
Efficient Querying and Learning in

Probabilistic and Temporal Databases

Maximilian Dylla

Thesis for obtaining the title of Doctor of Engineering
of the Faculties of Natural Sciences and Technology

of Saarland University

Saarbrücken, Germany, 2014

i

Dean: Prof. Dr. Markus Bläser

Colloquium: 2014-05-09

Examination Board

Chairman Prof. Dr. Raimund Seidel

First Reviewer Prof. Dr. Gerhard Weikum

Second Reviewer Prof. Dr. Martin Theobald

Third Reviewer Prof. Dan Suciu, PhD

Research Assistant Dr.-Ing. Sebastian Michel

ii

Abstract

Probabilistic databases store, query, and manage large amounts of uncer-
tain information. This thesis advances the state-of-the-art in probabilistic
databases in three different ways:

1. We present a closed and complete data model for temporal proba-
bilistic databases and analyze its complexity. Queries are posed via
temporal deduction rules which induce lineage formulas capturing both
time and uncertainty.

2. We devise a methodology for computing the top-k most probable query
answers. It is based on first-order lineage formulas representing sets of
answer candidates. Theoretically derived probability bounds on these
formulas enable pruning low-probability answers.

3. We introduce the problem of learning tuple probabilities which allows
updating and cleaning of probabilistic databases. We study its com-
plexity, characterize its solutions, cast it into an optimization problem,
and devise an approximation algorithm based on stochastic gradient
descent.

All of the above contributions support consistency constraints and are eval-
uated experimentally.

iii

Kurzfassung

Probabilistische Datenbanken können große Mengen an ungewissen Infor-
mationen speichern, anfragen und verwalten. Diese Doktorarbeit treibt den
Stand der Technik in diesem Gebiet auf drei Arten vorran:

1. Ein abgeschlossenes und vollständiges Datenmodell für temporale, pro-
babilistische Datenbanken wird präsentiert. Anfragen werden mittels
Deduktionsregeln gestellt, welche logische Formeln induzieren, die so-
wohl Zeit als auch Ungewissheit erfassen.

2. Ein Methode zur Berechnung der k Anworten höchster Wahrschein-
lichkeit wird entwickelt. Sie basiert auf logischen Formeln erster Stufe,
die Mengen an Antwortkandidaten repräsentieren. Beschränkungen
der Wahrscheinlichkeit dieser Formeln ermöglichen das Kürzen von
Antworten mit niedriger Wahrscheinlichkeit.

3. Das Problem des Lernens von Tupelwahrscheinlichkeiten für das Ak-
tualisieren und Bereiningen von probabilistischen Datenbanken wird
eingeführt, auf Komplexität und Lösungen untersucht, als Optimie-
rungsproblem dargestellt und von einem stochastischem Gradienten-
verfahren approximiert.

All diese Beiträge unterstützen Konsistenzbedingungen und wurden exper-
imentell analysiert.

iv

Acknowledgement

I would like to thank my supervisor Martin Theobald for investing a lot
of time in discussing technical subjects with me no matter whether he was
based in Saarbrücken or Antwerp. Moreover, I am grateful to Gerhard
Weikum for his consistent support throughout my PhD. Every discussion
with Rainer Gemulla spurred numerous technical ideas and insights, which
were very helpful for me. Besides, I want to express my gratitude to all my
co-authors, Iris Miliaraki, Yafang Wang, Marc Spaniol, Mauro Sozio, and
Timm Meiser, for doing great work. Furthermore, I thank all remaining
members of the databases and information systems group for forming a
very knowledgeable group and making it an awesome place to work.

With respect to this thesis my thanks go to Avishek Anand, Radu Curt-
icapean, Marvin Künnemann, and Bilyana Taneva for proof reading prelim-
inary versions of it. Also, I owe Dan Suciu a dept of gratitude for providing
technical comments on the complicated parts of my thesis.

I owe all my friends in Saarbrücken a lot, since they provided me the
right counterbalance to my work on the thesis. Here, honorable mentions
go to Daniel Fischer for being ready to meet literally at any time. Finally, I
want to thank my family for continuous support and motivation during all
these years.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

2 Background and Preliminaries 5

2.1 Relational Databases . 5

2.1.1 Relations and Tuples 5

2.1.2 Deduction Rules . 6

2.1.3 Grounding . 7

2.1.4 Queries and Answers 9

2.2 Probabilistic Databases . 10

2.2.1 Possible Worlds Semantics 10

2.2.2 Probabilistic Database 11

2.2.3 Tuple-Independence 11

2.2.4 Propositional Lineage 13

2.2.5 Probability Computation 15

2.2.6 Constraints . 18

2.3 Algorithms . 20

2.3.1 Query Answering . 21

2.3.2 Query Answering with Constraints 22

2.4 Related Approaches . 23

2.4.1 Probabilistic Databases 23

2.4.2 Probabilistic XML . 25

2.4.3 Statistical Relational Learning 25

2.4.4 Probabilistic Programming 25

2.5 Application: Information Extraction 26

3 Temporal Probabilistic Data Model 29

3.1 Introduction . 29

3.2 Related Work . 31

3.3 Contribution . 33

3.4 Temporal Data Model . 34

3.4.1 Time Domain . 34

v

CONTENTS vi

3.4.2 Relations and Tuples 35
3.4.3 Temporal Probabilistic Databases 36
3.4.4 Arithmetic Predicates 37
3.4.5 Deduction Rules . 37
3.4.6 Lineage and Deduplication 39
3.4.7 Queries and Answers 41
3.4.8 Constraints . 42

3.5 Theoretical Properties . 42
3.5.1 Grounding Complexity 42
3.5.2 Probability Computations Complexity 44
3.5.3 Closure and Completeness 45
3.5.4 Relationship to Sequenced Semantics 46
3.5.5 Temporal Coalescing 47

3.6 Algorithms . 47
3.6.1 Lineage Decomposition 47
3.6.2 Temporal Deduplication 50

3.7 Experiments . 51
3.7.1 Temporal Information Extraction 51
3.7.2 Querying . 55
3.7.3 Scalability . 57
3.7.4 Algorithm Analysis . 58

3.8 Summary and Outlook . 60

4 Top-k Query Processing 63

4.1 Introduction . 63
4.2 Related Work . 65
4.3 Contribution . 67
4.4 First-Order Lineage . 68

4.4.1 Deduction Rules with Quantifiers 68
4.4.2 Lineage Construction 69
4.4.3 Probability Bounds . 74

4.5 Algorithms . 78
4.5.1 Benefit-Oriented Literal Scheduling 79
4.5.2 Top-k with Dynamic Literal Scheduling 81

4.6 Extensions . 84
4.6.1 Sorted Input Relations 84
4.6.2 Recursion . 85
4.6.3 Temporal Data . 87
4.6.4 Constraints . 87

4.7 Experiments . 88
4.7.1 Query Classes . 89
4.7.2 Performance Factors 91
4.7.3 Recursion . 92
4.7.4 Algorithm Analysis . 93

vii CONTENTS

4.8 Summary and Outlook . 95

5 Learning Tuple Probabilities 97

5.1 Introduction . 97

5.2 Related Work . 100

5.3 Contribution . 102

5.4 Preliminary . 102

5.5 Learning Problem . 103

5.5.1 Complexity . 104

5.5.2 Solutions . 105

5.5.3 Visual Interpretation 107

5.6 Gradient Based Solutions . 107

5.6.1 Desired Properties . 108

5.6.2 Logical Objective . 109

5.6.3 Mean Squared Error Objective 110

5.6.4 Discussion . 111

5.7 Extensions and Applications 112

5.7.1 Priors . 112

5.7.2 Temporal Data . 113

5.7.3 Constraints . 113

5.7.4 Updating and Cleaning Probabilistic Databases 114

5.7.5 Incomplete Databases 115

5.8 Algorithm . 116

5.9 Experiments . 119

5.9.1 Quality . 120

5.9.2 Runtime . 123

5.9.3 Scalability . 125

5.9.4 Algorithm Analysis . 126

5.10 Summary and Outlook . 128

6 Implementation 131

6.1 Database Layout . 131

6.2 Propositional Lineage . 133

6.3 First-Order Lineage . 135

6.4 Learning Tuple Probabilities 137

7 Conclusion 139

A Supplementary Material 141

A.1 System Setup . 141

A.2 Datasets . 141

A.2.1 YAGO . 141

A.2.2 IMDB . 142

A.2.3 UW-CSE . 142

CONTENTS viii

A.2.4 PRAVDA . 142
A.3 Deduction Rules and Constraints 143

A.3.1 Temporal Probabilistic Data Model Experiments . . . 143
A.3.2 Top-k Query Processing Experiments 147
A.3.3 Learning Tuple Probabilities Experiments 148

B Table of Symbols 153

Chapter 1

Introduction

1.1 Motivation

In the last decade we saw another big rise in the amount of digital infor-
mation. Database systems play a key role in managing this data because
of their abilities in storing, querying, and updating large data collections.
Nowadays, it is hard to imagine a single major company or other organiza-
tion not running a database system for coping with its administrative, finan-
cial or corporate data. One of the basic assumptions in database systems
is that the data is certain: a data record is either a perfect implementa-
tion of some real-world truth or, if it does not hold, absent in the database.
In reality, however, a large amount of data is not deterministic, but rather
uncertain.

Sources of Probabilistic Data A sensor, for instance, comes with a
limited precision, and hence its measurements are inherently uncertain with
respect to the precise physical value. Also, coarse-grained information car-
ries uncertainty about the underlying more fine-grained information. For
example, if we are interested in the birth place of Albert Einstein and we
only know that he was born in Germany, then we are unsure about the city
of birth. Moreover, ambiguity can cause uncertainty. For instance, most sen-
tences in natural language allow more than one interpretation, sometimes
leaving the reader in doubt. Likewise, if we lack information, maybe due to
an anonymization process reporting an age interval rather than the actual
age of a person, we are confronted with several alternatives which in turn
generate uncertainty. Similarly, when we observe inconsistent information,
such as two differing locations of a conference venue, then we can no longer
be certain about the true information. Finally, there will always be uncer-
tainty about the future, as can be noticed for instance in every day’s weather
forecast.

1

CHAPTER 1. INTRODUCTION 2

Probabilistic Databases One way to store, query and manage large
amounts of uncertain data are probabilistic databases [139]. They lie in
the intersection of database systems [2, 65], (for handling large amounts
of data), first-order logic [133, 146], (for writing structured queries on the
data), and probability theory [45, 130] (for quantifying the uncertainty). So
far, research in probabilistic databases focused mainly on two aspects: the
data model and the query evaluation problem.

For the former, a variety of approaches for compactly representing the
data uncertainty were presented. These start at simple models, such as tuple-
independent probabilistic databases [29, 139] which have a probability value
attached to each tuple, where these values are assumed to be independent.
More expressive are pc-tables [60] where each tuple is annotated by a logical
formula defining its dependencies. Finally, there are sophisticated models
which capture statistical correlations among database tuples [76, 119, 128].

Regarding the query evaluation problem, there exist queries for which
computing the probabilities of their respective answers is #P-hard [31, 58].
This caused a series of works taking mainly two directions. Either these
approaches [31, 29, 32] classify queries syntactically to decide whether they
feature efficient probability computations. Or they target the representation
of the derivation of query answers [74, 105, 129], which commonly are logical
formulas called lineage, to facilitate the answers’ probability computations.

In recent years a number of probabilistic database systems were released
as open-source prototypes including MayBMS [10], MystiQ [18], PrDB [128],
SPROUT [106], and Trio [14], which allow for storing and querying uncertain
data, by some of the aforementioned methodologies. These systems found
wide recognition in the database community.

Challenges In order to make probabilistic databases as broadly applicable
as the conventional database systems, a number of challenges remain.

1. Besides potentially being uncertain, data can be annotated by other
dimensions such as time, location or data source. These techniques
are already supported by traditional database systems. To enable
this kind of data in probabilistic databases, we need to extend the
probabilistic data models to support additional data dimensions.

2. Allowing a wide range of expressive queries which can be executed
efficiently, was one of the ingredients which made traditional database
systems successful. Even though the query evaluation problem was
studied in probabilistic databases, for many queries efficient ways of
computing answers along with probabilities are not established yet.

3. Most importantly, the field of creating and updating probabilistic data-
bases is in an early stage, where only very few results exist [83, 137].
Nevertheless, we have to support learning or updating of probabilities

3 CHAPTER 1. INTRODUCTION

in the data, since this is needed in many applications: when a user
provides feedback by labeling a query answer, we have to integrate
this additional information into the probabilistic database, e.g. by
altering probabilities. Similarly, imagine an engineer who adds consis-
tency constraints to the database, this rules out certain possibilities,
hence affecting probabilities. Finally, we wish to create probabilistic
databases from incomplete databases by learning probabilities for each
completion.

In this thesis, we tackle each of the above challenges.

1.2 Contributions

Based on tuple-independent probabilistic databases with lineage, this thesis
presents theoretical, algorithmic, and experimental results on the following
subjects:

1. In Chapter 3, we devise a temporal-probabilistic data model which sup-
ports both time and probabilities as first-class citizens. We prove it
to be closed and complete and characterize its complexity properties.
Moreover, we present an efficient algorithm which allows extending any
probabilistic database system with lineage to handle temporal data,
and analyze the resulting properties experimentally.

2. In Chapter 4, we present an approach for computing the top-k query
answers, which feature the highest probabilities among all answers.
Our main technical tool are first-order lineage formulas, which can
represent both entire sets of query answers and partially evaluated
grounding states. We formally derive probability bounds for these for-
mulas, capturing the probabilities of all represented answers. The
resulting algorithm is evaluated experimentally.

3. In Chapter 5, we establish the first methodology to learn tuple prob-
abilities from labeled lineage formulas. We characterize the problem
theoretically by investigating its complexity as well as the nature of its
solutions, cast it into an optimization problem, and give an algorithm
for solving it. Additionally, we discuss how to apply the learning of
tuple probabilities to creating, updating, and cleaning of probabilistic
databases. We provide an extensive experimental evaluation.

Cutting across the above chapters, we consider consistency constraints in
each of our contributions. Some results of this thesis were published pre-
viously in the proceedings of international conferences [39, 40, 41, 98, 143,
152, 153].

CHAPTER 1. INTRODUCTION 4

Outline The remainder of this thesis is structured as follows. In Chapter 2
we introduce the background required for the understanding of this work
by covering relational databases and probabilistic databases. The third,
fourth, and fifth chapters are the main parts of the thesis, where we discuss
the temporal-probabilistic data model, querying for the top-k answers, and
the framework of learning tuple probabilities. Related work is discussed in
the individual chapters. Finally, Chapter 6 presents system implementation
issues before Chapter 7 concludes this thesis.

Visual Overview To ease the understanding of the interactions among
the different topics and chapters, we provide a visual overview depicted in
Figure 1.1. Returning to this figure after reading each chapter helps to grasp
the big picture of this thesis.

Figure 1.1: Visual Overview of the Thesis

Chapter 2

Background and

Preliminaries

This chapter introduces the data model that is common to all following
chapters, namely tuple-independent probabilistic databases with lineage and
constraints. We start by introducing traditional (non-probabilistic) data-
bases in Section 2.1. Building on their concepts and notations, we devise
probabilistic databases in Section 2.2. Next, we present basic algorithms
necessary for query answering in Section 2.3 before we discuss approaches
which are related to our data model in Section 2.4. Finally, Section 2.5
presents an application of probabilistic databases, namely information ex-
traction.

2.1 Relational Databases

The primary purpose of this section is to establish all terms and defini-
tions from databases necessary for this work. For foundations and broader
background, however, we refer the reader to a text book, e.g. [2, 65].

2.1.1 Relations and Tuples

We start with the basics of databases, namely relations and tuples. A rela-
tion can be viewed as a table. A row or entry in the table is called tuple.
From a formal perspective, we follow standard database terminology [2, 65].
We consider a relation R to be a logical predicate of arity r ≥ 1. For a fixed
universe of constants U , a relation instance R is a finite subset R ⊆ Ur.
We call the elements of R tuples and write R(ā) to indicate a tuple in R,
where ā is a vector of constants. As shorthand notation we employ I as
an identifier for a tuple. Furthermore, we use R(X̄) to refer to a first-order
literal over relation R where X̄ is a vector of variables and constants. Then,
Var(X̄) denotes the set of variables contained in X̄.

5

CHAPTER 2. BACKGROUND AND PRELIMINARIES 6

Definition 2.1. Given relations R1, . . . , Rn, usually called schemata, a
database comprises the relation instances Ri whose tuples we collect in the
set T := R1 ∪ · · · ∪ Rn.

Example 2.1. We consider two relation instances from the movie domain
describing directors of movies and awards movies have won.

Directed WonAward
Director Movie Movie Award

I1 Coppola ApocalypseNow I4 ApocalypseNow BestScript
I2 Coppola Godfather I5 Godfather BestDirector
I3 Tarantino PulpFiction I6 Godfather BestPicture

I7 PulpFiction BestPicture

For example, the tuple Directed(Coppola,ApocalypseNow), which we also
abbreviate by I1, indicates that Coppola directed the movie ApocalypseNow.
So, the above database contains two relation instances with T = {I1, . . . , I7}.

2.1.2 Deduction Rules

To derive new knowledge from a database, we employ deduction rules. These
can be viewed as generally applicable “if-then-rules”. That is, given a con-
dition, its conclusion follows. Formally, we follow Datalog terminology and
notation [2, 21]. Deduction rules have the shape of a logical implication
with a conjunction of both positive and negative literals in the body (the
antecedent) and exactly one positive head literal (the consequent). Rela-
tions occurring in the head literal of a deduction rule are called intensional
relations [2]. In contrast, relations holding database tuples, i.e. from T , are
named extensional relations. These two sets of relations must not overlap
and are used differently in deduction rules.

Definition 2.2. A deduction rule is a logical rule of the form

R0(X̄0) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

where

1. R0 denotes the intensional relation of the head literal, whereas Ri and
Rj refer to intensional or extensional relations;

2. n ≥ 1, m ≥ 0, thus requiring at least one positive relational literal;

3. X̄0, X̄i, X̄j, and X̄ denote tuples of variables and constants, where
Var(X̄0) ∪ Var(X̄j) ∪ Var(X̄) ⊆

⋃

iVar(X̄i);

4. Φ(X̄) is a conjunction of arithmetic comparisons such as = and 6=.

7 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Whenever we employ a set of deduction rules, we call it D.

By definition we require each deduction rule to have at least one positive
literal in its body. Moreover, the third condition ensures safe [2] deduction
rules, by insisting that all variables in the head Var(X̄0), in negated liter-
als Var(X̄j), and in arithmetic predicates Var(X̄) are bound by variables
Var(X̄i) in positive relational predicates. Additionally, all variables are im-
plicitly universally quantified. As denoted by the forth condition, we allow
a conjunction of arithmetic comparisons such as = and 6=.

Example 2.2. Imagine we are interested in famous movie directors. To
derive these from the tuples in Example 2.1, we can reason as follows: “if a
director’s movie won an award, the director should be famous.” In a logical
formula we express this as:

FamousDirector(D) ← Directed(D,M) ∧WonAward(M,A) (2.1)

The above rule fulfills all requirements of Definition 2.2, since (1) all rela-
tions the body are extensional, (2) there are two positive literals, n = 2, and
no negative literal, m = 0, and (3) the variable D of the head is bound in
the body.

With the exception of Section 4.6.2, this thesis considers only non-
recursive deduction rules. Thus, our class of deduction rules corresponds
to safe, non-recursive Datalog programs, which also coincides with the core
operations expressible in Relational Algebra [2].

2.1.3 Grounding

The process of applying a deduction rule to a database instance, i.e. employ-
ing the rule to derive new tuples, is called grounding. For that, we show how
to instantiate deduction rules, which we achieve by substitutions [2, 146].

Definition 2.3. A substitution σ : V → V ∪ U is a mapping from variables
V to variables and constants V ∪ U . A substitution σ is applied to a first-
order formula Φ as follows:

Definition Condition

σ(
∧

iΦi) :=
∧

i σ(Φi)
σ(
∨

iΦi) :=
∨

i σ(Φi)
σ(¬Φ) := ¬σ(Φi)

σ(R(X̄)) := R(Ȳ) σ(X̄) = Ȳ

In general, substitutions can rename variables or replace variables by
constants. If all variables are substituted by constants, then the resulting
rule or literal is called ground.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 8

Example 2.3. A valid substitution is given by σ(D) = Coppola, σ(M) =
Godfather, where we replace the variables D and M by the constants Cop-
pola and Godfather, respectively. If we apply the substitution to the deduc-
tion rule of Equation (2.1), we receive

FamousDirector(Coppola) ←

(
Directed(Coppola,Godfather)
∧WonAward(Godfather, A)

)

where A remains a variable.

We now collect all substitutions for a deduction rule which are possible
over a given database or a set of tuples. These substitutions are called
groundings [2, 21].

Definition 2.4. Given a set of tuples T and a deduction rule D

R0(X̄0) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

the groundings G(D, T) are all substitutions σ where

1. σ’s preimage coincides with
⋃

iVar(X̄i);

2. σ’s image consists of constants only;

3. ∀i : σ(Ri(X̄i)) ∈ T ;

4. σ(Φ(X̄)) ≡ true.

The first and second condition requires the substitution to bind all vari-
ables in the deduction rule to constants. In addition, all positive ground
literals have to match a tuple in T . In the case of deterministic databases,
negative literals must not match a tuple. Later, in probabilistic databases
they may match a tuple, which is why we omit a requirement on them. The
last condition ensures that the arithmetic literals are satisfied.

Example 2.4. Let the deduction rule of Equation (2.1) be D. For the tuples
of Example 2.1, there are four groundings G(D, {I1, . . . , I7}) = {σ1, σ2, σ3, σ4},
where:

σ1(D) = Coppola σ2(D) = Coppola
σ1(M) = ApocalypseNow σ2(M) = Godfather
σ1(A) = BestScript σ2(A) = BestDirector

σ3(D) = Coppola σ4(D) = Tarantino
σ3(M) = Godfather σ4(M) = PulpFiction
σ3(A) = BestPicture σ4(A) = BestPicture

All substitutions are valid groundings according to Definition 2.4, because
(1) their preimages coincide with all variables of D, (2) their images are

9 CHAPTER 2. BACKGROUND AND PRELIMINARIES

constants only, (4) there are no arithmetic literals, and (3) all positive body
literals match tuples:

Literal Tuple Literal Tuple
σ1(Directed(D,M)) I1 σ1(WonAward(M,A)) I4
σ2(Directed(D,M)) I2 σ2(WonAward(M,A)) I5
σ3(Directed(D,M)) I2 σ3(WonAward(M,A)) I6
σ4(Directed(D,M)) I3 σ4(WonAward(M,A)) I7

Finally, we employ the groundings of a deduction rule to derive new
tuples by instantiating the head literal of the rule.

