T (Line 10) as described in Section II-E. Then, we
updateAtop , andAcand (Line 11) due to the following. First,
expandingRγ

best(X̄) can change the confidence bounds of the
answer. Second, if there are no matches toRγ

best(X̄), neither in
T nor in V, the answer candidates corresponding toRγ

best(X̄)
may be deleted (and hence their lineage evaluates tofalse).
And third, if a query variable was bound to more than one
constant, one or more new top-k answer candidates are created.

We iteratively updateQ (Line 11) to keep the subgoals it
contains consistent withAtop and Acand . First, all subgoals
occurring in deleted answer candidates are dropped fromQ.

Next, we add all newly created subgoals (due to new answers
or the grounding of rules) toQ. Last, the impact of all subgoals
appearing in the same lineage formula asRγ

best(X̄) might
have changed (see Section IV-B), and hence their priority inQ
is updated. Algorithm 1 terminates when the threshold-based
breaking condition (Line 7) of the algorithm holds, or when
the candidate setAcand runs out of valid answer candidates.

B. SLD Resolution with Lineage Tracing

Algorithm 2 covers a single SLD step and is called as a
subroutine of Algorithm 1. During each SLD step, a subgoal
Rγ(X̄) is replaced by new subgoals obtained from grounding
the rules that defineRγ(X̄), such that an updated version of all
answers’ lineages that shareRγ(X̄) is returned. The algorithm
corresponds to Rules (1) and (2) introduced in Section II-E.

Algorithm 2 SLD(V, T ,Φ, Rγ(X̄))

Input: ViewsV, uncertain tuplesT , a first-order lineage formulaΦ,
a subgoalRγ(X̄) contained inΦ

Output: Updated lineage formulaΦ
1: if R extensionalthen
2: M := {(t, γu) | t andγ unify to γu}
3: else

4: M :=

(ν, γu)

˛

˛

˛

˛

ν = R′γ′

(X̄) :– body ∈ V, R = R′,
γ andγ′ unify to γu

ff

5: if M = ∅ then
6: ReplaceRγ(X̄) in Φ by false ⊲ Rule (1)
7: return Φ
8: for γ∗

u ∈ bindings(M) do
9: if γ∗

u binds new variables inγ then
10: Φ := expandΦ utilizing Eqn. (2)
11: L := Rγ∗

u(X̄) ⊲ Created in previous step
12: else
13: L := Rγ(X̄)

14: if R is extensionalthen
15: ReplaceL by

W

(t,γu)∈M,γu=γ∗

u
Xt ⊲ Rule (1)

16: else
17: B := {body | (R′γ′

(X̄):– body , γu)∈M , γu = γ∗
u}

18: for body ∈ B do
19: Propagateγ∗

u to bindings inbody’s literals
20: ReplaceL in Φ by

W

body∈B body ⊲ Rules (1),(2)

21: return Φ

If R is extensional, we collect all matching tuples inM
(Line 2). Otherwise, we gather all rules whose relationR′

coincides withR and whose bindingsγ′ unify with γ (Line 4).
Thus, the setM holds a pair consisting of both the rule and the
unified bindingsγu. If there are no matching rules or tuples,
that isM = ∅, we replace the subgoal byfalseand return the
alteredΦ (Line 7). The loop in Line 8 ranges over all different
bindings γ∗

u obtained from unifying the subgoal’s bindings
γ with the bindingsγ′ occurring in the head of a matching
rule. If γ∗

u binds more variables thanγ, then in Line 10 we
instantiate the quantifiers that hold the newly bound variables
according to Equation 2. Afterwards, the copyRγ∗

u(X̄) of
Rγ(X̄) is saved inL (Line 11). If Rγ∗

u matches tuples from
T , we replaceL in Φ by a disjunction of variablesXt in Line
15. OtherwiseL is substituted by a disjunction over the bodies

of all rules with headRγ∗

u (Line 20). For an illustration of the
algorithm, we refer the reader to Example 2.