Definition 2.5. Given a deduction rule D := (R0(X̄0) ← Ψ) and a set of
tuples T , the new tuples are:

NewTuples(D, T) := {σ(R0(X̄0)) | σ ∈ G(D, T)}

We note that the same new tuple might result from more than one sub-
stitution, as illustrated by the following example.

Example 2.5. Let D be the deduction rule of Equation (2.1). Continuing
Example 2.4, there are two new tuples:

NewTuples(D, {I1, . . . , I7}) =

{
FamousDirector(Coppola),
FamousDirector(Tarantino)

}

The first new tuple originates from σ1, σ2, σ3 of Example 2.4 whereas the
second new tuple results only from σ4.

2.1.4 Queries and Answers

We now move on to define queries and their answers over a database. Our
queries are conjunctions of positive and negative literals which coincide with
the bodies of deduction rules.

Definition 2.6. Given deduction rules D with their intensional relations, a
query Q is a conjunction:

Q(X̄0) :=
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

where

1. all Ri, Rj are intensional;

2. X̄0 are called query variables and it holds that
Var(X̄0) =

⋃

i=1,...,nVar(X̄i);

CHAPTER 2. BACKGROUND AND PRELIMINARIES 10

3. all variables in negated or arithmetic literals are bound by positive
literals: Var(X̄) ⊆

⋃

i=1,...,nVar(X̄i) and ∀j ∈ {1, . . . ,m} Var(X̄j) ⊆
⋃

i=1,...,nVar(X̄i);

4. Φ(X̄) is a conjunction of arithmetic comparisons.

The first condition allows to ask for head literals of any deduction rule.
The set of variables in positive literals are precisely the query variables.
The final two conditions ensure safeness as in deduction rules. We want to
remark that, for a theoretical analysis, it suffices to have only one intensional
literal as query.

Example 2.6. Extending Examples 2.1 and 2.2, we can formulate the query

Q(D) := FamousDirector(D) ∧ (D 6= Tarantino)

which asks for famous directors excluding Tarantino, as we may have watched
all of his movies. The only query variable is D.

As queries take the shape of bodies of deduction rules, we employ the
groundings of Definition 2.4 on queries as well. Assuming that T comprises
all database tuples and all new tuples resulting from deduction rules, we
rely on G(Q(X̄), T) to define answers.

Definition 2.7. For a set of tuples T and a query Q(X̄), the set of answers
is given by:

Answers(Q(X̄), T) := {σ(Q(X̄)) | σ ∈ G(Q(X̄), T)}

Each answer binds all query variables by constants.

Example 2.7. For the query Q(D) of Example 2.6 and the deduction rule
of Example 2.2 there is only one answer, namely FamousDirector(Coppola).

2.2 Probabilistic Databases

We now move on to present probabilistic databases which extend the rela-
tional databases of the previous section by probabilities.

2.2.1 Possible Worlds Semantics

In this section, we relax the common assumption in databases that all tuples
do certainly exist. Depending on the existing tuples, a database can be in
different states. Each such state is called a possible world [3, 139].

Definition 2.8. For a database with tuples T , a possible world is a subset
W ⊆ T .

11 CHAPTER 2. BACKGROUND AND PRELIMINARIES

The interpretation of a possible world is as follows: all tuples in W exist,
whereas all tuples in T \W do not exist. In the absence of any constraints
that would restrict this set of possible worlds (see Section 2.2.6), any subset
W of tuples in T forms a valid possible world (i.e., a possible instance) of
the probabilistic database. Hence, there are 2|T | possible worlds.

Example 2.8. Considering the database of Example 2.1, a possible world
is W := {I2, I4, I6}, which hence has only one tuple in the Directed relation
and two tuples in the WonAward relation.

2.2.2 Probabilistic Database

Based on the possible worlds semantics, we introduce probabilistic data-
bases [139], which associate a probability with each possible world.

Definition 2.9. Given a set of tuples T with possible worlds W1, . . . ,Wn, a
probabilistic database assigns a probability P : 2T → [0, 1] to each possible
world W ⊆ T , such that:

∑

W⊆T

P (W) = 1

In other words, in a probabilistic database the probabilities of the possi-
ble worlds P (W) form a probability distribution. Thus, each possible world
can be seen as the outcome of a probabilistic experiment.

Example 2.9. If we allow only two possible worlds W1 := {I1, I3, I5, I7}
and W2 := {I2, I4, I6} over the tuples of Example 2.1, we can set their
probabilities to P (W1) = 0.4 and P (W2) = 0.6 to obtain a valid probabilistic
database.

2.2.3 Tuple-Independence

Because there can be exponentially many possible worlds, it is prohibitive to
store every possible world along with its probability in a database system.
Instead, we opt for a simpler method, that is, annotating each tuple with a
probability value. We assume the probabilities of all tuples to be indepen-
dent [45, 130], which yields tuple-independent probabilistic databases [29, 139]

Definition 2.10. For tuples T , a tuple-independent probabilistic database
(T , p) is a pair, where

1. p is a function p : T → (0, 1], which assigns a non-zero probability
value p(I) to each tuple I ∈ T ;

2. the probability values of all tuples in T are assumed to be independent;

CHAPTER 2. BACKGROUND AND PRELIMINARIES 12

3. every subset W ⊆ T is a possible world and has probability:

P (W, T) :=
∏

I∈W

p(I) ·
∏

I∈T \W

(1− p(I))

The probability p(I) of a tuple I denotes the confidence in the existence
of the tuple in the database, i.e., a higher value p(I) denotes a higher confi-
dence in I being valid. However, the probabilities of different tuples do not
depend on each other, that is, they are probabilistically independent. This
allows us to multiply the probabilities of the tuples to obtain the probabil-
ity of the possible world. In addition, from a probabilistic perspective, each
tuple corresponds to a binary random variable.

Example 2.10. Assume we are unsure about the existence of each tuple in
Example 2.1, hence we annotate them by probabilities.

Directed WonAward
Director Movie p Movie Award p

I1 Coppola ApocalypseNow 0.7 I4 ApocalypseNow BestScript 0.1
I2 Coppola Godfather 0.5 I5 Godfather BestDirector 0.8
I3 Tarantino PulpFiction 0.2 I6 Godfather BestPicture 0.9

I7 PulpFiction BestPicture 0.5

Here, Coppola directed the movie Godfather only with probability 0.5. In
addition, the possible world W := {I1, I3, I5, I7} has the probability:

P (W, {I1, . . . , I9}) = 0.7 · (1−0.5) ·0.2 · (1−0.1) ·0.8 · (1−0.9) ·0.5 = 0.00252

In Section 2.2.2 we required probabilistic databases to form a probabil-
ity distribution over possible worlds. For tuple-independent probabilistic
databases, we can prove this condition.

Proposition 2.1. Given a tuple-independent probabilistic database (T , p),
then P (W, T) of Definition 2.10 is a probability distribution over the possible
worlds W ⊆ T : ∑

W⊆T

P (W, T) = 1

Proof. We prove the proposition by induction over the cardinality of T .
Basis i = 1:

∑

W⊆{I1}
P (W, {I1}) = p(I1) + (1− p(I1)) = 1

Step (i− 1) → i: Let T := {I1, . . . , Ii} where Ii is the new tuple.
∑

W⊆T P (W, T)

=
∑

W⊆T

∏

I∈W p(I) ·
∏

I∈T \W(1− p(I))

= (p(Ii) + (1− p(Ii)))
︸ ︷︷ ︸

=1

·
∑

W⊆T \{Ii}

∏

I∈W p(I) ·
∏

I∈T \W(1− p(I))
︸ ︷︷ ︸

=1 by hypothesis

In the remaining parts of the thesis, unless stated otherwise, we will
always refer to tuple-independent probabilistic databases when we mention
probabilistic databases.

13 CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.2.4 Propositional Lineage

In this section, we introduce how to trace the derivation history of new
tuples. In database terminology this is called data lineage [14, 26, 125], which
we represent by a propositional formula. More detailed, lineage relates each
new tuple with the tuples T via the three Boolean connectives ∧, ∨ and ¬,
which reflect the semantics of the relational operations that were applied to
derive that tuple.

Definition 2.11. We establish lineage inductively via the function

λ : GroundLiterals → Lineage

which is defined as follows:

1. For tuples T and R(ā) with R being extensional and R(ā) ∈ T we have

λ(R(ā)) := I

where I is a Boolean (random) variable representing the validity of the
tuple.

2. For tuples T , deduction rules D, and R(ā) with R being intensional,
lineage is defined as

λ(R(ā)) :=
∨

D∈D,
σ∈G(D,T),
σ(X̄0)=ā

∧

i=1,...,n

λ(σ(Ri(X̄i))) ∧
∧

σ(Rj(X̄j))∈T

¬λ(σ(Rj(X̄j)))

where D is a deduction rule with R in its head literal:

R(X̄0) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

3. If there is no match to R(ā) in both T and D:

λ(R(ā)) := false

In the first case, we replace a ground literal R(ā) by a Boolean random
variable representing the database tuple. The second case is a little more
involved: the ground literal R(ā) is replaced by the disjunction over all
deduction rules and all groundings of these, where the grounded head literal
matched R(ā). Likewise, negative literals are only traced, if they occur in
the tuples. which resembles In the third case all literals not being matched
at all are replaced by false, which resembles the closed world assumption [2].
Finally, arithmetic literals do not occur in the lineage formulas, since the
groundings evaluate them to true (see Definition 2.4). Similarly, because
queries have the shape of deduction rule bodies, we write λ(Q(ā)) to refer
to the lineage formula of a query answer.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 14

Example 2.11. Building on Examples 2.4 and 2.5, we determine the lin-
eage of the tuple FamousDirector(Coppola), which was produced by the three
substitutions σ1, σ2, and σ3. The second case of Definition 2.11 delivers a
disjunction ranging over both substitutions:

λ(FamousDirector(Coppola) =
(

λ(Directed(Coppola,ApocalypseNow))
∧ λ(WonAward(ApocalypseNow ,BestScript))

)

from σ1

∨
(

λ(Directed(Coppola,Godfather))
∧ λ(WonAward(Godfather ,BestDirector))

)

from σ2

∨
(

λ(Directed(Coppola,Godfather))
∧ λ(WonAward(Godfather ,BestPicture))

)

from σ3

Then, the first case of Definition 2.11 replaces all ground literals by their
tuple identifiers:

(I1 ∧ I4)
︸ ︷︷ ︸

from σ1

∨ (I2 ∧ I5)
︸ ︷︷ ︸

from σ2

∨ (I2 ∧ I6)
︸ ︷︷ ︸

from σ3

Next, we study the computational complexity of lineage tracing. It is
known that grounding non-recursive Datalog rules, which coincides with
our class of deduction rules, has polynomial data complexity [78]. Now, we
extend this result to lineage tracing.

Lemma 2.1. For a fixed set of deduction rules D, grounding with lineage
as of Definition 2.11 has polynomial data complexity in |T |.

Proof. We have to show, that Definition 2.11 creates an overhead which is
polynomial in |T |. In the first and third case of the definition, we solely
rely on a look-up in D or T , which is computable in polynomial time. The
second case iterates over all deduction rules D ∈ D. For each deduction rule
D, it performs a number look-ups bound by |G(D, T)| · |D|. Since grounding
has polynomial data complexity, G(D, T) is of polynomial size in T . Thus,
also the third case has polynomial data complexity.

We next introduce a normal form of propositional lineage formulas, which
is very common in logic [133]. Assuming lineage formulas to be in a normal
form will simplify proofs that follow later on.

Definition 2.12. A propositional lineage formula φ is in disjunctive normal
form (DNF) if φ = ψ1 ∨ · · · ∨ ψn and each clause ψi is of the form

∧

j Ij ∧
∧

k Ik.

For illustration, the lineage formula of Example 2.11 is in disjunctive
normal form. In general, any propositional formula can be transformed
into disjunctive normal form [133], which we rely on in order to show the
following statement.

15 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Proposition 2.2. The deduction rules of Definition 2.2 allow us to express
any propositional lineage formula.

Proof. Consider a probabilistic database (T , p) and an arbitrary proposi-
tional formula φ connecting tuple identifiers. Without loss of generality, let
the formula φ be in disjunctive normal form and range over only one relation
R. First, we introduce one additional tuple R(0) and set p(R(0)) = 1. Then,
for each clause ψi =

∧

j Ij ∧
∧

k ¬Ik of φ, we create one deduction rule:

R′(0) ← R(0) ∧
∧

j

R(j) ∧
∧

k

¬R(k)

The lineage formula of the intensional tuple R′(0) is exactly φ. The reason
is that each rule creates one clause. Then, these clauses are connected by a
disjunction originating from the second case of Definition 2.11.

From the above statement, it follows that the lineage formulas consid-
ered in this work take more general forms than lineage formulas resulting
from (unions) of conjunctive queries [28, 31], which produce only disjunctive
normal forms which are restricted to positive literals.

2.2.5 Probability Computation

Since in a probabilistic database, each tuple exists only with a given prob-
ability, we can quantify the probability that each answer exists, which is
the topic of this section. Based on [52, 125, 139] we compute probabilities
of query answers via their lineage formulas. To achieve this, we interpret
the propositional lineage formulas over a possible world of a probabilistic
database (T , p) as follows. We say that a possible world W is a model [146]
for a propositional lineage formula φ, denoted as W |= φ, if, by setting all
tuples in W to true and all tuples in T \W to false, W represents a truth as-
signment that satisfies φ. Moreover, let the set M(φ, T) contain all possible
worlds W ⊆ T being a model for a propositional lineage formula φ.

M(φ, T) := {W | W ⊆ T ,W |= φ} (2.2)

If it is clear from the context, we drop T as an argument of M. We
compute the probability of any Boolean formula φ over tuples in T as the
sum of the probabilities of all the possible worlds that are a model for φ:

P (φ) :=
∑

W∈M(φ,T)

P (W, T) (2.3)

Here, P (W, T) is as in Definition 2.10. We can interpret the above
probability as the marginal probability of the lineage formula φ. The above
sum can range over exponentially many terms. However, in practice, we

CHAPTER 2. BACKGROUND AND PRELIMINARIES 16

can—in many cases—compute the probability P (φ) directly on the structure
of the lineage formula φ. Let Tup(φ) ⊆ T denote the set of tuples occurring
in φ. Then, the following computations can be employed:

Definition Condition

P (I) := p(I) I ∈ T
P (

∧

i φi) :=
∏

i P (φi) i 6=j ⇒ Tup(φi)∩Tup(φj)=∅
P (

∨

i φi) := 1−
∏

i(1− P (φi)) i 6=j ⇒ Tup(φi)∩Tup(φj)=∅
P (φ ∨ ψ) := P (φ) + P (ψ) φ ∧ ψ ≡ false

P (¬φ) := 1− P (φ)
P (true) := 1
P (false) := 0

(2.4)

The first line captures the case of a tuple I , for which we return its
attached probability value p(I). The next two lines handle independent-
and and independent-or operations for conjunctions and disjunctions over
tuple-disjoint subformulas φi, respectively. In the forth line, we address
disjunctions for subformulas φ and ψ that denote disjoint probabilistic events
(disjoint-or). The fifth line handles negation. Finally, the probability of true
and false is 1 and 0, respectively.

Example 2.12. Let us compute the probability P (I1 ∧ I2 ∧ ¬I3) over the
tuples of Example 2.10. First, the second line of Equation (2.4) is applicable,
which yields P (I1) ·P (I2) ·P (¬I3). Then, we replace the negation and obtain
P (I1) · P (I2) · (1− P (I3)). Now, looking up the tuples’ probability values in
Example 2.10 yields 0.7 · 0.5 · (1− 0.2) = 0.28.

The definition of P (φ) presented in Equation (2.4) can be evaluated in
linear time in the size of φ. However, for general lineage formulas, comput-
ing P (φ) is #P-hard [31, 29, 105]. Here, #P [147] is the class of counting
problems. Its prototypical problem #SAT asks for the number of satisfying
assignments of a propositional formula. We next present a number of de-
duction rules which can yield lineage formulas exhibiting hard probability
computations.

Lemma 2.2. Let a probabilistic database (T , p) and the following deduction
rules be given:

H (0) ← R(X) ∧ S(X,Y) ∧ T (Y)

H (1) ← R(X) ∧ S(X,Y)
H (1) ← S(X,Y) ∧ T (Y)

H (2) ← R(X) ∧ S1(X,Y)
H (2) ← S1(X,Y) ∧ S2(X,Y)
H (2) ← S2(X,Y) ∧ T (Y)

17 CHAPTER 2. BACKGROUND AND PRELIMINARIES

H (3) ← R(X) ∧ S1(X,Y)
H (3) ← S1(X,Y) ∧ S2(X,Y)
H (3) ← S2(X,Y) ∧ S3(X,Y)
H (3) ← S3(X,Y) ∧ T (Y)

. . .

Then, for each H(k) the corresponding probability computations P (λ(Hk))
are #P-hard in |T |.

In the lemma above, k is a constant, hence, H(0) is a ground literal
resembling a Boolean query. A proof for the above statement can be found
in [31]. To address the computationally hard cases, we employ the following
equation, called Shannon expansion, which is applicable to any propositional
lineage formula:

P (φ) := p(I) · P (φ[I/true]) + (1− p(I)) · P (φ[I/false]) (2.5)

Here, the notation φ[I/true] for a tuple I ∈ Tup(φ) denotes that we
replace all occurrences of I in φ by true. Shannon expansion is based on the
following logical equivalence:

φ ≡ (I ∧ φ[I/true]) ∨ (¬I ∧ φ[I/false]) (2.6)

The resulting disjunction fulfills the disjoint-or condition (see Equa-
tion (2.4)) with respect to I . Repeated applications of Shannon expansions
may however increase the size of φ exponentially, hence do not circumvent
the computational hardness.

Example 2.13. We calculate the probability of the lineage formula of Ex-
ample 2.11 as follows:

P ((I1 ∧ I4) ∨ (I2 ∧ I5) ∨ (I2 ∧ I6))

The top-level operator is a disjunction where the third line of Equation (2.4)
is not applicable, since I2 occurs in two subformulas. Hence, we first apply
a Shannon expansion for I2:

p(I2) · P ((I1 ∧ I4) ∨ I5 ∨ I6) + (1− p(I2)) · P (I1 ∧ I4)

Now, we can resolve the disjunction and the conjunction by independent-or
and independent-and, respectively:

p(I2) · (1− (1−p(I1) ·p(I4)) · (1−p(I5)) · (1−p(I6)))+(1−p(I2)) ·p(I1) ·p(I4)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 18

Derivative of Probability Computations

As introduced in [77, 116], we can quantify the impact of the probability of
a tuple p(I) on the probability P (φ) of a propositional lineage formula φ by
its partial derivative.

Definition 2.13. Given a propositional lineage formula φ and a tuple I ∈
Tup(φ), the partial derivative of P (φ) with respect to p(I) is

∂P (φ)

∂p(I)
:=

P (φ[I/true])− P (φ[I/false])

P (true)− P (false)
= P (φ[I/true])− P (φ[I/false])

Again, φ[I/true] means that all occurrences of I in φ are replaced by true
and analogously for false.

Example 2.14. We determine the derivative of the probability of the propo-
sitional lineage formula φ := I1 ∧ I4 with respect to the tuple I4:

∂P (φ)
∂p(I4)

= P ((I1 ∧ I4)[I4/true])− P ((I1 ∧ I4)[I4/false])

= p(I1)− P (false)
= p(I1)

2.2.6 Constraints

To rule out cases which are inconsistent with the real world, we support
consistency constraints. For instance, if for the same person two places of
birth are stored in the database, then we intend to remove one of them
by a consistency constraint. In general, we consider the constraints to be
presented in the form of a single propositional lineage formula φc, which
connects tuple identifiers. Intuitively, the constraint formula φc describes all
possible worlds that are valid. In contrast, all possible worlds that do not
satisfy the constraint will be dropped from the probability computations.
Because it is tedious to manually formulate a propositional formula over
many database tuples, we allow φc to be induced by deduction rules Dc and
two sets of queries Cp and Cn as follows. For simplicity, we assume Cp∩Cn = ∅
and Dc ∩ Dq = ∅, where Dq are the deduction rules of the query.

Definition 2.14. Let a set of deduction rules Dc and two sets Cp and Cn of
intensional literals from Dc be given. If T contains all tuples deducible by
Dc the constraint formula φc is obtained by:

φc :=
∧

Cp(X̄)∈Cp,
Cp(ā)∈Answers(Cp(X̄),T)

λ(Cp(ā)) ∧
∧

Cp(X̄)∈Cn,
Cn(ā)∈Answers(Cn(X̄),T)

¬λ(Cn(ā))

Hence, based on the above definition, we create constraints on proba-
bilistic databases by deduction rules. All answers from literals in Cp yield

19 CHAPTER 2. BACKGROUND AND PRELIMINARIES

propositional lineage formulas, which must always hold, whereas the lineage
formulas being derived from literals in Cn may never hold. We connect all
these grounded constraints, i.e. their lineage formulas, by a conjunction to
enforce all of them together. It is important to note that the deduction
rules of the constraints do not create any new tuples, but merely serve the
purpose of creating φc.

Example 2.15. Let us formalize that every movie is directed by only one
person. We create the deduction rule

Constraint(P1, P2,M) ← (Directed(P1,M) ∧Directed(P2,M) ∧ P1 6= P2)

and insert Constraint(P1, P2,M) into Cn, which hence disallows the exis-
tence of two persons P1 and P2 both directing the same movie.

For brevity, we also abbreviate constraints consisting of a single deduc-
tion rule by the rule body only, that is neglecting the head literal.

Example 2.16. We can write the constraint of Example 2.15 without the
head literal as follows:

¬(Directed(P1,M) ∧Directed(P2,M) ∧ P1 6= P2)

Here the negation signalizes that the former head literal was in Cn.

With respect to the probability computations, constraints remove all
possible worlds from the computations, which violate the constraint. This
process is called conditioning [83], which formally reads as follows.

Definition 2.15. Let constraints be given as a propositional lineage formula
φc over a probabilistic database (T , p). If φc is satisfiable, then the probability
P (ψ) of a propositional lineage formula ψ over T can be conditioned onto
φc as follows:

P (ψ | φc) :=
P (ψ ∧ φc)

P (φc)
(2.7)

In the above definition, ψ can represent any lineage formula, in particular
a query answer. After removing the possible worlds violating a constraint
from the probabilistic database, conditioning reweights the remaining worlds
such that they again form a probability distribution.