C. Final Result Ranking

Many applications that employ top-k queries require a com-
plete ranking of the top-k answers. When Alg. 1 terminates,
the marginal probabilities of the top-k answers may however
not be known exactly—but only the bounds thereof. Similarly
to the strategies in [6], we can tackle this either by iteratively
running top-1,. . . , top-k queries, where an inspection of the
k answer sets yields the desired ranking, or by continuing
the grounding and decomposition steps until the confidence
bounds of the top-k answers do not overlap anymore.

VI. EXTENSIONS

A. Sorted Input Relations

A powerful technique in top-k approaches for extensional
data [9], [10], [26] is to store each relation in decreasing order
of local ranks and to use the rank at the current scan position
as an upper bound for the ranks of all remaining tuples. Along
with a monotonic score aggregation function, this allows for
the computation of monotonically decreasing upper bounds of
answer candidates. In our setting, we rank query answers by
their marginal probabilities which generally does not resolve
to such a monotonic form of score aggregation. However, an
extensional relationR may still contain a large amount of
tuples that unify with a subgoalRγ(X̄). For example, for the
top-2 answers ofDirected(X,Y) in Fig. 1, we could return
only t1 and t2 if Directed is sorted in decreasing order of
p(ti). In Theorem 1, we replaced a subgoalRγ(X̄) by true (or
falseif the subgoal is negated) to obtain an upper bound for the
lineage formula containingRγ(X̄). This corresponds to using
1 as a conservative upper bound forRγ(X̄), sinceP (true) =
1. According to the following observation, we can lower this
upper bound for a subgoal over an extensional relation by
exploiting this decreasing order of local ranks.

Observation 2:Let R be an extensional relation with tuples
sorted in decreasing order ofp(ti), let Rγ(X̄) be a subgoal
over R, and let t1, . . . , tm be tuples inR that unify with
Rγ(X̄). Then, when groundingRγ(X̄), we can set the upper
confidence bound of each tupletj ∈ R, with i < j ≤ m, to
min{p(t1), . . . , p(ti)}, if and only if all unbound variables of
Rγ(X̄) are query variables and there exist no data duplicates
in R with respect toRγ(X̄).

The key for this observation is that binding a query variable
yields a new query answer, while binding existentially quan-
tified variables introduced by a rule results in a disjunction
in the lineage formula due to a quantifier elimination. This
disjunction may result in a higher confidence than that of the
individual input tuples due to Equation (5). For example, if
two independent tuplest1, t2 with a confidence of0.5 each
match a single subgoal with non-query variables, then we
obtain 1 − (1 − 0.5) · (1 − 0.5) = 0.75 > 0.5. Thus, using
an upper bound of0.5 would be incorrect. Also notice that
this strategy assumesR not to contain any data duplicates
with regard toRγ(X̄). If necessary, we can enforce this by

applying an independent-project operation [1] to the relation
as a preprocessing step (for all required projections ofR).

B. Recursive Rules

In this subsection, we develop an algorithmic extension for
handling rules with recursively defined intensional relations.
To ensure a safe semantics for the deductive grounding steps,
we require the set of recursive rulesV to bestratifiable [19].
That is, it is not allowed to deduce a tuple from its own
negation. Stratifiability is a pure syntactic check on the rule
structure and can be done prior to query processing. We
remark that the combined complexity (in terms of the size
of both the data and the rules) for Datalog programs with a
single, recursive, non-linear rule is known to be EXPTIME-
complete [20]. Although we cannot improve upon this worst-
case bound, we argue that top-k pruning may also help to
improve the runtime for many recursive queries in practice.

Recursion poses a challenging problem for any grounding
algorithm. In our setting, the lineage formula of an answer
could grow infinitely large if a cycle arises within the rules.
Thus, we develop a theorem ensuring the finiteness of a lineage
formulaΦ, without altering the possible worlds that satisfyΦ.
We formally define acycle to be a subgoalRγ(X̄) whose
SLD expansion results in a formulaΦ containing subgoals
Rγ1(X̄1), . . . , Rγn(X̄n), such that (γ1, X̄1), . . . , (γn, X̄n)
bind or contain the same constants as(γ, X̄), but the names
of the unbound variables in thēXi’s may differ.