Example 2.17. We consider the lineage formula ψ = I2∧ (I5∨ I6) over the
tuples of Example 2.10. Without any constraints, its probability is computed
by Equation (2.4) as P (ψ) = 0.5 · (1 − (1 − 0.8) · (1 − 0.9)) = 0.49. If we
set φc = I2 as a constraint, we remove all possible worlds that exclude I2.
Consequently, the probability is updated to:

P (ψ | I2) =
P (I2 ∧ (I5 ∨ I6))

P (I2)
=

p(I2) · P (I5 ∨ I6)

p(I2)
= P (I5 ∨ I6) = 0.98

CHAPTER 2. BACKGROUND AND PRELIMINARIES 20

In the following, we characterize a useful property of constraints. If a
number of constraints do not share any tuple with a lineage formula ψ, then
the probability P (ψ) is not affected by the constraints.

Proposition 2.3. If the constraints φc and the lineage formula ψ are in-
dependent with respect to tuples, i.e. Tup(ψ) ∩ Tup(φc) = ∅, then it holds
that:

P (ψ | φc) = P (ψ)

Proof. Due to the second line of Equation (2.4) and Tup(ψ) ∩ Tup(φc) = ∅
we can write P (ψ ∧ φc) = P (ψ) · P (φc) . Therefore, the following equation
holds:

P (ψ | φc) =
P (ψ ∧ φc)

P (φc)
= P (ψ) ·

P (φc)

P (φc)
= P (ψ)

Hence, if we have the constraint φc ≡ true, the standard unconditioned
probability computations of Section 2.2.5 arise as special case. Finally, since
Equation (2.7) invokes probability computations on the constraint φc, con-
straints can yield #P-hard computations, which we capture next.

Observation 2.1. Constraints can cause #P-hard probability computa-
tions.

The reason is that one of the lineage formulas described in Lemma 2.2
could occur in φc.

Expressiveness The deduction rules of Definition 2.14 inducing the con-
straints can yield any propositional lineage formula, as formally shown in
Proposition 2.2. We note that restrictions on the shape of the constraints,
i.e. to avoid the #P-hardness of Observation 2.1, should follow work on
tractable probability computations in probabilistic databases. The reason
is that the complexity arises from the probability computations. In con-
trast, when solving constraints over deterministic databases, the complexity
mainly results from finding a consistent subset of the database, rather than
counting these subsets.

2.3 Algorithms

In this section, we establish algorithms for query answering with constraints
(in Section 2.3.2), and without constraints (in Section 2.3.1). These cor-
respond to procedural approaches implementing the previously introduced
definitions.

21 CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.3.1 Query Answering

We now describe how to compute query answers including their lineage
from given deduction rules and tuples. The idea is to start at the database
tuples. Then, we process deduction rules where all relations in the body were
already considered and produce the new tuples from the head relation. This
approach is usually referred to as bottom-up [2] grounding and is established
in probabilistic databases [14, 125].

In detail, Algorithm 1 first collects all intensional relations occurring in
the deduction rules in the set In as described in Line 2. Then, we iterate

Algorithm 1 QueryAnswering(T ,D, Q(X̄))

Input: Tuples T , deduction rules D, query Q(X̄)
Output: Query answers with probabilities and lineage
1: Tclosure := T
2: In := {R0 | (R0(X̄0) ← Ψ) ∈ D} ⊲ All intensional relations
3: while In 6= ∅ do

4: choose R ∈ In such that ⊲ Bottom-up manner
5: {Ri, Rj | (R ←

∧

i Ri ∧
∧

j ¬Rj) ∈ D} ∩ In = ∅
6: In := In\{R}
7: Tnew := ∅
8: for D = (R(X̄) ← Ψ) ∈ D do ⊲ Create new tuples
9: Tnew := Tnew ∪ NewTuples(D, Tclosure) ⊲ See Definition 2.5

10: for R(ā) ∈ Tnew do ⊲ Trace lineage
11: set λ(R(ā)) ⊲ See Definition 2.11

12: Tclosure := Tclosure ∪ Tnew
13: determine Answers(Q(X̄), Tclosure) ⊲ See Definition 2.7
14: for Q(ā) ∈ Answers do ⊲ Trace lineage
15: set λ(Q(ā)) ⊲ See Definition 2.11

16: for Q(ā) ∈ Answers do ⊲ Compute probabilities
17: compute P (λ(Q(ā))) ⊲ See Section 2.2.5

18: return Answers

over all intensional relations (Line 3), every time picking a relation R where
all relations of all rules defining R are either extensional or are already pro-
cessed (Lines 4 and 5). Now, we instantiate the new tuples of R (Line 8) and
trace their lineage (Line 11). Finally, when the while loop terminates, we
compute the query answers based on all new tuples (Line 13), and afterwards
we determine their lineage (Line 15) in order to compute the probability of
each answer (Line 17). Of course, in addition we can apply any optimiza-
tion known from databases [65] to Algorithm 1, such as propagating query
constants through the rules or join-order optimization.

Example 2.18. We execute Algorithm 1 for the deduction rule of Equa-
tion (2.2) and the query FamousDirector(D) over the tuples of Example 2.10.
First, Line 2 collects all intensional relations, which yields In = {Famous-

CHAPTER 2. BACKGROUND AND PRELIMINARIES 22

Director}. Hence, we can choose R := FamousDirector in Line 4. The
reason is that its defining deduction rule has only extensional relations in
its body. Therefore, the intersection of Line 5 is empty. The loop of Line 8
iterates only over the deduction rule of Equation (2.1) which delivers the
new tuples along with their lineage in Line 11:

Tuple Lineage

FamousDirector(Coppola) (I1 ∧ I4) ∨ (I2 ∧ I5) ∨ (I2 ∧ I6)
FamousDirector(Tarantino) I3 ∧ I7

Finally, Lines 13 to 15 return the above tuples as results, followed by prob-
ability computations of the lineage formulas.

2.3.2 Query Answering with Constraints

We now extend Algorithm 1 to support constraints besides queries. For
that, we assume an additional set of deduction rules Dc defining intensional
relations for the constraints, along with two sets of literals Cp and Cn to be
given (see Section 2.2.6). Grounding the literals in Cp and Cn delivers the
propositional lineage formulas resembling positive and negated constraints,
respectively.

The detailed procedure is captured in Algorithm 2. First, in Line 1 we
invoke Algorithm 1, which hence computes all query answers along with
their lineage, but neglects the constraints1. Lines 2 to 7 refer the grounding
of the constraints to Algorithm 1, again. It remains to combine all ob-
tained lineage formulas, such that the answers’ probabilities are computed
via Equation (2.7). Hence, in Lines 8 to 11, we construct the conjunction of
constraint lineage formulas φc. The following line precomputes P (φc), be-
cause it will be repeatedly invoked. In Line 14 we compute the probability
of all query answers while respecting the constraints. To conclude, it is note-
worthy to remark that Algorithm 1 results as a special case of Algorithm 2
if there are no constraints present.

Example 2.19. Let us extend Example 2.18 by setting the constraint that
all awards are certainly won, which we achieve by Cp := {C(M,A)} and by
the deduction rule:

C (M,A) ← WonAward(M,A)

First, in Line 1 we invoke Algorithm 2 which computes the query answers
as in Example 2.18. In the next line, we ground the constraints yielding:

Constraints=

{
C(ApocalypseNow ,BestScript), C(Godfather ,BestDirector),
C(Godfather ,BestPicture), C(PulpFiction,BestPicture)

}

1It suffices to run Algorithm 1 from Line 1 to 15 only.

23 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Algorithm 2 QueryAnsweringWithConstraints(T ,Dq, Q(X̄ ′),Dc, Cp, Cn)

Input: Tuples T , query deduction rules Dq, query Q(X̄ ′), constraint deduction
rules Dc, constraints C (X̄)

Output: Query answers with probabilities
1: Answers := QueryAnswering(T ,Dq, Q(X̄ ′)) ⊲ See Algorithm 1
2: Constraintsp := ∅
3: for Cp(X̄) ∈ Cp do

4: Constraintsp := QueryAnswering(T ,Dc, Cp(X̄)) ⊲ See Algorithm 1

5: Constraintsn := ∅
6: for Cn(X̄) ∈ Cn do

7: Constraintsn := QueryAnswering(T ,Dc, Cn(X̄)) ⊲ See Algorithm 1

8: if Constraintsp 6= ∅ or Constraintsn 6= ∅ then

9: φc :=
∧

C∈Constraintsp
λ(C) ∧

∧

C∈Constraintsn
¬λ(C) ⊲ See Definition 2.15

10: else

11: φc := true ⊲ See Section 2.2.6

12: Precompute P (φc)
13: for Q(ā) ∈ Answers do

14: P (Q(ā)) := P (λ(Q(ā))∧φc)
P (φc)

⊲ See Definition 2.15

15: return Answers

Therefore, we obtain φc = I4 ∧ I5 ∧ I6 ∧ I7 in Line 9. We then precompute
the probability of φc as P (φc) = 0.1 · 0.8 · 0.9 · 0.5. Based on P (φc) we can
determine the conditioned probability of the query answers in Line 14.

2.4 Related Approaches

In this section, we present further techniques from probabilistic databases
(Section 2.4.1) and related approaches, such as probabilistic XML, statistical
relational learning, and probabilistic programming.

2.4.1 Probabilistic Databases

Data Model A number of representation mechanisms for probabilistic
databases were investigated in the last years. Most closely related to our
data model are x-tuples [14], also called block-independent disjoint data-
bases [30], which allow non-overlapping blocks of tuples to be mutually ex-
clusive, and hence extend tuple-independent databases. More expressive
are pc-tables [60], which annotate each tuple by a propositional formula over
random variables. With specific restrictions on pc-tables, it is possible to
store them in a relational database. Then they are called U-relations [10].
Moreover, pvc-tables [46] are an extension of pc-tables which adds further
support for aggregations. An alternative to represent dependencies across
different tuples are decomposition trees [47]. Their inner nodes represent
independent-and, independent-or, or mutual exclusion operators over the

CHAPTER 2. BACKGROUND AND PRELIMINARIES 24

leafs which correspond to database tuples. Storing and querying correlated
tuples in a probabilistic database is considered in [76, 128]. The authors ex-
press correlations among database tuples by junction trees and additionally
allow lineage formulas on top. Likewise, in [119] factor graphs are rep-
resented by arithmetic circuits to support correlations. Finally, based on
c-tables, [79] features continuous probabilities, which are not supported by
most works in the field.

Probability Computations Propelled by the existence of queries ex-
hibiting #P-hard probability computations [58], one major focus of research
on probabilistic databases has been on efficient probability computations of
query answers. One solution are safe query plans [29], which alter the query
plan to carry out efficient probability computations while performing data
computations. In [31] a dichotomy result is shown which characterizes con-
junctive queries’ probability computations to be in either polynomial time
or #P-hard. In addition, the difference of two safe conjunctive queries can
be unsafe, as shown in [81]. For a larger set of queries, namely unions of
conjunctive queries, [28, 32] establishes an efficient algorithm either com-
puting the probabilities in polynomial time or characterizing the query as
computationally hard. Another approach is taken by works not directly act-
ing on queries, but relying on intensional semantics, e.g. on lineage formulas.
There, read-once formulas [129] are a class of formulas which both can be de-
tected efficiently and also allow efficient probability computations. Another
line of works is knowledge compilation [74, 105], which transforms lineage
formulas into various forms of binary decision diagrams. In particular, for
unions of conjunctive queries, [74] introduced a hierarchy of compilation
target languages while rating their expressiveness. Finally, if exact proba-
bilities for query answers are not required, one can employ approximation
techniques as in [47, 107]. These works incrementally create decomposi-
tion trees whose probability serves as bound on the probability of the full
lineage formula. Supporting aggregations over probabilistic databases can
yield exponentially sized results, which is studied in [117]. To avoid this,
the authors of [100] maintain only bounds on the aggregates. Furthermore,
in [46] arithmetic expressions representing aggregations are compiled into
decomposition trees, which also limits the blow-up.

Probabilistic Database Systems Most of the above approaches are im-
plemented in existing probabilistic database systems. Many of these have
been released as open-source prototypes in recent years, including Mys-
tiQ [18], MayBMS [10], SPROUT [106], Trio [14], PrDB [128], and ER-
ACER [97].

25 CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.4.2 Probabilistic XML

The eXtensible Markup Language (XML) is a document encoding yielding
tree shaped parses. If different branches of a node in a parse tree are con-
ditioned by independent or mutually exclusive probabilities, or even logical
formulas, then the notion of probabilistic XML arises. Within this field many
results are shared with probabilistic databases, since one can encode prob-
abilistic databases and probabilistic XML into each other [8]. Most results
of both fields can be transferred to each other, where the differences arise
from the tree shape of the XML documents. The complexity of the query
evaluation problem of the various probabilistic XML models is characterized
in [82]. Additionally, [4] studies the expressiveness of these models.

2.4.3 Statistical Relational Learning

Emerging from a mixture of artificial intelligence [123] and machine learn-
ing [99], the subfield of statistical relational learning [56] has many similari-
ties with probabilistic databases. They both tackle uncertainty in relational
data which is further described by logical statements.

Markov Logic Networks The most well-known statistical relational learn-
ing approach are Markov Logic Networks (MLNs) [120], which have been
subject to many improvements, e.g. [102, 121, 132]. Their grounding mech-
anism proceeds via instantiating literals with all possible constants based
on the literals’ type signatures. This is commonly referred to as open-world
assumption. In contrast, probabilistic databases rely on the closed world as-
sumption with more selective grounding via deduction rules, which usually
results in much fewer grounded tuples, and hence in much better scalability.
In Markov logic networks, dependencies between grounded literals are in-
duced by weighted logical clauses where all literals have an equal impact on
the truth value of the clause. All these clauses are kept in a large conjunctive
formula resembling an undirected graphical model. Conversely, probabilis-
tic databases use unweighted lineage formulas, where all input tuples fully
determine the truth value of the output tuple. Hence, in this case the lin-
eage formulas take acyclic directed structures, as opposed to one conjunctive
formula in Markov logic networks. A step to merge both worlds was taken
in MarkoViews [73] where probabilistic databases are extended by uncer-
tain views inspired by Markov logic networks. Finally, we compete against
Markov logic networks implementations throughout the experiments in this
thesis.

2.4.4 Probabilistic Programming

In probabilistic programming known programming frameworks, such as Pro-
log [90], are extended by probabilities.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 26

ProbLog Most closely related to our data model, tuple-independent prob-
abilistic databases with lineage, is ProbLog [33], where the similarities are
discussed in [143]. Their input facts are annotated with independent proba-
bilities and are correlated by rules known from Prolog [90]. After executing
the rules, ProbLog keeps the SLD proofs to perform probability compu-
tations, which can be viewed as lineage tracing in probabilistic databases.
The major difference is that probabilistic databases return all answers to a
query with their respective probability, whereas ProbLog queries rather ask
whether an answer exists at all. Because of these similarities, ProbLog will
be a competitor in our experiments.

2.5 Application: Information Extraction

One of the major application domains of probabilistic databases is informa-
tion extraction [155]. Its goal is to harvest factual knowledge from free-text
to bring it into a more machine-readable format, i.e. into database tuples.
For example, the sentence “Spielberg won the Academy Award for Best
Director for Schindler’s List (1993) and Saving Private Ryan (1998)” from
Steven Spielberg’s Wikipedia page2, contains the knowledge that Spielberg
won an AcademyAward, which we could represent as WonAward(Spielberg ,
AcademyAward). Due to the many ways of rephrasing in natural language,
an automatic machinery mining the facts from text produces some erroneous
facts. So, its resulting data is never clean, but rather uncertain. Since the
web is full of text and facts, managing the vast amounts of extracted and
hence uncertain facts is a prime application of probabilistic databases.

For illustration, we model the information extraction process in a prob-
abilistic database. Usually candidates for facts in sentences are detected
by textual patterns [19, 101]. For instance, for winning an award, the sin-
gle word “won” might be a good indicator. In our probabilistic database
we want to capture the different ingredients that yield to the extraction of
a fact. Besides the textual pattern, this could be the web domain where
we found the sentence of interest. Hence, we store these in separate prob-
abilistic relations as shown in Figure 2.1. Therefore, the probabilities of
the tuples of each domain and each pattern reflect our trust in this source
and pattern, respectively. To reconcile the facts along with their resulting
probabilities from the probabilistic database of Figure 2.1, we employ two
deduction rules. In essence, they formulate a join on Pid and Did to connect
the pattern and domain to the actual fact:

WonPrize(S,O) ←

WonPrizeExtraction(S,O,Pid ,Did)
∧UsingPattern(Pid , P)
∧FromDomain(Did , D)

 (2.8)

2http://en.wikipedia.org/wiki/Steven Spielberg (accessed December 22nd, 2013)

http://en.wikipedia.org/wiki/Steven_Spielberg

27 CHAPTER 2. BACKGROUND AND PRELIMINARIES

WonPrizeExtraction
Subject Object Pid Did p

I1 Spielberg AcademyAward 1 1 1.0
I2 Spielberg AcademyAward 2 1 1.0

BornInExtraction
Subject Object Pid Did p

I3 Spielberg Cincinnati 3 1 1.0
I4 Spielberg LosAngeles 3 2 1.0

UsingPattern FromDomain
Pid Pattern p Did Domain p

I5 1 Received 0.8 I8 1 Wikipedia.org 0.9
I6 2 Won 0.5 I9 2 Imdb.com 0.8
I7 3 Born 0.9

Figure 2.1: An Example Probabilistic Database for Information Extraction

BornIn(S,O) ←

BornInExtraction(S,O,Pid ,Did)
∧UsingPattern(Pid , P)
∧FromDomain(Did , D)

 (2.9)

If we execute a query on the WonPrize or BornIn relation, then the proba-
bilities of the pattern and domain establish the probability of each fact.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 28

Chapter 3

Temporal Probabilistic Data

Model

3.1 Introduction

In recent years, temporal databases and probabilistic databases have both
become highly developed research fields. In this chapter we focus on their
intersection, i.e. data that is valid during a specific time with a given proba-
bility. Hence, our goal is to devise a closed and complete data model where
tuples have probabilities over temporal annotations both in the database as
well as in the query answers. To the present day in this setting only very
few works exist which we briefly discuss next.

Uncertainty in Temporal Databases In previous works from the tem-
poral databases field, the representation of uncertainty over time is referred
to as temporal indeterminacy [9, 42, 142]. These works allow temporal an-
notations to be specified by precedence statements or by probability distri-
butions over time. Still, running queries on top of these annotations pro-
duces either deterministic answers or, if the probabilities are propagated, the
queries are restricted to joins over independent relations. Starting at tem-
poral databases, Dekhtyar et al. [35] addresses specifically temporal prob-
abilistic databases, but they approximate probabilities by coarse bounds.
Thus, their data model is not closed and complete.

Time in Probabilistic Databases To the best of our knowledge, there
has been only one work [126] on modeling time in probabilistic databases. Its
focus is updating and versioning of probabilistic databases. However, this
notion of time called transaction-time [71], is different. It captures when
tuples are inserted or altered in the database. In this chapter, we consider
the temporal validity of a tuple in the real world, called valid-time [71].

29

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 30

Sources of Uncertain Temporal Data There are many sources yielding
both temporal and probabilistic data, which call for a system natively sup-
porting uncertain temporal data. First, every time measurement is imprecise
which results in uncertainty. For instance, every clock comes with a degree
of precision. This argument holds even more for advanced techniques, such
as radiocarbon dating, whose imprecision is in the order of several decades.
In addition, in temporal information we often face uncertainty caused by
coarse granularities. For many events, we might be aware of the year they
took place, but might not know the exact day, for example. Likewise, in
project planning intended completion dates tend to be loosely defined, such
as “the project will complete in three to six months from now on”. Even if
the temporal data is precise, but it is given in an unstructured format (e.g.
by written text) uncertainty can arise. The reason is that an automated in-
formation extraction machinery acting on the unstructured input commits
errors which then induce uncertainty. Finally, inconsistencies over temporal
data, such as finding more than one birth date for a person, produce several
valid alternatives, which we can reason about probabilistically.

Our Approach In this chapter, we introduce a closed and complete tem-
poral-probabilistic data model [39], which features queries as well as consis-
tency constraints. We consider database tuples being annotated by time-
intervals each of which in turn have a probability (Section 3.4.3). Over
such tuples we execute queries expressed by temporal deduction rules (Sec-
tion 3.4.5). Their results, the query answers, have the same structure as the
database tuples, namely time-intervals with probabilities. Besides queries,
we allow temporal consistency constraints, such as temporal precedence or
disjointness requirements (Section 3.4.8). These constraints alter the proba-
bilities of the time-intervals of the query answers. We perform all necessary
probability computations via data lineage which we extend to capture both
time and probabilities (Section 3.4.6).

Problem Statement In short, we are given as input:

• data which is annotated by both time-intervals and probabilities;

• a query over this data represented by deduction rules;

• and optionally consistency constraints.

As output we deliver:

• query answers with a probability at each time-interval.

We illustrate this setting by the following example.

31 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

BornIn
Subject Object Valid Time p

I1 DeNiro Greenwich [1943-08-17, 1943-08-18) 0.9
I2 DeNiro Tribeca [1998-01-01, 1999-01-01) 0.6

Wedding
Subject Object Valid Time p

I3 DeNiro Abbott [1936-11-01, 1936-12-01) 0.3
I4 DeNiro Abbott [1976-07-29, 1976-07-30) 0.8

Divorce
Subject Object Valid Time p

I5 DeNiro Abbott [1988-09-01, 1988-12-01) 0.8

Figure 3.1: An exemplary Temporal Probabilistic Database

Example 3.1. Our running example is centered around the actor “Robert
De Niro” about whom the temporal probabilistic database of Figure 3.1 cap-
tures a number of facts. Tuple I1 expresses that De Niro was born in Green-
wich Village (New York) on August 17th, 1943, which is encoded into the
time-interval [1943-08-17, 1943-08-18) using the ISO standardized Internet
date/time format. This tuple is true for the given time-interval with probabil-
ity 0.9, and it is false, or does not exist, for this interval with probability 0.1.
Furthermore, tuples are always false outside their attached time-intervals.
Notice that another tuple, I2, states that De Niro could have also been born
in Tribeca in the interval [1998-01-01, 1999-01-01) with probability 0.6. In
the remainders of this chapter, we investigate how to evaluate queries over
this kind of data, i.e. how to propagate time and probabilities from the data-
base to the query answers. We also discuss consistency constraints. For
instance the two tuples of BornIn state different birth places of De Niro, an
inconsistency we should rule out by the use of constraints.

3.2 Related Work

In computer science there is a long line of research on representing time,
especially in artificial intelligence [51], logic [104, 92], scheduling [111], time
series analysis [20], and temporal databases [71]. Additionally, there even
exists a dedicated annual symposium, TIME1, which accepts solely works on
temporal concepts from some of the aforementioned fields. In this section,
however, we focus on the facets relevant to this thesis, which are temporal
databases, probabilistic databases and temporal constraints.

1http://time.di.unimi.it/TIME_Home.html

http://time.di.unimi.it/TIME_Home.html

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 32

Temporal Datalog Research on temporal versions of Datalog mostly con-
siders the temporal successor relation [23, 24]. That is, each relation is an-
notated by a time-point and the successor relation allows reasoning towards
the future. Here, recursion induces theoretically interesting settings, where
mostly conditions for finiteness are discussed. Recently, this idea was im-
plemented in Dedalus [7] to model distributed systems. To the best of our
knowledge, none of these works considers uncertainty.

Temporal Databases Managing temporal data in databases has been an
active research field for many years, where Jensen’s PhD thesis [71] still is
a comprehensive reference. In general, there are two ways [5, 71] of mod-
eling temporal annotations, either by time-points or by time-intervals. For
the latter, Allen’s interval algebra [6] is the most influential work, since it
discusses all possible relationships between two intervals. Building on these
data models, the most notable temporal query language is TSQL2 [71, 134],
which supports a variety of temporal features. It captures both valid-time,
which describes when a tuple is true in the real world, and transaction-
time, which captures when tuples were created or altered. Also, coalescing
of consecutive temporal annotations and time varying aggregates are part
of TSQL2. Likewise, TSQL2 offers support for uncertainty about temporal
annotations which is referred to as temporal indeterminacy [9, 42, 142]. The
uncertainty in the tuples can be captured by inequalities or user-defined
probability distributions. Over these tuples it is possible to run queries,
which feature temporal arithmetic predicates such as comparing two uncer-
tain temporal annotations. Still, we have to note that either their query
results are deterministic or probabilities can only be multiplied, hence re-
stricting the queries for which correct probabilities are computed to joins
of independent relations. Finally, nowadays even the SQL 2011 standard
contains some of TSQL2’s temporal properties [84].

Temporal Databases and Lineage Dignös et al. [37] describe how to
enable the usage of sequenced semantics in temporal databases relying on
lineage information. Intuitively, the sequenced semantics reduces a tempo-
ral operation to corresponding non-temporal operations over the individual
snapshots of the database at each point in time. However, their approach
does not support probabilistic data, and the non-sequenced semantics (see
Section 3.5.4) we follow in this work is more expressive.

Temporal Probabilistic Databases There are relatively few works in
the intersection of temporal databases and probabilistic databases. Dekht-
yar et al. [35] introduce temporal probabilistic relations by adding time to a
probabilistic database. Relations are defined via discrete probability distri-
butions over time, and they also consider consistency constraints. However,

33 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

[35] does not provide a closed probabilistic database model since they do not
support lineage information, and they approximate probabilities by coarse
upper and lower bounds. Wang et al. [154] perform a simple form of proba-
bilistic deduction of temporal annotations based on time histograms. They
employ lineage but allow no constraints and their deduction capabilities are
limited to overlapping temporal annotations. LIVE [126], which is an off-
spring of the Trio [14] probabilistic database system, employs a temporal
database model by considering transaction-time annotations, thus focusing
on efficiently supporting data modifications and versioning. In contrast,
valid-time annotations, which we consider, refer to a time-interval during
which a tuple is considered to be true in the real world. Research in un-
certain spatio-temporal databases, such as [43], focuses on stochastically
modeling trajectories through space and time. In contrast to our work,
they do not employ concepts known from probabilistic databases, such as a
possible-worlds model with data lineage. Finally, for time-series databases,
the authors of [127] describe how to learn probability distributions by esti-
mating densities, which is a very different setup compared to our relational
database setup.

Temporal Constraints Imposing constraints on temporal data has a long
history in research. Often constraints are formulated by Allen’s interval re-
lationships [6], which we support as well. Another common representation
for temporal constraints are graphs [34]. The traditional way of solving the
resulting problem are constraint satisfaction programs [11]. Recent works
consider more sophisticated logical reasoning techniques, such as Satisfia-
bility Modulo Theories (SMT) solving [75, 144]. With respect to different
classes of temporal constraints, in [85] a study is presented characterizing
the complexity of solving them. Also, scheduling problems [40, 111] encode
temporal constraints and compute a solution to them. The common theme
to all of the above approaches, however, is that they intend to compute only
one possible solution for the given temporal constraints. Since we work on
probabilities, we are counting all possible solutions, instead.

3.3 Contribution

This chapter presents a unified temporal probabilistic database model [39] in
which both time and probability are considered as first-class citizens.

• Specifically, in Section 3.4.5 we define an expressive class of tempo-
ral deduction rules, before we study lineage tracing in the presence
of both time and uncertain data in Section 3.4.6, and eventually in
Section 3.4.8 devise how temporal consistency constraints can be in-
corporated.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 34

• Moreover, we investigate the properties of the introduced data model
from a theoretical perspective. In detail, we analyze the complexity of
data computations (Section 3.5.1) as well as probability computations
(Section 3.5.2). We show that our data model is closed and complete
(Section 3.5.3), and we characterize its relationship to sequenced se-
mantics (Section 3.5.4).

• Furthermore, in Section 3.6.2 we introduce an efficient algorithm for
temporal deduplication of Section 3.4.6, which can be plugged into any
probabilistic database system with lineage, hence enabling support of
temporal data.

• Finally, in Section 3.7 we experimentally evaluate our data model and
algorithms on two datasets from the domains of temporal informa-
tion extraction and temporal knowledge bases. On these, we compete
with state-of-the-art methods from probabilistic databases, statistical
relation learning, and constraint-solving via integer linear programs.

3.4 Temporal Data Model

In this section we present our data model that supports queries and con-
straints over temporal and probabilistic data.

3.4.1 Time Domain

We start with the most important point, namely our model of time. As in a
calendar, there are a number of choices to take. First, we have to decide on
the granularity of time, which could be days, hours or minutes, for instance.
Also, we should determine whether time is finite, and, if so, when it starts
or ends, e.g. at the first or last day of a year, respectively.

Technically, we adopt the view of time as points which then can be
coalesced to form intervals [71, 148]. We consider the time universe UT

as a linearly ordered finite sequence of time points, e.g. days, minutes or
even milliseconds. Considering time to be finite and discrete later ensures
that there are finitely many possible worlds. A time-interval consists of
a contiguous and finite set of time points over UT , which we denote by a
half-open interval [tb, te) where tb, te ∈ UT and tb before te. For instance,
a day can be viewed as an interval of hours. Moreover, we employ the
two constants tmin, tmax to denote the earliest and latest time point in UT ,
respectively. Finally, temporal variables are written as T or [Tb, Te), if we
refer to a time-interval.

We do not consider the finiteness of UT to be any limitation of our model
in practice, since we can always choose tmin, tmax as the earliest and latest
time points we observe among the tuples and deduction rules. Also, discrete

35 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

time-points of fixed granularity do not present any restraint, as we can resort
to employing time-points of smaller granularity than observed in the data.

Example 3.2. Regarding the database of Figure 3.1, UT comprises the se-
quence of days starting at tmin := 1936-11-01 and ending at tmax := 1999-01-
01. We could equally choose any more fine-grained unit for the time-points,
but for presentation purposes we select days.

3.4.2 Relations and Tuples

We now relate data to time, that is, tuples are considered valid during a spe-
cific time only and otherwise invalid. For this, we extend the relations intro-
duced in Section 2.1.1 to temporal relations, following work by [1, 71, 145].
We annotate each tuple by a time-interval specifying the validity of the tuple
over time, a technique, which is commonly referred to as tuple timestamp-
ing [71]. More detailed, a temporal relation RT is a logical predicate of arity
r ≥ 3, whose latter two arguments are temporal. Hence, an instance of a
temporal relation is a finite subset RT ⊆ Ur−2 × UT × UT . Therein, we
require the temporal arguments tb, te of a tuple RT(ā, tb, te) to form a time-
interval [tb, te). Choosing intervals over time-points has the advantage that
the storage costs are independent of the granularity of the time-points.

Example 3.3. The tuple BornIn(DeNiro,Greenwich, 1943-08-17, 1943-08-
18) of Figure 3.1 is valid only at one day, namely on August 17th 1943.

In general, a temporal relation instance can contain several tuples with
equivalent non-temporal arguments ā, but with varying temporal arguments.
For instance, assume we have two tuples describing De Niro’s birthday, one
timestamped with the year 1943 and one by the day 1943-08-18. Then, a
database engine might conclude that he was born twice on August 18th,
1943 with different probabilities. To resolve this issue, we enforce the time-
intervals of tuples with identical non-temporal arguments to be disjoint,
where a relation instance obeying this is termed duplicate-free [37].

Definition 3.1. A temporal relation instance RT is called duplicate-free,
if for all pairs of tuples RT (ā, tb, te), R

T (ā′, t′b, t
′
e) ∈ RT it holds that:

ā = ā′ ⇒ [tb, te) ∩ [t′b, t
′
e) = ∅

The above definition does not affect tuples of different non-temporal
arguments or with non-overlapping temporal arguments.

Example 3.4. In Figure 3.1 the temporal relation instance Wedding is
duplicate-free, as both tuples have equivalent non-temporal arguments, but
their intervals are non-overlapping.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 36

3.4.3 Temporal Probabilistic Databases

In this section, we extend tuple-independent probabilistic databases of Def-
inition 2.10 to temporal data as in [39]. Intuitively, each tuple has two
annotations: a temporal and a probabilistic one. Hence, each tuple exists
only during a given time and with a given probability. Supporting both
probability and time annotations allows to represent data where we are un-
sure about the time when it is valid.

Definition 3.2. For temporal relations RT
1 , . . . , R

T
n a tuple-independent

temporal probabilistic database (T , p,UT) is a triple, where

1. T := RT
1 ∪ · · · ∪ RT

n is a finite set of tuples;

2. ∀i ∈ {1, . . . , n} : RT
i is duplicate-free;

3. all tuples RT
i (ā, tb, te) of all relation instances RT

i share the time uni-
verse UT , that is, tb, te ∈ UT ;

4. p is a function p : T → (0, 1] which assigns a non-zero probability
value p(I) to each tuple I ∈ T ;

5. the probability values of all tuples in T are assumed to be independent.

Above, the first, fourth and fifth condition are analogous to Defini-
tion 2.10. Still, we here consider temporal relation instances RT

i and re-
quire them to be duplicate-free (see Definition 3.1). Additionally, all time-
points occurring in any relation instance RT

i must be contained in the time
universe UT . We highlight that the probabilities of two tuples R(ā, tb, te)
and R(ā, t′b, t

′
e), even if they share ā, are independent due to the fifth con-

dition. In the remaining parts of the thesis we will often drop the term
tuple-independent when we refer to a temporal probabilistic database. As
in Chapter 2, correlations among tuples will be induced by constraints and
queries.

Example 3.5. The temporal relation instances of Figure 3.1, with their time
universe defined in Example 3.2 form the temporal probabilistic database
({I1, I2, I3, I4, I5}, p, 〈1936-11-01, . . . , 1999-01-01〉).

Since tuple probabilities here are defined as in probabilistic databases,
and UT is finite as well as discrete, the possible worlds of Section 2.2.1
apply to temporal probabilistic databases as well. Now, we characterize the
relationship between temporal probabilistic databases and (non-temporal)
probabilistic databases.

Proposition 3.1. Every probabilistic database instance (T , p) can be en-
coded in a temporal probabilistic database instance (T ′, p,UT).

Proof. To achieve the encoding we create the time universe UT := 〈1, 2〉,
expand each relation R in T by two temporal arguments, and set T ′ :=
{RT (ā, 1, 2) | R(ā) ∈ T }.

37 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

3.4.4 Arithmetic Predicates

To express temporal statements, it is necessary to be able to compare tem-
poral annotations in form of time-points. Hence, we support two temporal
arithmetic predicates =T and <T [51, 104], which check for the equality and
precedence of time-points, respectively.

Definition 3.3. For t1, t2 ∈ UT the temporal arithmetic predicates =T and
<T are evaluated as follows:

t1 =
T t2 ≡

{
true if t1 = t2,
false otherwise,

t1 <
T t2 ≡

{
true if t1 strictly before t2 in UT ,
false otherwise.

In other words, =T is satisfied, whenever two time-points are identical,
whereas <T compares the order of two time-points in UT .

Example 3.6. Since 1998-01-01 is before 1999-01-01, we have 1998-01-
01 <T 1999-01-01 ≡ true.

By utilizing conjunctions of <T and =T predicates over the temporal
arguments, we are able to express all the 13 relationships between time-
intervals defined in the seminal work of Allen [6], such as overlaps, disjoint
or starts.

Proposition 3.2. We can express all 13 relationships between two time
intervals as defined by Allen [6] by relying on conjunctions of =T and <T .

Proof.

Allen’s relation Our encoding

[Tb, Te) before [T ′
b, T

′
e) Te <

T T ′
b

[Tb, Te) equal [T
′
b, T

′
e) Tb =

T T ′
b ∧ Te =

T T ′
e

[Tb, Te) meets [T ′
b, T

′
e) Te =

T T ′
b

[Tb, Te) overlaps [T
′
b, T

′
e) Tb <

T T ′
b ∧ T ′

b <
T Te ∧ Te <

T T ′
e

[Tb, Te) during [T ′
b, T

′
e) T ′

b <
T Tb ∧ Te <

T T ′
e

[Tb, Te) starts [T
′
b, T

′
e) Tb =

T T ′
b ∧ Te <

T T ′
e

[Tb, Te) finishes [T
′
b, T

′
e) T ′

b <
T Tb ∧ Te =

T T ′
e

The remaining 6 relationships are the inverse of one of the above ones, except
for equality which is symmetric.

3.4.5 Deduction Rules

Next, we devise temporal deduction rules, that is, general “if-then” rules
which mention time. Formally, our temporal deduction rules [39] are logical
implications over temporal relations and temporal arithmetic predicates,
defined as follows.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 38

Definition 3.4. A temporal deduction rule is a logical rule of the form

RT
0 (X̄0, Tb, Te) ←

∧

i=1,...,n

RT
i (X̄i, Ti,b, Ti,e) ∧

∧

j=1,...,m

¬RT
j (X̄j , Tj,b, Tj,e) ∧Φ(X̄, T̄)

(3.1)
where

1. all requirements of Definition 2.2 hold;

2. Tb, Te, Ti,b, Ti,e, Tj,b, Tj,e and T̄ are temporal constants and variables,
where Var(Tb, Te),Var(Tj,b, Tj,e),Var(T̄) ⊆

⋃

iVar(Ti,b, Ti,e);

3. Φ(X̄, T̄) is a conjunction of literals over the arithmetic predicates, such
as = and 6=, and the temporal arithmetic predicates =T and ≤T .

With respect to non-temporal arguments all restrictions of non-temporal
deduction rules (see Definition 2.2) hold. Combining this fact with the
second requirement above, we conclude that temporal deduction rules are
safe [2]. Furthermore, the third condition allows the temporal arithmetic
predicates of Definition 3.3 to occur in temporal deduction rules. Of course,
also non-temporal relations are allowed in temporal deduction rules, hence
inducing mixtures of temporal and non-temporal rules. We note that the
above class of temporal deduction rules is very expressive, as it allows Tb, Te

to be constants or to be variables from different literals RT
i . In particular,

the rules do not obey the sequenced semantics (see Section 3.5.4). Finally,
as in Chapter 2 we assume the rules to be non-recursive.

Example 3.7. Given the tuples of Figure 3.1 about both De Niro’s wedding
and divorce with Dianne Abbott, we aim to deduce the time-interval of their
marriage by temporal deduction rules. The first rule states that a couple
stays married from the begin time point of their wedding (denoted by the
variable Tb,1) until to the last possible time point we consider (denoted by
the constant tmax), unless there is a divorce tuple.

MarriageT(P1, P2, Tb,1, tmax)←

(
WeddingT(P1, P2, Tb,1, Te,1)∧

¬Divorce(P1, P2)

)

(3.2)

Here, the existence of a divorce independent of time is modeled by the fol-
lowing projection:

Divorce(P1, P2) ← DivorceT(P1, P2, Tb, Te)

The second rule states that a couple stays married from the begin time point
of their wedding till the end time point of their divorce.

MarriageT(P1, P2, Tb,1, Te,2)←

WeddingT(P1, P2, Tb,1, Te,1)∧
DivorceT(P1, P2, Tb,2, Te,2) ∧

Te,1<
T Tb,2

 (3.3)

Thereby, we consider only weddings that took place before divorces as stated
by Te,1<

T Tb,2.

39 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

3.4.6 Lineage and Deduplication

As in Section 2.2.4, we trace the deduction history of tuples via lineage,
however, with the additional twist that it may vary over time. Since tem-
poral deduction rules are safe, the groundings G(D, T) of Definition 2.4 and
the new tuples NewTuples(D, T) of Definition 2.5 apply to temporal deduc-
tion rules as well. Hence, at first glance lineage tracing according to Defi-
nition 2.11 works in a temporal context, but with one random variable for
each tuple with its time-interval. However, if we execute temporal deduction
rules, the newly derived tuples may not necessarily define a duplicate-free
relation instance. We illustrate this issue by the following example.

Example 3.8. Let the deduction rules of Example 3.7 and the tuples of
Figure 3.1 be given. Now, in Figure 3.2 we visualize both the tuples from
database (on the bottom) and the deduced tuples (in the middle). Inspecting

Figure 3.2: Deducing & deduplicating tuples with time-intervals

the deduced tuples, we realize that they have equivalent non-temporal ar-
guments, i.e. DeNiro and Abbott, but their time-intervals are overlapping,
which contradicts Definition 3.1 of duplicate-free relation instances.

Hence, in order to convert a temporal relation instance with duplicates
(as shown in the middle box of Figure 3.2) into a duplicate-free tempo-
ral relation (as shown on the top of Figure 3.2), we provide the following
definition.

Definition 3.5. Let a temporal relation RT , non-temporal constants ā, a
time point t ∈ UT , and a set of tuples T be given. Then, L is defined as the

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 40

set of lineages of tuples RT (ā, tb, te) that are valid at time point t:

L(RT , ā, t, T) := {λ(I) | I = RT (ā, tb, te) ∈ T , tb ≤ t < te}

We create duplicate free tuples I ′ = RT (ā, tb, te) such that for any pair of
time points t0, t1 ∈ [tb, te) it holds that:

L(RT , ā, t0, T) = L(RT , ā, t1, T) (3.4)

Furthermore, we define the new tuples’ lineage to be:

λ(I ′) :=
∨

φi∈L(RT ,ā,tb,T)

φi (3.5)

In short, for each time-point t we create the disjunction of all tuples being
valid at t (see Equation 3.5). More detailed, for a given relation instance and
the non-temporal arguments of a tuple, L is the set of all tuples’ lineages that
share the same non-temporal arguments and which are valid at time point
t. Hence, consecutive time-points for which L contains the same lineage
formulas form the new intervals (see Equation (3.4)). We remark that for
the equality of Equation (3.4), we focus on syntactical equivalence checks
between lineage formulas. Nevertheless, we refrain from logical equivalence
checks, as they are co-NP-complete [25].

Example 3.9. Applying Definition 3.5 to the tuples in the middle of Fig-
ure 3.2 yields the tuples shown at the top of the figure. For instance, if
we inspect L at the time points 1976-07-28 and 1976-07-29, we notice that
{I3∧ I5, I3∧¬I5} 6= {I3∧ I5, I3∧¬I5, I4∧ I5, I4∧¬I5}, so two differing tuples
I6 and I7 have to be kept in the relation. In total, the resulting duplicate-free
tuples are:

Marriage
Subject Object Valid Time

I6 DeNiro Abbott [1936-11-01, 1976-07-29)
I7 DeNiro Abbott [1976-07-29, 1988-12-01)
I8 DeNiro Abbott [1988-12-01, tmax)

Following Equation (3.5), their lineages are:

λ(I6) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5)
λ(I7) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5) ∨ (I4 ∧ I5) ∨ (I4 ∧ ¬I5)
λ(I8) = (I3 ∧ ¬I5) ∨ (I4 ∧ ¬I5)

Hence, for temporal deduction rules the combination of Definitions 2.11
and 3.5 creates the lineage formulas. We want to remark that these lineage
formulas are purely propositional formulas as captured below.

Observation 3.1. Temporal deduction rules and deduplication produce propo-
sitional lineage formula without any explicit mention of time.

Hence, any work on probabilistic databases with lineage can be applied,
especially probability computations (see Section 2.2.5).

41 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

3.4.7 Queries and Answers

As a last step we introduce temporal queries which extend Definition 2.6 by
a temporal component. A query resembles the body of a temporal deduction
rule.

Definition 3.6. Given temporal deduction rules D with their intensional
relations a temporal query Q is a conjunction:

Q(X̄0, T̄0) :=
∧

i=1,...,n

RT
i (X̄i, Ti,b, Ti,e) ∧

∧

j=1,...,m

¬RT
j (X̄j , Tj,b, Tj,e) ∧Φ(X̄, T̄)

where

1. all requirements of Definition 2.6 hold;

2. T̄0, Ti,b, Ti,e, Tj,b, Tj,e and T̄ are temporal constants and variables,
which satisfy:

(a) Var(T̄0) =
⋃

i=1,...,nVar(Ti,b, Ti,e);

(b) ∀j ∈ {1, . . . ,m} Var(Tj,b, Tj,e) ⊆
⋃

i=1,...,nVar(Ti,b, Ti,e);

(c) Var(T̄) ⊆
⋃

i=1,...,nVar(Ti,b, Ti,e);

3. Var(X̄0) ∪Var(T̄0) are the query variables;

4. Φ(X̄, T̄) is a conjunction of (temporal) arithmetic literals.

Temporal queries inherit all properties from non-temporal queries (see
Definition 2.6), in particular that all relations are intensional. The first and
second condition above ensure safe [2] queries. In this chapter, the query
variables are formed by both the variables in X̄0 and in T̄0. With respect to
arithmetic predicates we support non-temporal ones as in Section 2.1.4 and
the temporal ones from Definition 3.3.