Theorem 3:Let Φ = ΨRγ(X̄)Ψ′ be a lineage formula
and let the expansionΦex (Rγ(X̄)) of Rγ(X̄) yield the cycle
ΨΦex (Rγ(X̄))Ψ′. Then it holds that:

ΨΦex (Rγ(X̄))Ψ′ ≡ ΨΦex (Φex (Rγ(X̄)))Ψ′

In other words, expanding a cycle more than once does not
change the validity of a lineage formula, which agrees with
earlier results in the context of probabilistic Datalog [27].

Proof: W.l.o.g., we assume all formulas to be in prenex
form. Furthermore, letΦ′ ∨

∨

i(Φ
′′
i ∧ Rγ(X̄)) be the DNF

of Φex (Rγ(X̄)). That is Φ′ is a DNF formula,Φi are con-
junctions of literals and both do not containRγ(X̄). Due
to stratification,Rγ(X̄) must occur positively in the above
formula. Now, we can rewriteΨΦex (Φex (Rγ(X̄)))Ψ′ through
the following series of algebraic transformations:

ΨΦex (Φex (Rγ(X̄)))Ψ′

≡ ΨΦ′ ∨
W

i(Φ
′′
i ∧ (Φ′ ∨

W

j(Φ
′′
j ∧ Rγ(X̄))))Ψ′

≡ ΨΦ′ ∨
W

i(Φ
′′
i ∧ Φ) ∨

W

i,j(Φ
′′
i ∧ Φ′′

j ∧ Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
W

i,j(Φ
′′
i ∧ Φ′′

j ∧ Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
W

i(Φ
′′
i ∧ Φ′′

i ∧ Rγ(X̄)) ∨
W

i6=j(Φ
′′
i ∧ Φ′′

j ∧ Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
W

i(Φ
′′
i ∧ Rγ(X̄)) ∨

W

i6=j(Φ
′′
i ∧ Φ′′

j ∧ Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
W

i(Ψ
′′
i ∧ Rγ(X̄))

≡ ΨΦex (Rγ(X̄))Ψ′

This again yields the form of the first expansion ofRγ(X̄).

In our implementation of SLD resolution with dynamic
subgoal scheduling, we block those subgoals that form the
root of a cycle in our priority queue. If all subgoals in the
lineage formula of an answer are blocked, no new results can
be obtained, and we replace their lineages byfalse.

(a) Safe vs. unsafe queries (b) Performance factors (c) Confidence distributions

(d) Subgoal scheduling (e) Recursive rules (f) Table materialization

ProbTop-10ProbTop-20ProbTop-50
Q1 32.8% 43.8% 76.3%
Q2 17.5% 28.5% 60.6%
Q3 0.001% 0.001% 0.001%
Q4 0.2% 0.2% 0.2%
Q5 14.6% 23.2% 48.4%
Q6 21.9% 35.1% 74.8%
Q7 8.7% 14.1% 30.0%
Q8 23.7% 36.9% 74.9%

(g) Percentage of base tuples scanned

Fig. 2. Experiments

VII. E XPERIMENTS

We performed our experiments on an 8-core Intel Xeon 2.4
GHz with 48 GB of RAM. Our probabilistic top-k algorithm
(coined ProbTop-k) is implemented in Java and utilizes a
PostgreSQL DB as storage backend. We employ two well-
known PDB engines for comparison purposes,MayBMS2 and
Trio3, both computing all answers and their probabilities.
Additionally, we implemented the multi-simulation algorithm
of [5], which we refer to asMultiSim. We also include
comparisons against a purely deterministic DB, denoted as
PostgreSQL, by storing confidence values in all relations but
omitting the actual confidence computations. ThePostgreSQL
baseline thus serves also as a lower bound for any proba-
bilistic top-k approach, including [5], [6], that requires full
data materialization (and lineage tracing for intensionalquery
evaluations).

A. Data Sets, Confidence Distributions, and Queries

We use two different datasets based on IMDB and YAGO.
The IMDB movie dataset consists of the6 relationsdirected,
acted, edited, produced, written, and hasCategorysumming
up to 26 · 106 tuples. Since this data is deterministic, we
sample confidence values from three synthetic distributions,
namelyuniform, Gaussian, andexponentialto instantiate our
probabilistic relations. Our second dataset is derived from
the YAGO [28] knowledge base with132 · 106 tuples, where
we also sample confidences using a uniform distribution. We
consider 15 different query patternsQ1–Q15, which we each

2MayBMS: http://maybms.sourceforge.net/
3Trio: http://infolab.stanford.edu/trio/

instantiate into up to 1,000 individual queries by inserting ran-
domly chosen constants into the query literals, each ensuring at
least50 answers.4 We report average runtimes over warm disk
caches by running each query 4 times in a row, and report the
average runtime of the latter 3 runs. For presentation purposes,
we depict runtimes of only up to 100 seconds for all systems.

B. Results

Safe vs. Unsafe Queries.We first focus on four established
query classes [1], [2], [6] in PDBs, namelynon-repeating
hierarchical, repeating hierarchical, non-repeating head-hie-
rarchical, and general unsafequeries, which are represented
by query patternsQ1, Q2, Q3 andQ4, respectively. Only the
first class is guaranteed to yield safe query plans while the
latter are unsafe. Each query pattern is instantiated into 1,000
different queries. The run-times for the IMDB dataset with
uniform confidences are shown in Fig. 2(a). Additionally, the
table in Fig. 2(g) depicts the fraction of base tuples our top-k
approach reads in comparison to the number of base tuples
necessary for computing all answers. For the non-repeating
hierarchical queries (Q1), our top-k approach outperforms all
systems including the deterministic one. We mainly benefit
because by far not all base tuples need to be scanned, and con-
fidences can be computed extensionally.Q2 contains repeated
relations and the gains in data computations are partially
diminished by the Shannon expansions needed for computing
the bounds.Q3 includes expensive data computations caused
by a subquery that is shared among all answers. Since the

4All details on the query patterns and views can be found in [29].
Q12 andQ13 have been omitted due to space constraints.

http://maybms.sourceforge.net/
http://infolab.stanford.edu/trio/

subquery is not required to rank the results, our approach
reads only very few base tuples (Fig. 2(g)). Here, our top-
k algorithm successfully terminates and even outperforms
the deterministicPostgreSQLbaseline.Q4 contains both a
subquery with expensive confidence computations as well as
a subquery with major data computations. However, we can
prune answers even before the expensive subqueries are fully
evaluated.

Performance Factors.We next highlight the different fac-
tors that impact how our top-k approach performs against the
competitors. Fig. 2(b) depicts runtimes on the IMDB dataset
for four additional query patternsQ5, Q6, Q7, andQ8, which
are again instantiated into1, 000 queries each.Q5 yields
exactly one proof for each answer candidate and no pruning
in terms of omitting a proof is possible for ProbTop-k. Also,
the proof involves an existentially quantified variable which
limits the use of sorted input lists. As a result, our system
computes most answers andMayBMS’s bottom-up grounding
and confidence computation of all answers is much more
efficient. In Q6, the possibility of three proofs per answer
enables pruning and the lack of existential quantifiers putsour
approach in favor of the others.Q7 is a join of two existential
relations and shows where sorted input lists can provide a
significant performance gain. Finally, inQ8 each answer has
up to three proofs, however the joined relations overlap and
thus require Shannon expansions. Since we repeatedly invoke
these expansions to determine the bounds, the advantages of
top-k pruning even out with the competitors.

Confidence Distributions.We so far focused on a uniform
distribution of confidences. We now explore how different
distributions can affect our performance by comparing uni-
form, Gaussian, and exponential. Fig. 2(c) shows the results
for a join query on two existential relations over IMBD. As
k grows, uniform yields the highest increase in runtime while
exponential has the slowest grow, since only few tuples have
high confidences. Gaussian shows a jump atk = 40 as more
answer candidates with similar probabilities are found.