Example 3.10. If we are interested in people who were married before 1980,
we write the query

Marriage(P1, P2, Tb, Te) ∧ Tb <
T 1980-01-01

where the intensional relation Marriage is defined in Example 3.7.

Since the restrictions on variables of Definition 2.6 and Definition 3.6
coincide, query answers can be obtained as in the non-temporal case of
Definition 2.7.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 42

3.4.8 Constraints

In Section 2.2.6 we introduced constraints as propositional lineage formula
φc. Following Definition 2.14, we can create constraints by deduction rules.
For this, we keep two sets of literals Cp and Cn which indicate constraints
that always hold and never hold, respectively. Then, the literals of both sets
induce the lineage formula φc (see Definition 2.14). Hence, in this chapter
constraints are formulated as temporal deduction rules. As we support tem-
poral arithmetic predicates (see Definition 3.3) in the temporal deduction
rules, we can express any temporal precedence (ordering) constraint, and
any temporal disjointness or containment constraint.

Example 3.11. If we intend to enforce that persons are born before their
marriage starts, we write

Constraint(P1, P2, Tb, Te, T
′
b, T

′
e) ←

(
BornT(P1, Tb, Te)∧

MarriageT(P1, P2, T
′
b, T

′
e)∧

T ′
b <

T Te

)

(3.6)
and add Constraint(P1, P2, Tb, Te, T

′
b, T

′
e) to Cn. To shorten notation we also

write the above constraint as:

¬(BornT(P1, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

Here, the negation resembles that the head literal of Equation (3.6) is in Cn,
i.e. it should never hold. When we ground the above constraint, all pairs of
MarriageT and BornT tuples contradicting the correct temporal ordering are
excluded by φc.

3.5 Theoretical Properties

In this section, we describe the properties of our temporal probabilistic data-
base model [39] with respect to grounding, probability computations, and
its representational power.

3.5.1 Grounding Complexity

We first investigate the computational complexity of grounding, that is in-
stantiating all deduction rules and the query against a database to obtain
answers with their lineage formulas.

Theorem 3.1. For a temporal probabilistic database (T , p,UT), a fixed set
of temporal deduction rules D and a fixed query Q, grounding has polynomial
data complexity in |T | and |UT |.

Because both queries and constraints are represented by deduction rules,
the above theorem applies to both of them individually, which in combina-
tion yields polynomial complexity again.

43 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

Proof. Due to Lemma 2.1 grounding deduction rules with lineage tracing
has polynomial data complexity. We proceed by a reduction from temporal
deduction rules to non-temporal Datalog with inequalities. The latter has
polynomial data complexity due to Lemma 2.1, which hence implies polyno-
mial data complexity for the temporal case. During the proof we will deploy
several indices at relation symbols R, hence, to avoid cluttering we drop T

in RT throughout the proof.
First, let UT be isomorphic to a finite subset of the natural numbers.

For each temporal (and probabilistic) relation R(X̄, Tb, Te), we introduce an
additional deterministic relation Rd (X̄, Tb, Te). For extensional relations,
we copy all tuples into the new relation, and we set the probabilities ∀I ∈
Rd : P (I) = 1.0. We then rewrite a general rule of Equation (3.1) as follows.
First, we create a deterministic version of the rule:

Rd(X̄0, Tb, Te) ←
∧

i

Rd
i (X̄i, Tb,i, Te,i) ∧

∧

j

¬Rd
j (X̄j , Tb,j , Te,j) ∧ Φ(X̄, T̄)

Applying this rule yields all tuples as deterministic tuples, which are not
necessarily duplicate-free. To counter this we follow Definition 3.5 using
Datalog only. Therefore, we gather all limits of time-intervals by the follow-
ing two rules over the deterministic relations:

LimitdR(X̄, Tb) ← Rd(X̄, Tb, Te)

LimitdR(X̄, Te) ← Rd(X̄, Tb, Te)

To ensure that the intervals are non-overlapping, we create another deter-
ministic relation which is instantiated for each pair of time points (denoted
by the variables T1, T3), if there is at least one Limit tuple in between:

Betweend
R(X̄, T1, T3) ←

LimitdR(X̄, T1) ∧ LimitdR(X̄, T2)∧
LimitdR(X̄, T3) ∧ T1 < T2 ∧ T2 < T3

Now, we deduce all adjacent, non-overlapping time-intervals (i.e., shown in
the upper part of Figure 3.2) by the following rule:

IntervaldR(X̄, Tb, Te) ←
LimitdR(X̄, Tb) ∧ LimitdR(X̄, Te)

∧Tb < Te ∧ ¬Betweend
R(X̄, Tb, Te)

These intervals are duplicate-free as demanded by Definition 3.1. At this
point, we are able to deduce the time-intervals as deterministic tuples, how-
ever, we are missing rules to induce the correct lineage, i.e. of Equation (3.5),
in order to compute probabilities. Thus, in the final step, we create another
copy of Equation (3.1) where R′ is a new relation:

R′(X̄0, Tb, Te) ←
∧

i

Ri(X̄i, Tb,i, Te,i) ∧
∧

j

¬Rj(X̄j , Tb,j , Te,j) ∧ Φ(X̄, T̄)

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 44

Again, its deduced time-intervals correspond to the ones on middle of Fig-
ure 3.2. We add a final deduction rule which combines the deduced tu-
ples with their correct time-intervals from IntervaldR and creates the logical
disjunction in the lineage as required by Definition 3.5, thus utilizing the
uncertain tuples of R′:

R(X̄, T ′
b, T

′
e) ← R′(X̄, Tb, Te) ∧ IntervaldR(X̄, T ′

b, T
′
e) ∧ Tb ≤ T ′

b ∧ T ′
e ≤ Te

We note that the time-interval [T ′
b, T

′
e) of the head originates from the literal

IntervaldR(X̄, T ′
b, T

′
e), hence the tuples deduced from R′ are duplicate-free.

Also, all tuples in R′(X̄, Tb, Te), whose time-interval contains [T ′
b, T

′
e), de-

duce R(X̄, T ′
b, T

′
e), so the logical disjunction of Equation (3.5) is produced.

Furthermore, since IntervaldR is deterministic, the probability of the deduced
tuple entirely depends on R′.

If we apply the above procedure to all temporal deduction rules, we ob-
tain a polynomial blow-up in the size of the data and the number of rules.
Since the data complexity of non-recursive Datalog with inequalities and lin-
eage tracing is polynomial (see Lemma 2.1), also our model has polynomial
data complexity.

3.5.2 Probability Computations Complexity

We next study hard cases of computing probabilities which can result from
temporal deduction rules of a query over a temporal probabilistic database.

Lemma 3.1. For a temporal probabilistic database (T , p,UT) there are tem-
poral deduction rules D for which probability computations are #P-hard in
|T | and |UT |.

Proof. Consider a temporal probabilistic database (T , p,UT) and the deduc-
tion rule

RT (X̄, T ′
b, T

′
e) ← RT

1 (X̄, Tb, T
′
e) ∧RT

2 (X̄, Tb, Te) ∧RT
3 (X̄, T ′

b, Te)

which joins on the temporal variables Tb and Te. Every answer R(ā, tb, te)
has #P-hard probability computations in |T | and |UT |, as it resembles H(1)
of Lemma 2.2.

Of course, there are other ways of causing lineage formulas with hard
probability computations, such as joins on non-temporal variables. Be-
sides the deduction rules of a query, also the temporal constraints of Sec-
tion 3.4.8 can cause expensive probability computations when evaluating
Equation (2.7).

45 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

3.5.3 Closure and Completeness

Generally, a representation system is complete [60], if it can represent any
finite instance of data, which is in our case temporal and probabilistic. Fur-
thermore, a representations system is closed [60], if all query results can be
expressed in the representation itself.

Theorem 3.2. A temporal probabilistic database (T , p,UT) with lineage is
closed and complete under all algebraic operations which are expressible by
the temporal deduction rules D.

Because completeness implies closure, we provide a proof for the com-
pleteness of our temporal probabilistic database model.

Proof. We show that, given any finite instance T of temporal and prob-
abilistic relational data, we can represent it in our temporal probabilistic
database model. Without loss of generality, we are given only one relation
instance RT along with its possible worlds W1, . . . ,Wn and a probability
P (Wi) for each of them. Now, to encode these in a temporal probabilistic
database (T , p,UT), there are three points to show, namely (1) setting UT ,
(2) ensuring that RT is duplicate free, and (3) determining T and p.

First, we select the earliest and latest time-points tmin and tmax , re-
spectively, which occur in RT . From this, we create the sequence UT :=
〈tmin , . . . , tmax 〉 where each time-point is of the smallest granularity of time-
points that occurs in RT . Second, to guarantee that each RT is duplicate-
free (see Definition 3.1), we create a new relation instanceRT ′

which extends
each tuple by a unique id, e.g. if RT (ā, tb, te) ∈ RT , then RT ′

(id , ā, tb, te) ∈
RT ′

. Third, regarding the probabilistic data, we follow [14, 139] by proving
the statement via induction over the number of possible worlds. Let the
possible worlds Wi range over RT ′

.
Basis n = 1: In this case, there is only one possible world W1 with P (W1).

We store W1 in the deterministic relation RT ′,d
1 and create a uncertain rela-

tion Ru(X) holding one tuple Ru(1) with p(Ru(1)) = 1. Then, the rule

RT ′

1 (X̄) ← RT ′,d
1 (X̄) ∧Ru(1)

along with T1 := W1 encodes the temporal probabilistic database. Now,
queries posed on RT ′

1 deliver the correct semantics.
Step n → n+ 1: We want to extend the temporal probabilistic database by
a possible world Wn+1 which should have P (Wn+1) = pn+1. For this, we

create the deterministic relation RT ′,d
n+1 containing the tuples of Wn+1. Then,

we insert the tuple Ru(n+ 1) into Ru and set its probability value to pn+1.
Now, we add the rules:

RT ′

n+1(X̄) ← RT ′,d
n+1(X̄) ∧Ru(n+ 1)

RT ′

n+1(X̄) ← RT ′

n (X̄) ∧ ¬Ru(n+ 1)

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 46

Next, we set Tn+1 := Tn ∪Wn+1 to finalize the temporal probabilistic data-
base. Again, queries formulated on RT ′

n+1 yield the intended semantics.

3.5.4 Relationship to Sequenced Semantics

In temporal databases there is a distinction between sequenced and non-
sequenced semantics [37, 71]. Intuitively, the sequenced semantics reduces
a temporal database operation to corresponding non-temporal operations
over the individual snapshots of the database at each point in time (see
Figure 3.3). In general, sequenced semantics are easier to grasp, but less

Figure 3.3: Sequenced and non-sequenced semantics

expressive than non-sequenced semantics, which allow operations involving
database snapshots at more than one time point. Now, we discuss the
relationship between sequenced semantics and our temporal probabilistic
data model.

Corollary 3.1. Deduplication can be expressed by operations obeying the
sequenced semantics.

Proof. The crucial part of Definition 3.5 is the set L(RT , ā, t, T). It captures
lineages of tuples with relation RT and non-temporal arguments ā that are
valid at time-point t. Since L can be computed on a per-time point base, it
is expressible in sequenced semantics.

Observation 3.2. In general, our temporal deduction are not in sequenced
semantics.

The temporal deduction rules of Example 3.7 are both not executable
under sequenced semantics, since their resulting tuples cover time points
lying in between the time-intervals of the wedding and divorce tuples. One
possible subset of temporal deduction rules that adheres the sequenced se-
mantics is considering only deduction from overlapping time-intervals, as
discussed for example in [154].

47 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

3.5.5 Temporal Coalescing

Temporal coalescing [15] is the process of merging tuples with identical non-
temporal arguments and adjacent or overlapping time-intervals. For exam-
ple, when storing the tuples of Figure 3.2 in a temporal database without
probabilities, we could coalesce all marriage tuples into a single time-interval,
hence reducing redundancy. Unfortunately, this is not always possible in our
data model. The reason is that deduplication (see Definition 3.5) disallows
the coalescing of intervals with non-equivalent lineage, as the difference in
lineage can result in varying probabilities. Furthermore, checking whether
two propositional lineage formulas φ and ψ are equivalent |= φ ↔ ψ is
co-NP-complete.

3.6 Algorithms

In this section we first discuss a transformation of propositional lineage
formulas called decomposition (Section 3.6.1) which accelerates probability
computations before we introduce an algorithmic solution to deduplication
(Section 3.6.2).

3.6.1 Lineage Decomposition

In practice, the necessity for Shannon expansions (see Section 2.2.5) hinders
the scalability of the probability computation step to larger datasets. Hence,
we discuss two methods for lineage decomposition (executed before invok-
ing the probability computations), which reduce the number of Shannon
expansions [39, 47]. To quantify these, we introduce the following function.

Definition 3.7. Let φ = ψ1 op . . . op ψn be a propositional lineage formula
with operator op ∈ {∧,∨}, and let ψ0 to ψn be subformulas of φ. Then, we let
the function Shannon return the number of Shannon expansions necessary
at the top-level operator:

Shannon(φ) = |{I | ∃i 6= j : I ∈ Tup(ψi), I ∈ Tup(ψj)}|

The above definition applies to ∧,∨ only, because ¬ cannot induce new
Shannon expansions. Moreover, if Shannon(φ) = 0, then the second or
third line of Equation (2.4) is applicable. When we attempt to calculate
P (φ) naively, Shannon(φ) characterizes the exponent added to the runtime
of P (φ) by the top level operator of φ.

Example 3.12. As an example, we apply S to the propositional lineage
formula φ := (I1 ∧ I2) ∨ (I2 ∧ ¬I3) ∨ (I3 ∧ ¬I1). That is op = ∨ and
Shannon(φ) = |{I1, I2, I3}| = 3. Thus, a naive probability computation of
P (φ) would take 23 iterations.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 48

Next, we characterize sets of propositional lineage formulas, which do
not share any tuple, or in other words, are disjoint with respect to tuples.
Connecting formulas from different sets by logical connectives hence does
not induce any Shannon expansion.

Definition 3.8. Given a set of propositional lineage formulas {φ1, . . . , φn}

Determine: S1, . . . , Sm ⊆ {φ1, . . . , φn}

Such that: ˙⋃
iSi = {φ1, . . . , φn}

and ∀i 6= j : Tup(Si) ∩ Tup(Sj) = ∅

The first condition ensures that all formulas are contained in on of the
disjoint sets Si. The second condition disallows a tuple identifier to occur
in more the one set. Moreover, the above problem can be solved in (almost)
linear time by the union-find datastructure [25].

Example 3.13. We consider the following propositional lineage formulas
{I1∧ I2,¬I2∧ I3, I4∧ I5, I4∧¬I5∧ I6}. Then, there are two independent sets
of lineage formulas, namely S1 = {I1 ∧ I2,¬I2 ∧ I3} and S2 = {I4 ∧ I5, I4 ∧
¬I5 ∧ I6}.

Building on independent sets of formulas, we rewrite a lineage formula
using associativity. This transformation reduces the necessary number of
Shannon expansions, and hence accelerates probability computations.

Proposition 3.3. Given a propositional lineage formula ψ := opj φj with
op ∈ {∧,∨} we equivalently rewrite ψ to

ψ′ := opSi
(opφj∈Si

φj)

where the independent sets S1, . . . , Sm are from Definition 3.8. If m > 1,
we have:

1. Shannon(ψ′) = 0

2. Shannon(ψ) =
∑

i Shannon(opφj∈Si
φj)

Proof. First of all, ψ and ψ′ are equivalent, as we applied merely associativ-
ity to derive ψ′ from ψ. Now, the first statement Shannon(ψ′) = 0 results
from the construction of the sets Si, whose formulas do not share any tuples
across sets. This implies that at the top level operator of ψ′ no Shannon
expansions are required. Finally, since all tuples occurring in more than one
formula φj must be contained in exactly one set Si, the last statement is
valid.

The proposition provides an easy way, i.e. by applying associativity, to
speed up probability computations. These take an exponential number of
steps in the number of Shannon expansions, which we reduced as follows:

2Shannon(ψ) ≥
∑

i

2
Shannon(opφj∈Si

φj)

49 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

Example 3.14. We continue Example 3.13 by considering

ψ = (I1 ∧ I2) ∨ (¬I2 ∧ I3) ∨ (I4 ∧ I5) ∨ (I4 ∧ ¬I5 ∧ I6)

which we rewrite to:

ψ′ = ((I1 ∧ I2) ∨ (¬I2 ∧ I3)) ∨ ((I4 ∧ I5) ∨ (I4 ∧ ¬I5 ∧ I6))

Calculating P (ψ) takes 23 = 8 steps, whereas P (ψ′) consumes only 21+22 =
6 steps.

We capture the above result in Algorithm 3 implementing two strategies
for lowering the number of Shannon expansions. These are repeatedly in-
voked by the loop in Line 1. In each iteration, we handle one subformula

Algorithm 3 Decompose(φ, θ)

Input: Lineage formula φ, threshold θ
Output: Adapted formula φ with reduced Shannon expansions
1: while ∃ψ ∈ φ : Shannon(ψ) > θ do

2: Select subformula opi ψi of φ with Shannon(opi ψi) > θ
3: Gather independent sets S1, . . . , Sm, Si ⊆ {ψ1, . . . , ψn} ⊲ Definition 3.8
4: if m > 0 then

5: Replace opi φi in φ by opSi
(opφj∈Si

φj) ⊲ See Proposition 3.3
6: else

7: I := arg maxI |{ψi | I ∈ Tup(ψi), 0 ≤ i ≤ n}|
8: Replace opiψi in φ by (I ∧ ψ[I/true]) ∨ (¬I ∧ ψ[I/false]) ⊲ Equation (2.6)

9: return φ

opi ψi of φ which has more than θ Shannon expansions (Line 2). Then, we
attempt to apply Proposition 3.3 which is covered in Lines 3 to 5. Oth-
erwise, we fall back to materializing a single, targeted Shannon expansion.
In Line 7, we pick the tuple I which occurs in the maximal number of lin-
eage subformulas ψi, such that φ[I/true], φ[I/false] have high chances to be
simplified.

Example 3.15. We decompose the propositional lineage formula φ := (I1∧
I3) ∨ (I1 ∧ ¬I3) ∨ (I2 ∧ I3) ∨ (I2 ∧ ¬I3) by Algorithm 3 with θ = 0. Fol-
lowing Definition 3.7 we obtain Shannon(φ) = 3, so we select our entire
formula in Line 2. Then, in Line 3 we receive m = 0, that is there are
no independent sets of lineage formulas. The reason is that I3 occurs in
all lineage subformulas. Hence, in Line 7, we choose I3 and rewrite φ to
(I3 ∧ (I1 ∨ I2)) ∨ (¬I3 ∧ (I1 ∨ I2)) in Line 8. Now, all Shannon expansions
are gone, so if we compute the probability P (φ) we obtain (p(I3) · (1− (1−
p(I1) · (1− p(I2)))) + ((1− p(I3)) · (1− (1− p(I1)) · (1− p(I2)))) = 0.8 which
can be computed via Equation (2.4).

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 50

In the overall framework, Algorithm 3 of this paragraph should be plugged
into Algorithm 1 right after Line 15, such that the lineage formulas are sim-
plified before probability computations are performed. We want to remark
that Line 7 of Algorithm 3 is a heuristic only, because the optimal decision
on which variable to expand is NP-hard [16]. Also, repeated applications
of Line 8 may increase the size of φ exponentially which is due to the #P-
hardness of probability computations (see Lemma 2.2).

3.6.2 Temporal Deduplication

What Algorithm 1 of Section 2.3.1 misses to process temporal data is a form
of deduplication (see Definition 3.5). Hence, in this paragraph we present
Algorithm 4, which for a given set of deduced tuples, outputs duplicate-free
tuples. Figure 3.2 again illustrates this by the running example of Chapter 3.
For a set of tuples TRT ,ā with relation RT and non-temporal arguments ā it
performs a loop over the limits of the tuples’ time-intervals. In more detail,

Algorithm 4 Deduplicate(TRT ,ā)

Input: Tuples TRT ,ā of relation RT , non-temporal arguments ā
Output: Deduplicated tuples according to Definition 3.5
1: Limits := {tb, te | RT (ā, tb, te) ∈ TR,ā}
2: Begin := Map[t → {I | I = RT (ā, t, te) ∈ TRT ,ā}]
3: End := Map[t → {I | I = RT (ā, tb, t) ∈ TRT ,ā}]
4: tlast := first(Limits)
5: Active := ∅
6: Result := ∅
7: for t ∈ Limits in ascending order do
8: if Active 6= ∅ then

9: Inew := RT (ā, tlast , t)
10: λ(Inew) :=

∨

I∈Active λ(I) ⊲ See Equation (3.5)
11: Result := Result ∪ {Inew}
12: tlast := t

13: Active := (Active\End(t)) ∪ Begin(t)

14: return Result

the set Limits contains all endpoints of intervals in TRT ,ā. Begin and End
are maps pointing from a time point t to the set of tuples beginning from t
and ending at t, respectively. During the execution of the loop (Line 7), the
set Active contains all tuples whose interval contains [tlast , t) (Line 13). In
Lines 9 and 10, we produce a new tuple Inew whose lineage is the disjunction
of the lineage of all tuples in Active, which resembles Equation (3.5).

Example 3.16. We apply Algorithm 4 to the deduced tuples presented in
the middle of Figure 3.2. First, we initialize Limits as {1936-11-01, 1976-

51 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

07-29, 1988-12-01, tmax} and set

Begin :=[1936-11-01 → {I3 ∧ I5, I3 ∧ ¬I5}, 1976-07-29 → {I4 ∧ I5, I4 ∧ ¬I5}]
End :=[1988-12-01 → {I3 ∧ I5, I4 ∧ I5}, tmax → {I3 ∧ ¬I5, I4 ∧ ¬I5}]

Then, in the first iteration of the loop, Active is empty. In the next iteration,
we add I6 = AreMarried(DeNiro,Abbott, 1936-11-01, 1976-07-29) to Result
and set its lineage to λ(I6) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5). The last two iterations
produce I7, I8 as shown on top of Figure 3.2.

In the full framework, we execute the algorithm of this paragraph in Al-
gorithm 1 in Line 11. Furthermore, the runtime complexity of Algorithm 4
is in O(|TRT ,ā|log |TRT ,ā|), since the loop requires the sorting of Limits. Fi-
nally, the worst-case size of the output is 2 · |TRT ,ā| − 1, which occurs when
all tuples’ time-intervals are stacked.