Subgoal Scheduling.In Fig. 2(d), we evaluate our schedul-
ing techniques based on selectivity estimation (Sel.) and im-
pact (Imp.). Our first baseline for dynamic subgoal scheduling,
called “most-bound-first” (MBF) (aka. “bound-is-easier” [19]),
chooses the subgoal with the maximum number of arguments
bound at each SLD grounding step. For the second baseline,
we obtained PostgreSQL’s static query plan for these query
patterns and forced our system to adhere to this plan (denoted
as Postgres’ Plan). Using the YAGO dataset, the three query
patternsQ9, Q10, andQ11 were instantiated by 100 constants
each. We order the query patterns by increasing nesting depth
of their subqueries, such thatQ9, Q10, andQ11 come with
nesting depths of 1, 2, and 3, respectively. ForQ9, MBF
is outperformed by bothPostgres’ Planand our scheduler
using selectivity estimates (Sel.). Here, adding the impact
calculations to the selectivity estimation does not yield any
performance gains, but even results in slight losses. However,
when moving to the higher nesting depths ofQ10 and Q11,
the impact calculations start improving the performance ofthe

selectivity and impact based scheduler.
Recursive Rules.Fig. 2(e) depicts how our top-k approach

performs over the YAGO data set using the recursive query
patternsQ14 andQ15, which were instantiated to50 queries
each. We also include the runtime for afull grounding ap-
proach corresponding to an SLD grounding algorithm with
lineage tracing, but without any confidence computations.Q14
computes ancestors of persons utilizing thehasChildrelation,
whereasQ15 asks for politicians of nations by transitively
following the hasSuccessorrelation. For Q14, the runtime
increases withk, since more ancestors being generations away
from the queried person have to be computed. ForQ15 our
top-k algorithm takes the same amount of time for allk’s,
since more than10 politicians are known per country and are
ranked in the top-10 results. For the full grounding, the lineage
computation of all answers becomes very expensive.

Table Materialization. Last, we compare our top-k ap-
proach against a full materialization of all answers performed
by both MayBMS and PostgreSQL. We focus on howk
affects runtime. The query asks for directors of comedies
(a join between theDirected and hasCategoryrelations with
uniform confidences). Our top-k system computes the top-
ranked answers for differentk’s. In contrast,MayBMS and
PostgreSQLfully materialize a table containing all results
(PostgreSQLignores the confidence computation). Whenk is
below 50, our top-k approach outperforms the others, but for
larger values, the bookkeeping overhead starts dominating.

VIII. R ELATED WORK

The increasing amount of uncertain data that has become
available practically at Web-scale has driven the development
of various PDB engines in recent years, including systems like
MystiQ [7], Trio [12], MayBMS [16], Orion [18], PrDB [30]
and SPROUT [17]. Works on intensional query evaluation such
as [1], [11], [12], [13], [14] capture the lineage of derived
tuples as propositional formulas and have been shown to be
closed and complete under the relational model. To cope with
the challenge of confidence computations, recent work has
concentrated on exploitingsafe query plans[2] and read-once
formulas [4]. In [2], Dalvi and Suciu define a dichotomy of
query plans for which confidence computations can be done
either in polynomial time or are #P-hard.

As an alternative way of addressing confidence computa-
tions in PDBs, top-k style pruning approaches [5], [6], [26],
[31], [32] have also been proposed. In relational DBs, the
most influential work for extensional data still is given by
the family of threshold algorithms by Fagin et al. [9]. A
comprehensive survey of top-k queries for relational DBs
is found in [10]. Most top-k approaches in the context of
PDBs consider separate numerical attributes for capturingthe
confidence and the score of tuples, where usually only the
latter is used for ranking. Soliman et al. [31] were the first to
discuss the different semantics, under which one can interpret
uncertain top-k queries, and thus definedU-topK queries and
U-kRanksqueries. Recently, Ge et al. [32] studied the tradeoffs
between reporting tuples of a high score and tuples of a high

probability, while Li et al. [26] proposed a unified ranking
approach by considering both the scores and the confidences.