3.7 Experiments

We evaluate our data model and algorithm by focusing on three different as-
pects. In Section 3.7.1, we model a temporal information extraction setting
to showcase the applicability of our data model. In Section 3.7.2, we focus
on our runtime performance for query answering tasks. In Section 3.7.3 we
study how we perform on large lineage and constraint instances. Finally,
in Section 3.7.4 we analyze the detailed runtimes of the individual algorith-
mic tasks involved in these steps. In all these experiments our system is
referred to as TPDB. Also, if not stated otherwise, the only parameter, θ of
Algorithm 3, is set to 4.

3.7.1 Temporal Information Extraction

Temporal information extraction is centered around mining factual knowl-
edge along with a time annotation from free text. Hence, all challenges of
information extraction (see Section 2.5) arise, but additionally time expres-
sions in text have to be recognized. For instance, the sentence “In 1997, De
Niro married his second wife, actress Grace Hightower, at their Marbletown
home.”2 contains the temporal fact that De Niro and Hightower got mar-
ried in 1997. As case study for our data model, we implement this kind of
temporal information extraction problem in it.

Competitors We compare our model against state-of-the-art methods for
temporal tuple extraction, that is constraint solving via an integer linear
program [109] and probabilistic inference via Markov logic networks [120].

2http://en.wikipedia.org/wiki/Deniro (accessed January 14th, 2014)

http://en.wikipedia.org/wiki/Deniro

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 52

To solve integer linear programs we deploy the Gurobi software3 imple-
menting the constraints from [140, 153]. For Markov logic networks, we
employ “Markov TheBeast”4 (TheBeast), which performs cutting plane in-
ference [121]. Since Markov logic networks do not natively support time,
we encode time-intervals by adding two arguments on the relational predi-
cates denoting their begin and end time points. Both competitors perform
maximum-a-posteriori [64] inference, i.e. they return the single most likely
possible world, rather than computing probabilities as in our model. Fur-
thermore, we tried Markov logic networks implementations which compute
probabilities [102, 120] but even after extensive tuning they either exceeded
the available memory, disk space, or ran for several days without terminat-
ing. All systems operate on the same set of deduction rules and constraints.

Dataset Our dataset consists of 1,817 tuples which we extracted from free-
text biographies of 272 celebrities crawled from wikipedia.org, imdb.com,
and biography.com. The tuples correspond to nine temporal relations,
namely AttendedSchoolT , BornT , DiedT , DivorceT , IsDatingT , FoundedT ,
GraduatedFromT , MovedToT , andWeddingT . Our extractor employs textual
patterns from [101] to recognize potential facts, regular expressions to find
dates, and the Stanford named entity recognizer [50] to identify names in
text, which we then disambiguate heuristically to entities of YAGO2 (see
Appendix A.2.1). We assign each pattern and extraction step a probability,
such that the probability of each extracted tuple is obtained by multiplying
the probabilities of all steps involved in its extraction process.

Ground Truth We manually label 100 randomly chosen tuples from each
relation by determining their correct time-intervals from the text and labeled
them as false if the extracted tuple was erroneous. Additionally, we equally
divide the labeled tuples into a training set for development and a test set
for evaluation.

Deduction Rules and Constraints We employed a set of 11 hand-
crafted temporal deduction rules, including the ones shown in Example 3.7.
Besides deducing the MarriageT relation from WeddingT and DivorceT , we
aggregate the relations over their observations (as distinguished by their id)
by writing for example:

MovedToT(P,L, Tb, Te) ← MovedToExtractionT(P,L, Id , Tb, Te)

These different observations arise as the same fact can be extracted repeat-
edly, i.e. from different sources. Besides the deduction rules, there are 21

3
http://www.gurobi.com

4
https://code.google.com/p/thebeast/

http://www.gurobi.com
https://code.google.com/p/thebeast/

53 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

constraints to enforce relations to be irreflexive, temporally preceding, or
temporally disjoint. For instance, by writing

¬(Divorce(P1, P2) ∧ P1 = P2)

we rule out that a person is getting divorced from him or herself, which
assures that Divorce irreflexive. As for temporal constraints we ensure, for
instance, that people are born before they attend a school:

¬(BornT(P, Tb, Te) ∧AttendedSchoolT(P, S, T ′
b, T

′
e) ∧ T ′

b <
T Te)

Besides the formulas above, all remaining deduction rules and constraints
can be found in Appendix A.3.1.

Metrics To evaluate the result quality, we rely on the established metrics
precision, recall, and F1 [95], but tailored towards temporal data. Hence, our
precision and recall metrics reflect the overlap between the obtained tuples’
time-intervals and the time-intervals of the ground-truth. For this, we define
the function Valid . For a set of tuples in a temporal relation instance RT

with identical non-temporal arguments ā and a probability threshold θp,
Valid returns the set of time points at which these tuples are valid with a
probability of at least θp.

Valid(RT , ā, θp) :=

{

t

∣
∣
∣
∣

I = RT (ā, tb, te) ∈ RT ,
t ∈ [tb, te), P (λ(I)) ≥ θp

}

(3.7)

Based on this set we define our quality metrics.

Definition 3.9. For a temporal relation instance RT , a corresponding ground
truth instance RT

truth , non-temporal arguments ā and a probability threshold
θp, we define precision and recall as follows:

Precision(RT , ā, θp) :=
|Valid(RT ,ā,θp)∩Valid(RT

truth
,ā,θp))|

|Valid(RT ,ā,θp)|

Recall(RT , ā, θp) :=
|Valid(RT ,ā,θp)∩Valid(RT

truth
,ā,θp))|

|Valid(RT
truth

,ā,θp)|

The harmonic mean of precision and recall establishes the F1 measure:

F1(R
T , ā, θp) :=

2 · Precision(RT , ā, θp) · Recall(R
T , ā, θp)

Precision(RT , ā, θp) + Recall(RT , ā, θp)

Intuitively, precision measures what fraction of time-points is correct.
Recall calculates the fraction of correct time-points covered by the extracted
data. Finally, F1 combines both into one value.

Example 3.17. Consider the ground truth tuple Ig : DivorceT(DeNiro,
Abbott, 1988-09-01, 1988-09-02) and I5 from Figure 3.1. For θp = 0.7, we
obtain a precision of about 0.01 and recall of 1.0 which yields a F1 value of
approximately 0.02.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 54

To establish precision and recall for sets of tuples with different non-
temporal arguments, we report the macro-average of the individual tuples’
values.

Results In the resulting plots we distinguish between the setups of system
with constraints (+c) and without constraints (-c). In Figure 3.4(a) we

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

Marriage

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

IsDating

(a) Precision & Recall (varying θp)

TPDB-c TPDB+c Gurobi+c TheBeast-c TheBeast+c
Marriage 0.76 0.81 0.52 0.44 0.46
AttendedSchool 0.72 0.72 0.54 0.66 0.68
Born 0.83 0.84 0.87 0.80 0.80
Died 0.70 0.62 0.48 0.46 0.53
Founded 0.80 0.80 0.38 0.73 0.80

GraduatedFrom 0.74 0.74 0.70 0.68 0.67
IsDating 0.62 0.66 0.54 0.51 0.50
MovedTo 0.75 0.77 0.79 0.69 0.74
Average 0.74 0.75 0.61 0.62 0.65

(b) F1 measure (best θp)

Figure 3.4: Temporal Information Extraction: Quality

depict precision over recall for the MarriageT and IsDatingT relation, where
each point of TPDB corresponds to a different threshold θp. The plots of the
remaining six relations can be found in Appendix A.3.1. As an overview,
we additionally provide Figure 3.4(b), which reports the best F1 for each
method within each relation. Moreover, we measured the runtimes of the
competing systems which we display in Figure 3.5.

Discussion To demonstrate the challenges of the dataset, about 700 of
the 1,817 tuples violated at least one constraint and about 500 of the 700
tuples contradicted more than one constraint. Considering the F1 metric,
TPDB performs best, where the addition of constraints shifts the focus from
recall towards precision and sometimes yields major quality gains (see Fig-

55 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

0

500

1000

1500

2000

2500

3000

3500

4000

4500

m
ill

is
ec

on
ds

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(a) System Comparison

TPDB-c TPDB+c
0

200

400

600

800

1000

1200

1400

1600

1800

m
ill

is
ec

on
ds

TPDB Grounding

TPDB Decompose
TPDB Probability

(b) Our System Detailed

Figure 3.5: Temporal Information Extraction: Runtimes

ure 3.4(a)). Gurobi and TheBeast perform well, but the single possible world
returned by their maximum-a-posteriori inference results in less stable F1

values (see Figure 3.4(b)). Considering runtimes, in the case without con-
straints TPDB is the fastest system. When adding the constraints, TheBeast
and TPDB take about the same time, whereas Gurobi is slower.

3.7.2 Querying

We first focus on answering specific queries over uncertain data, where we
compare our implementation TPDB to the established probabilistic database
system MayBMS [10].

Queries We focus on three established query classes in probabilistic data-
bases, namely hierarchical [139], read-once [129], and unsafe [31] queries,
which we run over the knowledge base YAGO2 (see Appendix A.2.1). We
define three query patterns, one for each class, which we instantiate with
different constants. Each pattern yields 1,000 distinct queries with varying
lineages and numbers of answers.

The hierarchical query Q1 forms a union of two join queries and a single
relation. Given the query Result(P), we replace Constant by 1000 different
entities:

Result(P) ← IsMarriedTo(Id ,Constant , P)
Result(P2) ← Edited(Id ,Constant , P1) ∧ ActedIn(Id2, P2, P1)
Result(P2) ← IsLeaderOf (Id ,Constant , P1) ∧ LivesIn(Id2, P2, P1)

to obtain varying queries and lineage. The deduction rules of query Q2

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 56

Q1 Hierarchical Q2 Read-once Q3 Unsafe
10

0

10
1

10
2

10
3

10
4

10
5

m
ill

is
ec

on
ds

MayBMS
TPDB

Q1 Hierarchical Q2 Read-once Q3 Unsafe
0

50

100

150

200

250

m
ill

is
ec

on
ds

TPDB Grounding

TPDB Decomposition
TPDB Probability

Figure 3.6: Querying Experiments

yielding read-once lineage look as follows:

Result(P) ← DiedIn(Id , P,Constant) ∧ HasGivenName(Id2, P,N)
Result(P) ← DiedIn(Id , P,Constant) ∧ ActedIn(Id2, P,M)
Result(P) ← DiedIn(Id , P,Constant) ∧WasBornIn(Id2, L,Constant)

We notice that DiedIn occurs in all three deduction rules. Hence, the result-
ing lineage formulas are not immediately in read-once form, but they can be
transformed into it. Finally, the unsafe query Q3 is a Boolean query over a
single deduction rule whose lineage alters with every of the 1000 constants
we insert:

Result(0) ←

(
ActedIn(Id0, P1,Constant) ∧WasBornIn(Id1, P2, L)

∧DiedIn(Id2, P2, L) ∧WasBornOnDate(P2)

)

Results In Figure 3.6 we report the average runtime over the 1,000 queries
for each class. The figure consists of two plots. The left one depicts the run-
times for MayBMS and TPDB, The right one how the runtime of TPDB
is spent on the tasks performed by Algorithm 1 (TPDB Grounding), Algo-
rithm 3 (TPDB Decomposition), and on probability computations of Sec-
tion 2.2.5 (TPDB Probability).

Discussion The probability computations in hierarchical queries (Q1) are
polynomial, i.e., they are completely captured by Equation (2.4). Hence
both systems perform very well. Considering read-once lineage (Q2), prob-
ability computations are in polynomial time, however they might require a
conversion of the lineage formula by the algorithm provided in [129]. This be-
comes evident by the time spent in probability computations (TPDB Prob-
ability). Also, MayBMS slows down slightly. Moving to unsafe queries (Q3),
which are #P-hard, our lineage decomposition step (TPDB Decomposition)
is heavily used. The reason is that there are on average there are about
4,000 database tuples in the lineage formula of each answer. We believe

57 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

that the speed-ups in comparison to MayBMS result from the facts that
our lineage is implemented in-memory as well as that our data structure
can represent propositional lineage formulas taking forms of directed-acyclic
graphs if grounding causes this (see Section 6.2).

3.7.3 Scalability

Instead of analyzing query classes, we now tackle queries with large result
sizes that occur for instance when materializing major parts of a knowl-
edge base. We designed two queries by focusing on two different challenges,
namely producing large lineage formulas and having constraints over many
tuples which we execute over YAGO2 (see Appendix A.2.1).

Large Lineage In this case, we run one temporal query Q4 by asking
for ResultT(P1, P2, Tb, T

′
e). Each answer shares the same #P-hard subquery

(Expensive) which involves about 150,000 database tuples.

Expensive(result) ←

(
IsLocatedIn(Id0, L1, L2)∧WasBornIn(Id1, P, L1)

∧LivesIn(Id2, P, L3)

)

ResultT(P1, P2, Tb, T
′
e) ←

IsMarriedTo(Id0, P1, P2) ∧ Expensive(result)

∧OccursSinceT(Id1, Id0, Tb, Te)

∧OccursUntilT(Id2, Id0, T
′
b, T

′
e)

Figure 3.7 (left part) depicts the runtimes of MayBMS and TPDB, where
the lineage decompositions of TPDB pay off by a large margin.

Many Constraints In query Q5, we first instantiate six deduction rules
to reconcile knowledge about persons, for example

BornT(P, Tb, Te) ←WasBornOnDateT(Id, P, Tb, Te)

HasChildT(P1, P2, Tb, Te) ←

(
HasChild(Id, P1, P2)

∧WasBornOnDateT(Id2, P2, Tb, Te)

)

where the remaining rules are given in Appendix A.3.1. Then, we formulate
17 constraints on the intentional predicates of the deduction rules. These
are either temporal precedence constraints, e.g.

¬(BornT(P1, Tb, Te) ∧ HasChildT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

or temporal disjointness constraints of the form:

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

We let TPDB compete with Gurobi5, a commercial solver for integer linear
programs implementing the constraints of [153], and TheBeast [121], the

5http://www.gurobi.com

http://www.gurobi.com

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 58

Q4 Large Lineage
10

0

10
1

10
2

10
3

10
4

10
5

se
co

nd
s

MayBMS
TPDB

Q5 Many Constraints
10

0

10
1

10
2

10
3

10
4

se
co

nd
s

TPDB

Gurobi
TheBeast

Figure 3.7: Scalability Experiments

fastest Markov logic networks [120] implementation we are aware of. Fig-
ure 3.7 (right part) holds the runtimes for the inference omitting grounding
times for all systems. TPDB solves the problem in less than 40 seconds
while Gurobi is not able to find the optimal solution anymore and finishes
only after 60 seconds. Last, TheBeast spends about 40 minutes.

3.7.4 Algorithm Analysis

We conclude our evaluation by exploring how runtimes are spent among the
steps of TPDB, i.e., grounding, lineage decompositions, probability compu-
tations, and deduplication. As for the queries, we mostly reuse Q3.

Grounding Figure 3.8(a) depicts the grounding time (Algorithm 1) of
each of the 1,000 queries in Q3. We observe a smooth behavior as the
number of base tuples grows (except for an outlier).

Decomposition Figure 3.8(b) shows the decomposition time (Algorithm 3)
for each of the 1,000 queries in Q3. The x-axis shows the fraction of base
tuples participating in a Shannon expansion over all touched database tu-
ples. Hence, more difficult lineage formulas appear towards the right-hand
side of the x-axis.

Probability Computations Relying on the same x-axis, Figure 3.8(c)
depicts the runtime for probability computations (see Equations (2.4) and
(2.5)) for each query of Q3. Due to the decomposition, most queries are
handled very fast. Still, for more difficult queries the runtime grows as we
perform more Shannon expansions.

Deduplication For Algorithm 4, we created query pattern Q6 and in-
stantiated it into 1,000 queries, such that varying numbers of time-intervals

59 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

#tuples

0

200

400

600

800

1000

1200

1400

m
ill

is
ec

on
ds

(a) Grounding (Q3)

0.0 0.2 0.4 0.6 0.8 1.0

#Shannon expansions / #tuples

0

200

400

600

800

1000

m
ill

is
ec

on
ds

(b) Decomposition (Q3)

0.0 0.2 0.4 0.6 0.8 1.0

#Shannon expansions / #tuples

0

500

1000

1500

2000

2500

3000

3500

m
ill

is
ec

on
ds

(c) Probability Computations (Q3)

0 500 1000 1500 2000 2500 3000 3500

#intervals

0

100

200

300

400

500

600

m
ill

is
ec

on
ds

(d) Deduplication (Q6)

0 1 2 3 4 5 6

θ

0

10

20

30

40

50

60

70

80

m
ill

is
ec

on
ds

Decomposition
Probability

(e) Varying θ (Q3)

Figure 3.8: Algorithm Analysis Experiments

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 60

are involved in the single answer of Q6. The corresponding deduction rules
look as follows:

BornT(P, Tb, Te) ←

(
WasBornIn(Id , P,Constant)∧
WasBornOnDateT(Id ′, P, Tb, Te)

)

DiedT(P, Tb, Te) ←

(
DiedIn(Id , P,Constant)∧
DiedOnDateT(Id ′, P, Tb, Te)

)

LivesT(P, Tb, T
′
e) ← BornT(P, Tb, Te) ∧DiedT(P, T ′

b, T
′
e)

LivesT(P, tmin , T
′
e) ← ¬BornT(P, Tb, Te) ∧DiedT(P, T ′

b, T
′
e)

LivesT(P, Tb, tmax) ← BornT(P, Tb, Te) ∧ ¬DiedT(P, T ′
b, T

′
e)

We eventually query for Lives(P, Tb, Te). Figure 3.8(d) depicts the runtime
of TPDB over the number of time-intervals in the query answers. As pointed
out in Section 3.6.2, the runtime follows a n logn shape, which is confirmed
by the plot.

Varying θ As a final experiment we investigate the impact of the parame-
ter θ of Algorithm 3 on the runtime of both decompositions and probability
computations. As queries we reuse the #P-hard queries Q3. In Figure 3.8(e)
we display the cumulative runtime of both Algorithm 3 (Decomposition) and
the probability computations of Section 2.2.5 (Probability). Setting θ = 0,
i.e. at the left of the x-axis, removes all Shannon expansions from all lin-
eage formulas, which results in more runtime spent in decomposition. On
the other hand, higher values for θ leave a number of Shannon expansions
behind, which speeds up decomposition, but slows down probability com-
putations. The sweet spot seems to be at θ = 0 which reinforces work on
decomposition trees [47].

3.8 Summary and Outlook

Contribution In this chapter we presented a temporal probabilistic data-
base model that supports both time and probability as first class citizens.
We introduced an expressive class of temporal deduction rules and tem-
poral consistency constraints. Moreover, we extended lineage to be aware
of both time and uncertainty and by that obtained a closed and complete
representation formalism. Furthermore, we analyzed the properties of our
data model from a theoretical perspective by characterizing its complexity
properties besides its relationship to sequenced semantics and temporal co-
alescing. Also, we proposed an efficient algorithm which can be plugged
into any probabilistic database with lineage to enable support for temporal
data. Finally, we experimentally evaluated the data model and algorithm
on an temporal information-extraction task as well as over a large temporal
knowledge base.

61 CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL

Future Directions We propose to investigate the support for periodical
temporal data, which could be achieved by extending deduction rules to
support recursion or integer arithmetic. Additionally, we encourage to ex-
tend this work to non-independent database tuples where block independent-
disjoint probabilistic databases [30] and U-relations [10] are prime targets.

CHAPTER 3. TEMPORAL PROBABILISTIC DATA MODEL 62

Chapter 4

Top-k Query Processing

4.1 Introduction

Driven by the existence of queries whose probability computations are #P-
hard [31, 29], the query evaluation problem in probabilistic databases has
been studied extensively [31, 29, 32, 74, 81, 117, 129]. Except for two
works [108, 115], each of these approaches aims for computing all answers
along with their probabilities. Still, among these answers many feature low
probability values, indicating for example that we are not very confident in
them or that they are unlikely to exist. To avoid this, we can rely on top-k
query answering where only the k most probable answers are computed. Be-
sides the benefit of presenting only the high-confidence answers to the user,
top-k approaches allow for runtime speed-ups. The reason is that we can
save on computations for the neglected low probability answers.

Existing Top-k Approaches So far, there are only two methodologies [108,
115] for determining the k answers with the highest probabilities. Both of
them first compute the lineage for all answers. Then, they invoke different
strategies for binding the probabilities of each answer candidate. In [115]
samples are drawn where increasing numbers of samples shrink the proba-
bility bounds of each answer. Instead, the authors of [108] employ incremen-
tal decompositions of the lineage formula of an answer candidate to derive
probability bounds. Later, both works rely on these bounds to prune low
probability answer candidates. The pruning via the bounds is achieved as
in top-k algorithms on deterministic databases [44].

Our Approach In contrast to previous work, we drop the assumption
that full data computations should be performed before developing proba-
bility bounds. In other words, we do not derive the lineage formulas of all
answer candidates extensively, but rather expand them as necessary over the
database while already pruning answer candidates. This technique generates

63

CHAPTER 4. TOP-K QUERY PROCESSING 64

another source of speed-ups both over the aforementioned top-k methodolo-
gies and over approaches that yield all query answers. We experimentally
study this effect in Section 4.7.

Technically, our main tool are first-order lineage formulas as they cap-
ture any intermediate grounding state (see Section 4.4). These formulas can
represent entire sets of answer candidates, for instance when we are starting
to ground the query. Based on the insights of [108], we then devise probabil-
ity bounds enclosing the probabilities of all answers in the set of candidates
which is expressed by a first-order lineage formula (see Section 4.4.3). We
prove that these bounds converge monotonically which enables us to for-
mulate a top-k algorithm (see Section 4.5.2). As a subroutine we devise a
scheduling algorithm which selects the next literal to be evaluated relying on
both information about the database as well as the probability bounds (see
Section 4.5.1). Finally, we provide extensions to sorted input lists, recursive
deduction rules, and consistency constraints (see Section 4.6).

Problem Statement As input we are given:

• a tuple-independent probabilistic database;

• a query represented by deduction rules;

• an integer k;

• and optionally constraints.

Then, our top-k procedure delivers the output:

• the set of cardinality k or less containing the query answers, which
have the highest probabilities.

We illustrate this by the following example.

Example 4.1. Figure 4.1 depicts a probabilistic database in the movie do-
main. By the given deduction rules we intend to derive actors and directors
who are known for working on movies in the crime genre as symbolized by the
query KnownFor(X,Crime). When we execute traditional query evaluation,
e.g. following Algorithm 1, we obtain the three answers:

Answer Lineage Probability

KnownFor(Coppola,Crime) I2 ∧ I8 ∧ I12 0.36
KnownFor(Tarantino,Crime) I10 ∧ I6 ∧ ¬I3 ∧ I13 0.10
KnownFor(Pacino,Crime) I9 ∧ I5 ∧ I12 0.06

Now, imagine we are not interested in all answers, as in the table above, but
rather in the most probable answer, e.g. KnownFor(Coppola,Crime). This
is the setting of the present chapter. We will elaborate on how to compute
the k most likely answers efficiently by (1) not fully computing lineage and
(2) pruning other less probable answers, i.e. KnownFor(Tarantino,Crime)
and KnownFor(Pacino,Crime), as early as possible.

65 CHAPTER 4. TOP-K QUERY PROCESSING

Query:
KnownFor(X,Crime)

Deduction Rules:

KnownFor(X,Y) ← BestDirector(X,Z) ∧ Category(Z, Y)
KnownFor(X,Y) ← WonAward(Z,BestPicture) ∧ActedOnly(X,Z) ∧ Category(Z, Y)
BestDirector(X,Z) ← Director(X,Z) ∧WonAward(Z,BestDirector)
ActedOnly(X,Z) ← ActedIn(X,Z) ∧ ¬Directed(X,Z)

Probabilistic Database:

Directed ActedIn
Director Movie p Actor Movie p

I1 Coppola ApocalypseNow 0.8 I4 Brando ApocalypseNow 0.6
I2 Coppola Godfather 0.9 I5 Pacino Godfather 0.3
I3 Tarantino PulpFiction 0.7 I6 Tarantino PulpFiction 0.4

WonAward Category
Movie Award p Movie Category p

I7 ApocalypseNow BestScript 0.3 I11 ApocalypseNow War 0.9
I8 Godfather BestDirector 0.8 I12 Godfather Crime 0.5
I9 Godfather BestPicture 0.4 I13 PulpFiction Crime 0.9
I10 PulpFiction BestPicture 0.9 I14 Inception Drama 0.6

Figure 4.1: Example Probabilistic Database with query and deduction rules

4.2 Related Work

The most influential work for top-k query evaluation on deterministic data
is still given by the family of threshold algorithms by Fagin et al. [44]. Our
pruning techniques of answer candidates also build on these. In this section,
we discuss work on top-k queries over probabilistic databases, where we refer
the interested reader to [69] for a survey on top-k algorithms in deterministic
databases.

Top-k on Probabilistic Databases: Ranking by Scores The majority
of works on top-k queries over probabilistic databases assumes the presence
of an additional non-probabilistic score at each tuple, which is used to rank
the query answers [70]. Our approach is very different, because we rank
every answer by its probability and do not assume another score to exist.
Given a non-probabilistic score for the ranking the main question is how
to interpret the top-k answers with respect to the probabilities and possi-
ble worlds. There, numerous different semantics arise. Soliman et al. [135]
introduce U-topK queries, which are the k tuples with the highest proba-
bility to be contained in the top-k list in all possible worlds. Also, they
devise U-kRanks, where the k-th rank is filled by the tuple which has the
highest probability to rank at this position over all possible worlds. Al-
ternatively, [72] considers the expected rank over all possible worlds. Li
et al. [88] propose a unified approach via parametrized ranking functions

CHAPTER 4. TOP-K QUERY PROCESSING 66

which subsumes most aforementioned approaches. In this setting, [151] de-
velops pruning approaches to effectively compute the top-k answers. In [22]
the parametrized ranking functions are extended to support attribute un-
certainty. Moreover, in [67, 68] besides k a probability threshold is given.
Then, only tuples which rank at least k with probability above the threshold
are returned. Similarly, [89] lists all ranks at which the answer can be found
with probability higher than a threshold. Recently, Ge et al. [55] studied
the trade-offs between reporting tuples of a high score and tuples of a high
probability. Furthermore, [86] considered ranking in the presence of both
scores and continuous probabilities, i.e. occurring in sensor data. Finally,
in [136] the scores used for ranking are uncertain, but the considered ranking
function is still the sum of these scores.

Top-k on Probabilistic Databases: Ranking by Probabilities Few
works consider top-k ranking by the probabilities of query answers as in
our setting. The authors of [115] determine the top-k answers by first com-
puting the lineage formulas of all answers and then approximating their
probabilities by sampling. They devise probability bounds restricted to lin-
eage formulas in disjunctive normal form, where the bounds tighten as more
samples are drawn. For this, a multisimulation algorithm is introduced
which aims to minimize the number of samples to draw before the ranking
is known. We compete and outperform this approach in the experiments of
Section 4.7.1. Extending works on approximation of probabilities of propo-
sitional lineage formulas [107], the authors of [108] derive probability bounds
for answer candidates. Our bounding approach is related theirs, but they
lack support for first-order logical formulas. In addition, in [108] a query
class is established for which ranking is tractable, whereas absolute proba-
bility computations are not, an insight which is exploited by shared static
query plans. We provide experiments on this query class in Section 4.7.1.
Likewise, [87] computes the top-k answers with highest probabilities over
probabilistic XML. Still, their model allows only independence and mutual
exclusion nodes, which renders their model much simpler than ours. Simi-
larly, in [114] static probability thresholds are incorporated into the query
algebra, allowing for early pruning of low probability tuples. However, their
approach does not support full relational algebra with duplicate elimina-
tion. Finally, in the case of continuous probabilities [110] thresholds bind
probability distributions rather than being possible world based as in our
case.

Bounds on Probabilities Bounds on probabilities are a major tool for
running top-k algorithms, since they allow for pruning answer candidates
without fully computing the candidates’ probabilities. In this field, there
are four major works, which we build upon for the propositional lineage

67 CHAPTER 4. TOP-K QUERY PROCESSING

case. In detail, [48] relies on (disjunctive) read-once lineage formulas as
approximation for a given propositional lineage formula such that the prob-
ability bounds can be computed efficiently. Next, [107] presents error bounds
which are obtained by incrementally transforming propositional lineage into
a tree form. Each vertex in the tree corresponds to a Shannon expansion
or independent conjunctions and disjunctions. Nevertheless, their work is
restricted to formulas in disjunctive normal form. This restriction is conse-
quently dropped in [49]. Finally, in [116] approximate propositional lineage
is discussed which are smaller formulas, for instance implying the real for-
mulas. By construction the probability of the approximate lineage can serve
as probability bound on the full lineage. None of them, however, explicitly
considers first-order logical formulas.

First-Order Lineage Although queries are in first-order form [139], work
on lineage formulas in probabilistic databases focused on the propositional
version. The first work on probability computations on first-order lineage
formulas is yet to appear [12]. In contrast, within the artificial intelligence
community inference on first-order logical formulas, i.e. probability compu-
tations, are established, for instance on belief networks [112] or via knowl-
edge compilation [149].

4.3 Contribution

In this section we present a novel top-k querying approach [41] for proba-
bilistic databases, where the query answers are ranked by their probabilities.

• To the best of our knowledge we present the first top-k approach on
probabilistic databases supporting partially grounded lineage formulas,
which we represent by first-order lineage formulas (Section 4.4). This
method allows early pruning of entire sets of answer candidates, and
hence can provide savings even on the data computation step (see
Figure 4.3). Also, it does not assume any restriction on the query
structure.

• We present a generic bounding approach for probability computations
over first-order lineage formulas in Section 4.4.3, which provides (1)
lower and upper bounds for the probability of an individual query an-
swer, or for an entire set of query answers if not all query variables are
bound to constants yet. We show that (2) both our lower and upper
bounds converge monotonically to the final probabilities of the query
answers as we gradually expand these formulas. Both (1) and (2) are
key properties for building effective top-k-style pruning algorithms.

CHAPTER 4. TOP-K QUERY PROCESSING 68

• Our approach allows for plugging in different schedulers which aim to
select the first-order literal inside a lineage formula that is most ben-
eficial for top-k pruning at each query processing step (Section 4.5.1).
This benefit is estimated based on the expected selectivity, i.e., the ex-
pected number of resulting tuples, and the expected impact of literals
on the probability bounds of query answers.

• Moreover, we extend our algorithm for the case when sorted input
lists for extensional relations are available (Section 4.6.1), show how
recursive deduction rules can be handled (Section 4.6.2), and discuss
the usage of our top-k pruning techniques under both queries and
constraints (Section 4.6.4).

• In Section 4.7 we present an extensive experimental evaluation and
comparison to existing top-k pruning strategies in probabilistic data-
bases.

4.4 First-Order Lineage

To handle partial grounding states, we now extend propositional lineage of
Section 2.2.4 to first-order lineage [41], which hence can contain variables
and quantifiers. In contrast to propositional lineage, first-order lineage does
not represent single query answers, but rather entire sets of answers. Each
answer in such a set will be characterized by constants binding the query
variables.

Throughout this chapter, we assume relations to be duplicate-free. That
is, there is no pair of tuples having the same arguments. This assump-
tion facilitates the theoretical analysis which follows. Still, in practice, we
can always remove the duplicates by an independent-project operation as a
preprocessing step.

4.4.1 Deduction Rules with Quantifiers

To facilitate the construction of first-order lineage we write (some) quanti-
fiers in deduction rules explicitly, which is captured in the following.

Definition 4.1. A first-order deduction rule is a logical rule of the form

R0(X̄0) ← ∃X̄e

∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

where

1. all requirements of Definition 2.2 hold;

2. X̄e = (
⋃

i=1,...,nVar(X̄i))\Var(X̄0)

69 CHAPTER 4. TOP-K QUERY PROCESSING

The difference to Definition 2.2 might seem subtle, but we force all vari-
ables X̄e, which occur in positive literals Ri(X̄i), but not in the head R0(X̄0),
to be existentially quantified. This is in accordance to standard Datalog
semantics [2]. Later, when constructing first-order lineage formulas, the
existential quantifiers be explicitly kept. Universal quantifiers do not result
from deduction rules, but can be introduced into first-order lineage formulas
when handling constraints (see Section 4.6.4).

Example 4.2. Let us adapt the deduction rules of Figure 4.1 to Defini-
tion 4.1 by writing the quantifiers explicitly:

KnownFor(X,Y) ← ∃Z BestDirector(X,Z) ∧ Category(Z, Y)

KnownFor(X,Y) ← ∃Z
WonAward(Z,BestPicture) ∧ ActedOnly(X,Z)
∧Category(Z, Y)

BestDirector(X,Z) ← Director(X,Z) ∧WonAward(Z,BestDirector)
ActedOnly(X,Z) ← ActedIn(X,Z) ∧ ¬Directed(X,Z)

4.4.2 Lineage Construction

First-order lineage can be constructed top-down and can express any inter-
mediate state in this process. In a top-down approach, we start at the query
and expand the deduction rules until we reach the database. In Section 2.2.4,
the direction was reversed, since we started at the database until we ended
up at the query. As first theoretical tool, we establish consistent vectors
of constants ā and mixtures of variables and constants X̄. This technique
enables us to match first-order literals against database tuples.

Definition 4.2. Let Xi and ai denote the i-th entry in the vector of variables
and constants X̄ and the vector of constants ā, respectively. We call X̄ and
ā consistent, if

∀Xi ∈ X̄ : Xi is a constant ⇒ Xi = ai

In other words, all constants in the vector X̄ have to match the constant
in ā at the respective position.

Example 4.3. The vectors (X,Crime) and (Coppola,Crime) are consistent,
as the constant in the second entry occurs in both vectors.

Based on consistent vectors we gather all constants binding a variable in
a set of tuples. Later, this allows us to collect all tuples from the database,
which match a first-order literal.

Definition 4.3. Let T be a set of tuples and R(X̄) be a literal with exten-
sional relation R. Then, the set of constants from T , which bind the variable
Xi in X̄ is:

Bindings(Xi, R(X̄), T) := {ai | R(ā) ∈ T , X̄ and ā consistent}

CHAPTER 4. TOP-K QUERY PROCESSING 70

We note that ai and Xi refer to i-th entry of ā and X̄, respectively. In
general, the above set can be empty or reach the same cardinality as T .

Example 4.4. Let the tuples of Figure 4.1 establish T . Then, considering
the literal Directed(Coppola, Y) we obtain the following bindings for the
variable Y :

Bindings(Y,Directed(Coppola, Y), T) = {ApocalypseNow ,Godfather}

The last technical prerequisite before introducing first-order lineage con-
struction are logical equivalences which eliminate quantifiers. For this, say
a1, . . . , an are all possible constants for the variable X, then following two
equivalences [2, 146] hold:

∃XΦ ≡ σa1(Φ) ∨ · · · ∨ σan(Φ)
∀XΦ ≡ σa1(Φ) ∧ · · · ∧ σan(Φ)

(4.1)

Here, σai is shorthand for σ(X) = ai. Finally, we establish the top-down
counterpart to Definition 2.11 for first-order lineage. We create first-order
lineage starting at the query and then iteratively replacing first-order literals
by deduction rules or, later on, tuples from database.

Definition 4.4. Let a set of tuples T , a set of deduction rules D, a first-
order lineage formula Φ, and a literal R(X̄) which occurs in Φ be given. We
define the expansion of R(X̄) in Φ by a function:

SLD : Literals × FirstOrderLineage → Set [FirstOrderLineage]

In detail:

1. If R is intensional, then:

SLD(R(X̄),Φ) :=
{

Φ[R(X̄)/
∨

(R(X̄′)←Ψ)∈D σX̄(Ψ)]
}

where σX̄ ’s image coincides with X̄.

2. If R is extensional, we initialize:

S0 := {Φ}

and then iterate over all variables X ∈ Var(X̄):

(a) If X is a query variable:

Si := {σa(Φ
′) | Φ′ ∈ Si−1, a ∈ Bindings(X,R(X̄), T)}

where σa(X) = a.

71 CHAPTER 4. TOP-K QUERY PROCESSING

(b) If X is bound by ∃X, then we replace the subformula ∃X Ψ of Φ in
Si by σa1(Ψ)∨ · · ·∨σan(Ψ) where all ai ∈ Bindings(X,R(X̄), T).

(c) If X is bound by ∀X, then we replace the subformula ∀X Ψ of Φ in
Si by σa1(Ψ)∧ · · ·∧σan(Ψ) where all ai ∈ Bindings(X,R(X̄), T).

Finally, we replace all ground literals R(ā) in the last Si by their tuple
identifier I and assign SLD(R(X̄),Φ) := Si.

3. If there is no match to R(X̄), neither in T nor in D, then:

SLD(R(X̄),Φ) := {Φ[R(X̄)/false]}

4. If R is arithmetic and Var(X̄) = ∅, then we evaluate R(X̄) to V (true
or false), and:

SLD(R(X̄),Φ) := {Φ[R(X̄)/V]}

The above definition is admittedly involved. In the first case, we address
intensional literals R(X̄) where we exchange R(X̄) for the disjunction of the
deduction rules having R in their head literal. Since X̄ can contain constants
we propagate them to the rules’ bodies by writing σX̄(Ψ). Extensional lit-
erals, which are the subject of the second case, can yield sets of first-order
lineage formulas. We proceed by considering each variable individually and
distinguish between query variables (see Definition 2.6), existentially bound
variables and universally bound variables. If X is a query variable each con-
stant a binding X produces a new distinct set of query answers represented
by the lineage formula σa(Φ

′). Conversely, if X is existentially quantified
we apply Equation (4.1) to expand the formula by introducing a disjunction
ranging over the constants a1, . . . , an which bind X. Analogously, a uni-
versally quantified X yields the conjunction over the constants a1, . . . , an.
The third case reflects the closed world assumption [2], where we replace a
literal with no match by false. Finally, if we have an arithmetic literal with
only constants as arguments, we evaluate it. We can safely assume that all
arguments of the arithmetic literal are constants, because these are bound
in non-arithmetic literals (see Definition 2.2). What we omitted for brevity
are constants in the head literal of a deduction rule. Since these constants
bind variables as in extensional literals (the second case), a mixture of the
first and second case arises.

Example 4.5. We illustrate Definition 4.4 by providing an example for each
case. As for T we assume it to comprise all tuples of Figure 4.1.

1. We expand the formula Φ := KnownFor(X,Crime) over the deduction
rules of Example 4.2. Since KnownFor is an intensional relation, we
start with the first case of Definition 4.4. There, the substitution σX̄
binds the second argument to Crime:

σX̄(Y) = Crime

CHAPTER 4. TOP-K QUERY PROCESSING 72

Since there are two rules having KnownFor in the head literal we apply
the substitution to both bodies which yields:

(∃Z BestDirector(X,Z) ∧ Category(Z,Crime))
∨

(

∃Z
WonAward(Z,BestPicture)∧

ActedOnly(X,Z) ∧ Category(Z,Crime)

)

2. (a) Imagine, we are given the first-order lineage formula

Φ := BestDirector(X,Z) ∧ Category(Z,Crime)

and we intend to expand the literal Category(Z,Crime). Here,
Category is an extensional relation. First, we determine the bind-
ings of Z, which are Godfather and PulpFiction. Since Z is not
quantified, but a query variable, we obtain several formulas, one
for each of the constants:

{
(BestDirector(X,Godfather) ∧ Category(Godfather ,Crime)),

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction,Crime))

}

(b) In this case, we quantify Z existentially and otherwise keep the
previous formula:

Φ := ∃Z BestDirector(X,Z) ∧ Category(Z,Crime)

Then, we expand the Category literal by case 2(b) of Defini-
tion 4.4 which results in a disjunction over the two constants
Godfather and PulpFiction:

(BestDirector(X,Godfather) ∧ Category(Godfather ,Crime))
∨

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction,Crime))

(c) Let us consider a universal quantifier instead:

Φ := ∀Z BestDirector(X,Z) ∧ Category(Z,Crime)

When applying a SLD step to the Category literal, we instantiate
Z by the two constants Godfather and PulpFiction to obtain the
conjunction:

(BestDirector(X,Godfather) ∧ Category(Godfather ,Crime))
∧

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction,Crime))

73 CHAPTER 4. TOP-K QUERY PROCESSING

3. Trying to resolve the second literal of

Φ := ∃Z BestDirector(X,Z) ∧ Category(Z,Comedy)

over T delivers no result. Hence, we replace it by false, which yields:

{∃Z BestDirector(X,Z) ∧ false}

4. In the last case, we have an arithmetic literal, e.g.:

I1 ∧ I2 ∧ApocalypseNow 6= Godfather

which we then evaluate to I1 ∧ I2 ∧ true.

Analogously to the Disjunctive Normal Form (DNF) for propositional
formulas, any first-order formula can equivalently be transformed into prenex
normal form by pulling all quantifiers in front of the formula. The remain-
ing formula can again be transformed into DNF, which is then called Prenex
Disjunctive Normal Form (PDNF) [146].

Next, we devise two formal properties of first-order lineage formulas.
First, the existence of at least one proof implies that all query variables are
bound. Second, unbound query variables imply that a first-order lineage
formula represents a set of query answers.

Proposition 4.1. Expanding a query Q(X̄) with query variables X̄ to first-
order lineage by repeatedly applying Definition 4.4 has the following proper-
ties:

1. If at least one clause in the disjunctive normal form of the lineage
formula is propositional, then all query variables X̄ are bound to con-
stants.

2. If at least one query variable X ∈ X̄ is unbound a lineage formula
represents a (possibly empty) set of query answers.

Proof. We prove both statements separately.

1. Without loss of generality, we assume the formula to be in PDNF.
Then, every clause stands for one proof of the answer candidate. When
one of these clauses is propositional, all query variables within this
clause were bound and hence are bound in the entire formula.

2. Since a query variable can be bound to many constants, each poten-
tially belonging to a particular answer, the first-order lineage formula
represents all these answers.

CHAPTER 4. TOP-K QUERY PROCESSING 74

4.4.3 Probability Bounds

In this section, we develop lower and upper bounds for the probability of
any query answer that can be obtained from grounding a first-order lineage
formula. We proceed by constructing two propositional lineage formulas φlow

and φup from a given first-order lineage formula Φ. Later, the probabilities
of φlow and φup serve as lower and upper bounds on the probabilities of
all query answers captured by Φ. More formally, if φ1, . . . , φn represent all
query answers we would obtain by fully grounding Φ, then it holds that:

∀i ∈ {1, . . . , n} : P (φlow) ≤ P (φi) ≤ P (φup)

Building upon results of [48, 107, 124], we start by considering bounds
for propositional formulas, from which we extend to the more general case of
first-order lineage. Then, we show that these bounds converge monotonically
to the probabilities P (φi) of each query answer φi, as we continue to ground
Φ.

Bounds for Propositional Lineage Following [107], we relate the prob-
ability of two propositional lineage formulas φ and ψ via their sets of models
M(φ) and M(ψ) (see Equation (2.2)), i.e. the sets of possible worlds over
which φ and ψ evaluate to true.

Proposition 4.2. For two propositional lineage formulas φ and ψ it holds
that:

M(φ) ⊆ M(ψ) ⇒ P (φ) ≤ P (ψ)

Proof.

P (φ)
Equation (2.3)

=
∑

W∈M(φ) P (W)

≤
∑

W∈M(φ) P (W) +
∑

W∈M(ψ)\M(φ) P (W)
M(φ)⊆M(ψ)

=
∑

W∈M(ψ) P (W)
Equation (2.3)

= P (ψ)

Since we assume M(φ) ⊆ M(ψ), the possible worlds satisfying φ fulfill
ψ as well. However, there might be more worlds satisfying ψ but not φ.
This might yield more terms over which the sum of Equation (2.3) ranges,
and thus we obtain P (φ) ≤ P (ψ).

Example 4.6. Consider the two propositional formulas φ ≡ I1 and ψ ≡
I1 ∨ I2. From M(I1) ⊆ M(I1 ∨ I2) it follows that P (I1) ≤ P (I1 ∨ I2), which
we can easily verify by Equation (2.3).

75 CHAPTER 4. TOP-K QUERY PROCESSING

To turn Proposition 4.2 into upper and lower bounds, we proceed by
considering conjunctive clauses in the form of conjunctions of propositional
literals. Then, following a result from [107], we obtain the following propo-
sition.

Proposition 4.3. Let φ, ψ be two propositional, conjunctive clauses. It
holds that:

M(φ) ⊆ M(ψ) ⇔ Tup(φ) ⊇ Tup(ψ)

The above statement expresses that adding literals to a conjunction φ
removes satisfying worlds from M(φ).

Example 4.7. For the two clauses I1∧ I2 and I1 it holds that Tup(I1∧ I2)⊇
Tup(I1) and thus Proposition 4.3 yields M(I1 ∧ I2)⊆M(I1).