Very few works however consider top-k ranking by the
marginal probabilities of query answers. Ré et al. [5] compute
the top-k answers using MCMC-style sampling techniques.
Recently, Olteanu and Wen [6] have further developed the idea
of decomposing propositional formulas for deriving bounds
based on a combination of partially expanded OBDDs and
shared query plans, which can be exploited by top-k al-
gorithms for early candidate pruning. While our bounding
approach for propositional formulas is related to [6], we more
generally consider bounds for first-order lineage formulas, thus
having a focus on the case when views are not materialized.
In [33], static probability thresholds are incorporated into the
query algebra, allowing for early pruning of low confidence
tuples. However, their approach does not support full relational
algebra with duplicate elimination. For computing bounds on
confidences of lineage formulas, there are four major works
[8], [22], [23], [24], which we build upon for the propositional
lineage case. However, we found the consideration of first-
order lineage formulas to be a key to also incorporate pruning
techniques known from managing extensional data [9] into
a PDB setting. Very recently, MarkoViews [34] have been
proposed, which allow for encoding complex tuple correlations
via views and provide an interesting translation from Markov
Logic Networks [35] to unions of conjunctive queries [1] over
a tuple-independent PDB for query evaluation.

IX. CONCLUSIONS

We presented efficient processing strategies for probabilistic
top-k queries which lie at the intersection of probabilistic
databases and probabilistic Datalog. Our approach does not
assume safe query plans nor read-once lineage formulas, and
it is able to return the exact top-k answers according to their
marginal probabilities in many cases when exact confidence
computations for these answers are intractable. Moreover,by
focusing on non-materialized views, our pruning strategies can
effectively help to avoid extensive data materialization and
thus can contribute to significantly reduced data computation
and storage costs. Extensions of our framework allow us to
adopt top-k pruning strategies and sequential access patterns
known from managing extensional data, and they even help to
improve the runtime for recursive rules. In future work, our
methods could be combined with techniques from [6], which
we expect to enable even better performance gains.

REFERENCES

[1] D. Suciu, D. Olteanu, C. Ŕe, and C. Koch,Probabilistic Databases,
ser. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2011.

[2] N. Dalvi and D. Suciu, “The dichotomy of conjunctive queries on
probabilistic structures,” inPODS, 2007, pp. 293–302.

[3] D. Roth, “On the hardness of approximate reasoning,”Artif. Intell.,
vol. 82, pp. 273–302, 1996.

[4] P. Sen, A. Deshpande, and L. Getoor, “Read-once functions and query
evaluation in probabilistic databases,”PVLDB, vol. 3, no. 1, pp. 1068–
1079, 2010.

[5] C. Ré, N. Dalvi, and D. Suciu, “Efficient top-k query evaluation on
probabilistic data,” inICDE, 2007, pp. 886–895.

[6] D. Olteanu and H. Wen, “Ranking query answers in probabilistic
databases: Complexity and efficient algorithms,” inICDE, 2012, pp.
282–293.

[7] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu,
“MYSTIQ: a system for finding more answers by using probabilities,”
in SIGMOD, 2005, pp. 891–893.

[8] R. Fink and D. Olteanu, “On the optimal approximation of queries using
tractable propositional languages,” inICDT, 2011, pp. 174–185.

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,”J. Comput. Syst. Sci., vol. 66, no. 4, pp. 614–656, 2003.

[10] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,”ACM Comput.
Surv., vol. 40, pp. 11:1–11:58, 2008.

[11] N. Fuhr, “Probabilistic Datalog - a logic for powerful retrieval methods,”
in SIGIR, 1995, pp. 282–290.

[12] O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, andJ. Widom,
“Databases with uncertainty and lineage,”VLDB J., vol. 17, no. 2, pp.
243–264, 2008.

[13] A. D. Sarma, M. Theobald, and J. Widom, “Exploiting lineage for
confidence computation in uncertain and probabilistic databases,” in
ICDE, 2008, pp. 1023–1032.

[14] P. Buneman and W. C. Tan, “Provenance in databases,” inSIGMOD,
2007, pp. 1171–1173.

[15] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation and
querying of sets of possible worlds,”Theor. Comput. Sci., vol. 78, no. 1,
pp. 159–187, 1991.

[16] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast and simple
relational processing of uncertain data,” inICDE, 2008, pp. 983–992.

[17] D. Olteanu, J. Huang, and C. Koch, “Sprout: Lazy vs. eager query plans
for tuple-independent probabilistic databases,” inICDE, 2009, pp. 640–
651.

[18] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and
R. Shah, “Orion 2.0: native support for uncertain data,” inSIGMOD,
2008, pp. 1239–1242.

[19] S. Abiteboul, R. Hull, and V. Vianu,Foundations of Databases.
Addison-Wesley, 1995.

[20] G. Gottlob and C. H. Papadimitriou, “On the complexity of single-rule
datalog queries,”Inf. Comput., vol. 183, no. 1, pp. 104–122, 2003.

[21] A. Kimmig, G. V. den Broeck, and L. D. Raedt, “An algebraic Prolog
for reasoning about possible worlds,” inAAAI, 2011.

[22] D. Olteanu, J. Huang, and C. Koch, “Approximate confidence compu-
tation in probabilistic databases,” inICDE, 2010, pp. 145–156.

[23] Y. Sagiv and M. Yannakakis, “Equivalences among relational expres-
sions with the union and difference operators,”J. ACM, vol. 27, pp.
633–655, 1980.

[24] R. Fink, D. Olteanu, and S. Rath, “Providing support forfull relational
algebra in probabilistic databases,” inICDE, 2011, pp. 315–326.

[25] B. Kanagal, J. Li, and A. Deshpande, “Sensitivity analysis and explana-
tions for robust query evaluation in probabilistic databases,” inSIGMOD,
2011, pp. 841–852.

[26] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking in
probabilistic databases,”PVLDB, vol. 2, no. 1, pp. 502–513, 2009.

[27] T. Rölleke and N. Fuhr, “Probabilistic reasoning for large scale
databases,” inBTW, 1997, pp. 118–132.

[28] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core ofsemantic
knowledge,” inWWW, 2007, pp. 697–706.

[29] M. Dylla, I. Miliaraki, and M. Theobald, “Top-k query processing in
probabilistic databases with non-materialized views,” Research Report
MPI-I-2012-5-002, 2012.

[30] P. Sen, A. Deshpande, and L. Getoor, “PrDB: managing and exploiting
rich correlations in probabilistic databases,”VLDB J., vol. 18, no. 5, pp.
1065–1090, 2009.

[31] M. Soliman, I. Ilyas, and K. Chen-Chuan Chang, “Top-k query process-
ing in uncertain databases,” inICDE, 2007.

[32] T. Ge, S. B. Zdonik, and S. Madden, “Top-k queries on uncertain data:
on score distribution and typical answers,” inSIGMOD, 2009, pp. 375–
388.

[33] Y. Qi, R. Jain, S. Singh, and S. Prabhakar, “Threshold query optimization
for uncertain data,” inSIGMOD Conference, 2010, pp. 315–326.

[34] A. Jha and D. Suciu, “Probabilistic databases with MarkoViews,” to
appear in PVLDB 2012.

[35] M. Richardson and P. Domingos, “Markov Logic Networks,”Machine
Learning, vol. 62, no. 1-2, pp. 107–136, 2006.

	Introduction
	Contributions

	Computational Model
	Probabilistic Database
	Views
	Queries
	Lineage
	Deductive Grounding & Lineage
	Confidence Computations

	Confidence Bounds
	Bounds for Propositional Lineage
	Bounds for First-Order Lineage

	Subgoal Scheduling
	Selectivity Estimation
	Impact of Subgoals
	Benefit-oriented Subgoal Scheduling

	Top-k Algorithm
	Top-k with Dynamic Subgoal Scheduling
	SLD Resolution with Lineage Tracing
	Final Result Ranking

	Extensions
	Sorted Input Relations
	Recursive Rules

	Experiments
	Data Sets, Confidence Distributions, and Queries
	Results

	Related Work
	Conclusions
	References