We now establish a relationship between two formulas in Disjunctive
Normal Form (DNF) (see Definition 2.12) via their conjunctive clauses as
in [107, 124]. Since any propositional formula can be transformed equiva-
lently into DNF, this result is generally applicable.

Lemma 4.1. For two propositional formulas in disjunctive normal form
φ ≡ φ1 ∨ · · · ∨ φn and ψ ≡ ψ1 ∨ · · · ∨ ψn, it holds that:

∀φi ∃ψj : M(φi) ⊆ M(ψj) ⇒ M(φ) ⊆ M(ψ)

If we can map all clauses φi of a formula φ to a clause ψj of ψ with more
satisfying worlds, i.e., M(φi) ⊆ M(ψj), then ψ has more satisfying worlds
than φ. This mapping of clauses is established via Proposition 4.3.

Example 4.8. For the propositional DNF formula φ ≡ (I1∧I2)∨(I1∧I3)∨I4,
we can map each clause in φ to a clause in ψ ≡ I1 ∨ I4. Hence, ψ has more
models than φ, i.e., M(φ) ⊆ M(ψ).

Thus, Lemma 4.1 enables us to compare the probabilities of propositional
formulas in DNF based on their clause structure. When transforming any
propositional formula into DNF, we can first iteratively apply De Morgan’s
law [146] which pushes negations down in a formula:

¬
∧

iΦi ≡
∨

i ¬Φi

¬
∨

iΦi ≡
∧

i ¬Φi
(4.2)

Thereafter, we apply the distributive law which allows the following obser-
vation.

Observation 4.1. If a tuple I occurs exactly once in a propositional formula
φ, then all occurrences of I in the DNF of φ have the same sign.

CHAPTER 4. TOP-K QUERY PROCESSING 76

The reason is that the sign of a tuple I changes only when De Morgan’s
law is applied. However, when applying De Morgan’s law, no tuples are
duplicated. When utilizing the distributive law, tuples are duplicated but
preserve their signs.

Example 4.9. Applying the distributive law to (I1 ∨ I2) ∧ ¬I3 yields (I1 ∧
¬I3) ∨ (I2 ∧ ¬I3). Now, I3 occurs twice, but its sign was preserved.

Bounds for First-Order Lineage For our following constructions on
first-order formulas, we assume the first-order formulas to be given in PDNF.
Next, given a first-order lineage formula Φ, we construct two propositional
formulas φlow and φup whose probabilities then serve as lower and upper
bound on Φ, respectively.

Definition 4.5. Let Φ be a first-order lineage formula.

1. We construct the propositional lineage formula φup by substituting ev-
ery literal R(X̄) in Φ with

• true if R(X̄) occurs positive in the PDNF of Φ, or

• false if R(X̄) occurs negated in the PDNF of Φ.

2. We construct the propositional lineage formula φlow by substituting
every literal R(X̄) in Φ with

• false if R(X̄) occurs positive in the PDNF of Φ, or

• true if R(X̄) occurs negated in the PDNF of Φ.

The idea of the above definition is as follows. If we replace a posi-
tive literal by true, we add models to the resulting formula. Hence, due
to Proposition 4.2 the resulting formula can serve as an upper bound on
the probability, which we show formally later. The remaining three cases
are analogous. We note that R can be intensional, extensional and even
arithmetic.

Example 4.10. We consider Figure 4.1 and the first-order lineage formula:

Φ := I1 ∧ ∃XWonAward(X,BestPicture)

Then, the upper bound is given by P (φup) = P (I1 ∧ true) = p(I1) = 0.8 and
the lower bound is P (φlow) = P (I1∧false) = P (false) = 0. If we execute one
SLD step (see Definition 4.4) on Φ we obtain I1 ∧ (I9 ∨ I10). Its probability
is P (I1 ∧ (I9 ∨ I10) = 0.8 · (1− (1− 0.4) · (1− 0.9) = 0.752 which is correctly
captured by the upper and lower bound.

As a next step, we discuss the application of Definition 4.5 to general
first-order lineage formulas which do not necessarily adhere any normal form.

77 CHAPTER 4. TOP-K QUERY PROCESSING

Proposition 4.4. By first exhaustively applying De Morgan’s law of Equa-
tion (4.2) on a first-order lineage formula Φ, we can apply Definition 4.5 to
Φ, even if Φ is not in PDNF. Hence, constructing φup and φlow can be done
in O(|Φ|).

Proof. We can implement De Morgan by traversing the formula once, which
thus is in O(|Φ|). Subsequently, we traverse the formula again and replace
all first-order literals by true or false as devised in Definition 4.5. Observa-
tion 4.1 ensures the replacements to be unique for each literal.

Convergence of Bounds Our last step is to show that, when construct-
ing first-order lineage Φ (see Definition 4.4) for a fixed query answer φ result-
ing from Φ, the probability bounds converge monotonically to the probability
of the propositional lineage formula P (φ) with each SLD step.

Theorem 4.1. Let Φ1, . . . ,Φn denote a series of first-order formulas ob-
tained from iteratively grounding a conjunctive query via SLD resolution of
Definition 4.4 until we reach the propositional formula φ. Then, rewriting
each Φi to φi,low and φi,up according to Definition 4.5 creates a monotonic
series of lower and upper bounds P (φi,low), P (φi,up) for the probability P (φ).
That is:

0 ≤ P (φ1,low) ≤ · · · ≤ P (φn,low) ≤ P (φ)
≤ P (φn,up) ≤ · · · ≤ P (φ1,up) ≤ 1

Proof. The proof proceeds inductively over the structure of Definition 4.4,
where we show that each SLD step preserves the bounds. We assume the
observed literal R(X̄) to occur positively in the PDNF of Φi. The negated
version is handled analogously.

1. We have an intensional literal R(X̄) which was substituted in Φi by
the disjunction of deduction rules’ bodies, which we call Ψ here, to
yield Φi+1. Because there are only literals and no tuple identifiers
in Ψ, Definition 4.5 yields ψlow ≡ false and ψup ≡ true. Hence, the
bounds of Φi+1 are not altered, which reads as P (φi+1,up) = P (φi,up)
and P (φi+1,low) = P (φi,low).

2. As in Definition 4.4, we separate the cases of different variables.

(a) In this case we consider an extensional literalR(X̄) where Var(X̄)
are query variables. Now, SLD(R(X̄),Φi) delivers a set of formu-
las. Let Φi+1 be an arbitrary formula in this set. We obtain Φi+1

by replacing R(X̄) in Φi by a tuple identifier I. Hence, in the
DNF of φi+1,up we added I to the clauses, whereas in the DNF
of φi,up we replace R(X̄) by true. Thus, Lemma 4.1 applies and
we have P (φi+1,up) ≤ P (φi,up). The reasoning for lower bounds
is analogous.

CHAPTER 4. TOP-K QUERY PROCESSING 78

(b) Again, we have an extensional literal R(X̄), but all variables
Var(X̄) are bound by an existential quantifier. As a result, each
Φi+1 in the set SLD(R(X̄,Φi) is constructed from Φi by the first
line of Equation (4.1). Now, the DNF of φi,up has clauses where
R(X̄) was substituted by true. Then, in φi+1,up each clause fea-
turing a new tuple identifier I can be mapped to one of these
clauses in the DNF of φi,up . Therefore, Lemma 4.1 gives us
P (φi+1,up) ≤ P (φi,up). Again, lower bounds are handled anal-
ogously.

(c) If the variables X̄ in the extensional literal R(X̄) are universally
quantified, then R(X̄) in Φi is replaced by a conjunction (as given
in the second line of Equation (4.1)) to yield Φi+1. In the DNF
of φi,up , we employed true whenever R(X̄) occurred. Conversely,
in φi+1,up we replaced R(X̄) by a conjunction of tuple identifiers.
The resulting extended clauses of φi+1,up can be mapped to a
clause of φi,up , so Lemma 4.1 applies: P (φi+1,up) ≤ P (φi,up).
The lower bounds are addressed analogously.

3. Here, a literal R(X̄) was replaced in Φi by false to yield Φi+1. Hence,
for lower bounds constructed by Definition 4.5 we have P (φi,low) =
P (φi+1,low). For the upper bounds Lemma 4.1 delivers P (φi+1,up) ≤
P (φi,up), since the PDNF of Φi+1 has fewer clauses as the PDNF of
Φi.

4. In the last case, R(X̄) is arithmetic and X̄ consists of constants only.
Now, if R(X̄) evaluates to true, we have φi,up = φi+1,up and hence also
P (φi,up) = P (φi+1,up). For the lower bound, the DNF of φi+1,low can
have more clauses than the DNF of φi,low and so Lemma 4.1 comes
to our rescue again: P (φi,low) ≤ P (φi+1,low). Conversely, if R(X̄)
evaluates to false, the reasoning for the upper and lower bounds is
inverted.

4.5 Algorithms

So far, we shed light on the theoretical properties of first-order lineage for-
mulas with respect to constructing them as well as for computing bounds
on their answers’ probabilities. In this section, we move to the algorithmic
perspective. That is, we plug the obtained knowledge together to form a
top-k algorithm (Section 4.5.2) which delivers the k answers with highest
probabilities. To choose which literal to expand in each step of the top-k
procedure, we also present a scheduling algorithm (Section 4.5.1).

79 CHAPTER 4. TOP-K QUERY PROCESSING

4.5.1 Benefit-Oriented Literal Scheduling

We formally covered SLD steps to create first-order lineage formulas in Def-
inition 4.4. However, if there is more than one first-order literal we could
expand on, which one do we choose? The resulting scheduling problem is
the subject of this section. Our approach does not adhere to any fixed
query plan, but chooses the next literal to be expanded in each SLD step
dynamically as follows.

In general, it is beneficial to prefer literals, which result in faster conver-
gence of the probability bounds, since the top-k algorithm will rely on this to
prune potential query answers more aggressively. For this, recall derivatives
on probability computations (see Definition 2.13) and bounds on first-order
lineage formulas (see Definition 4.5). We combine these as follows.

Definition 4.6. Given a literal R(X̄) occurring in a first-order lineage for-
mula Φ, let Φtrue := Φ[R(X̄)/true] and Φfalse := Φ[R(X̄)/false]. Then, we
quantify the impact of R(X̄) on the upper probability bound of Φ by:

P (φtrue,up)− P (φfalse,up)

and analogously for the lower bound:

P (φtrue,low)− P (φfalse,low)

In the above definition, we first exchange the literal R(X̄) for true and
false to emulate the derivative. Afterward, we create the propositional for-
mula for the upper or lower bound by substituting all remaining literals.

Example 4.11. We consider the first-order lineage formula

Φ := I1 ∧ActedIn(P,M) ∧WonAward(M,A)

with p(I1) = 0.8. Then, the impact of the ActedIn literal on the upper bound
is:

P (I1 ∧ true
︸︷︷︸

ActedIn

∧ true
︸︷︷︸

WonAward

)− P (I1 ∧ false
︸︷︷︸

ActedIn

∧ true
︸︷︷︸

WonAward

) = 0.8− 0

In addition to the impact on the probability bounds, we can quantify
the number of tuples matching a literal R(X̄). Because fewer tuples yield
smaller formulas or fewer potential query answers to consider, both ways
provide a speed-up for top-k processing. For this, we utilize the groundings
of Definition 2.4 and apply them to a single literal only.

Definition 4.7. For a extensional literal R(X̄) and tuples T , we quantify
the selectivity as the number of tuples matching R(X̄) in T :

|G(R(X̄), T)|

CHAPTER 4. TOP-K QUERY PROCESSING 80

Unfortunately, in practice obtaining the exact selectivity of a literal
R(X̄) is nearly as expensive as running the actual database query, which
we want to save on. Hence, we approximate |G(R(X̄), T)| by statistics, as
it is common in databases [65]. For instance, instead of considering the
exact constants in X̄, we only keep track of the positions in X̄ which hold
constants and work with averages representing their expected resulted size.
These statistics can be precomputed before running queries.

Example 4.12. Regarding the Category relation of Figure 4.1, we approx-
imate Definition 4.7 by:

|G(Category(X̄), T)| :=

4 if Var(X̄) = ∅
1 if the first argument is bound
4
3 if the second argument is bound
1 if both arguments are bound

Here, 4
3 = 1+1+2

3 results from the fact that there are three constants with a
total of four resulting tuples, if we bind the second argument.

Finally, for an extensional literal R(X̄) occurring in a lineage formula Φ
we combine both impact and selectivity to model the benefit of choosing the
literal:

ben(Φ, R(X̄), T) :=
|P (φtrue,up)− P (φfalse,up)|+ |P (φtrue,low)− P (φfalse,low)|

1 + |G(R(X̄), T)|
(4.3)

The above formula favors literals which have high impact on the proba-
bility bounds of Φ and low selectivity. Based on this formula, we prioritize
positive extensional literals among each other.

Now, we are ready to present Algorithm 5 which performs the overall
scheduling. In detail, whenever we find an arithmetic literal featuring only

Algorithm 5 Scheduling(A, T)

Input: Set of first-order lineage formulas A, and tuples T
Output: Literal R(X̄) to expand next and formula Φ it occurs in
1: L := 〈(R(X̄),Φ) | Φ ∈ A,R(X̄) ∈ Φ〉 ⊲ List of all literals with its formula
2: if L contains an arithmetic literal R(X̄) with Var(X̄) = ∅ then

3: return (R(X̄),Φ)

4: if L contains an intensional literal R(X̄) then
5: return (R(X̄),Φ)

6: if L contains a negated literal R(X̄) with Var(X̄) = ∅ then

7: return (R(X̄),Φ)

8: Sort positive extensional literals in L by ben(Φ, R(X̄), T) ⊲ See Equation (4.3)
9: return First(L) ⊲ Return best positive extensional literal

constants as arguments, we process it first, as it can be evaluated. Otherwise,

81 CHAPTER 4. TOP-K QUERY PROCESSING

we choose an intensional literal (see Line 5). As there are usually only few
deduction rules D, they can be kept in memory, and the resulting SLD step
is fast. If there are only extensional literals to consider, we prefer negated
literals which have all arguments bound to constants. Finally, we rely on the
benefit function of Equation (4.3) to determine the best positive extensional
literal. Implementationwise, it is of advantage to keep all extensional literals
in a priority queue [25] ordered by the benefit of Equation (4.3).

4.5.2 Top-k with Dynamic Literal Scheduling

Our top-k algorithm primarily operates on the lineage formulas of answer
candidates. Specifically, we maintain two disjoint sets of answer candidates
Atop and Acand , defined as follows. Following the seminal line of threshold
algorithms [44], Atop comprises the current top-k answers with respect to
the lower probability bounds, while Acand consists of all remaining answer
candidates. Later, we prune answer candidates from Acand until it is empty.

Definition 4.8. Given a set of answer candidates A = {Φ1, . . . ,Φn} repre-
sented by their lineage formulas Φi, we seek to partition them A = Atop∪̇Acand

such that:

• |Atop | ≤ k

• ∀Φ ∈ Atop : P (φlow) > 0

• ∀Φ ∈ Atop , ∀Ψ ∈ Acand : P (φlow) ≥ P (ψlow)

As a constraint, the top-k set Atop consists only of query answers whose
lower bound is greater than 0. This probability must be induced by a purely
propositional clause which by the first case of Proposition 4.1 means that
these answers must have all query variables bound. The candidate set, on
the other hand, may also hold answer candidates with a lower probability
bound of 0. These can be answer candidates for which the query variables are
not yet bound to constants, hence representing sets of answers. Regarding
the implementation of Atop and Acand , priority queues keeping the answer
candidates ordered by their lower probability bound are very effective, since
they support updating the probability bounds efficiently.

Example 4.13. If we intend to determine the top-1 answer and currently
possess the two first-order lineage formulas

I1 ∧ ActedIn(X,ApocalypseNow) and I2 ∧ActedIn(X,Godfather)

then both have lower bound 0. Therefore, the two are contained in Acand .

The key to any top-k algorithm is pruning of answer candidates, which
we achieve via the following threshold.

CHAPTER 4. TOP-K QUERY PROCESSING 82

θlow := min ({1} ∪ {P (φlow) | Φ ∈ Atop}) (4.4)

It captures the lowest lower bound that can be observed among any
formula in Atop . Based on the θlow we can prune answer candidates from
Acand , since they will never be among the top-k answers [44].

Proposition 4.5. Given answer candidates Atop and Acand , and the lower
bound θlow , all answer candidates in the following set can never become a
top-k answer:

Prune(Acand , θlow) := {Φ | Φ ∈ Acand , P (φup) < θlow}

Proof. According to Theorem 4.1, the probability bounds of each answer
candidate converge monotonically. Hence, with each SLD step the up-
per bound P (φup) of Proposition 4.5 monotonically decreases, whereas θlow
monotonically increases. This prohibits the answer candidates to leave the
set Prune(Acand , θlow) during any future SLD step.

Example 4.14. We consider Atop = {I1 ∧ I4}, Acand = {Directed(P,God-
father) ∧ I5} over the tuples of Figure 4.1 and k = 1. Since p(I1) = 0.8,
p(I4) = 0.6 we have P (I1 ∧ I4) = 0.48, which hence is both the upper and
lower bound. So, we set θlow = 0.48. The upper bound of Directed(P,God-
father) ∧ I5 is calculated as P (true ∧ I5) = 0.3. Because of 0.3 < 0.48, we
obtain:

Prune(Acand , θlow) = {Directed(P,Godfather) ∧ I5}

Finally, we combine all building blocks in Algorithm 6 to form the top-
k procedure, which proceeds as follows. First, we initialize the candidate
set Acand with the query (see Line 2), which has lower bound 0 and hence
cannot be contained in Atop . Then, the loop of Line 3 is executed until the
candidate set Acand runs out of valid answer candidates, that is, Acand is
empty. At each processing step, the scheduler chooses the currently best
literal Rbest(X̄) (see Line 4). Following Definition 4.4 we then expand the
lineage formula of this literal by performing a single SLD step over both
D and T (Line 5). Then, we update Atop , and Acand (Line 7) due to the
following. First, expanding Rbest(X̄) can change the probability bounds of
the answer. Second, if there are no matches to Rbest(X̄), neither in T nor in
D, the answer candidates corresponding toRbest(X̄) may be deleted (because
lineage evaluates to false). And third, if a query variable was bound to more
than one constant, one or more new top-k answer candidates are created.
Finally, in Line 9 we prune answer candidates with a too low upper bound,
before the next iteration of the loop starts.

Example 4.15. Assume we query for ActedOnly(X,Z) with k = 1 using
the deduction rules and tuples of Figure 4.1. So, we first set Atop := ∅ and

83 CHAPTER 4. TOP-K QUERY PROCESSING

Algorithm 6 Top-k(T , D, Q(X̄), k)

Input: Tuples T , deduction rules D, query Q(X̄), and an integer k
Output: Top-k answers Atop for Q(X̄) according to their lower probability bounds
1: Atop := ∅ ⊲ Current top-k answers, see Definition 4.8
2: Acand := {Q(X̄)} ⊲ Answer candidates, see Definition 4.8
3: while Acand 6= ∅ do

4: (Rbest(X̄),Φbest) := Scheduling(Atop ∪Acand , T) ⊲ See Algorithm 5
5: {Φ1, . . . ,Φn} := SLD(Rbest(X̄), Φbest) ⊲ See Definition 4.4
6: replace Φbest in Atop or Acand by Φ1, . . . ,Φn

7: update Atop and Acand to fulfill Definition 4.8
8: θlow := min ({1} ∪ {P (φlow) | Φ ∈ Atop}) ⊲ See Equation (4.4)
9: Acand := Acand\Prune(Acand , θlow) ⊲ See Proposition 4.5

10: return Atop

Acand := {ActedOnly(X,Z)}. Since ActedOnly is the only literal present,
we expand it in Line 5 via its deduction rule, such that we receive in Line 7
Acand = {ActedIn(X,Z) ∧ ¬Directed(X,Z)}. As Atop is empty, we obtain
θlow = 1. Hence, in Line 9 no pruning takes place. In the next iteration,
the scheduler chooses ActedIn, because Directed is negated. Now, Line 5
delivers:

I4 ∧ ¬Directed(Brando,ApocalypseNow),
I5 ∧ ¬Directed(Pacino,Godfather),

I6 ∧ ¬Directed(Tarantino,PulpFiction)

Because all their lower bounds are 0 (replace their Directed literal for true),
we place them in Acand in Line 7. Again, no answer candidate is pruned, so
we enter the following iteration. Now, we expand Directed(Brando,Apoca-
lypseNow), where no tuple is found, which results in I4 ∧ ¬false ≡ I4. As
p(I4) = 0.6 > 0, we receive Atop = {I4} and

Acand =

{
I5 ∧ ¬Directed(Pacino,Godfather),

I6 ∧ ¬Directed(Tarantino,PulpFiction)

}

Finally, since the lower bound of I4 is 0.6 and the two answer candidates
above have upper bounds of 0.3 and 0.4 (replacing their Directed literal by
false), we prune all of Acand , which terminates the algorithm.

Final Result Ranking Many applications that employ top-k queries re-
quire a complete ranking of the top-k answers. When Algorithm 6 ter-
minates, the probabilities of the top-k answers may however not be known
exactly—but only the bounds thereof. Similarly to the strategies in [108], we
can tackle this either by iteratively running top-1,. . . , top-k queries, where
an inspection of the k answer sets yields the desired ranking, or by continu-
ing the grounding and decomposition steps until the probability bounds of
the top-k answers do not overlap anymore.

CHAPTER 4. TOP-K QUERY PROCESSING 84

4.6 Extensions

We continue with the presentation of extensions to the top-k algorithm being
sorted input relations (Section 4.6.1), support for recursive deduction rules
(Section 4.6.2), considerations on temporal data (Section 4.6.3), and finally
top-k queries with constraints (Section 4.6.4).

4.6.1 Sorted Input Relations

A powerful technique in top-k approaches for extensional data [44, 69, 88]
is to store each relation in decreasing order of local ranks, i.e. the tuple
probability in our case. Then, the rank at the current scan position serves
as an upper bound for the ranks of all remaining tuples. Along with a
monotonic score aggregation function, this allows for the computation of
monotonically decreasing upper bounds of answer candidates. In our setting,
we rank query answers by their probabilities which generally does not resolve
to such a monotonic form of score aggregation. However, in the following
we characterize a case where decreasing upper bounds, i.e. not relying on
true as upper bound from Definition 4.5 anymore, are allowed.

Definition 4.9. Let R(X̄) be an extensional literal occurring in Φ such that
all variables in Var(X̄) are query variables. Then, we can replace case 2(a)
of Definition 4.4 by

SLD(R(X̄),Φ) := {σā(Φ)} ∪ {Φ ∧ ¬
∧

Xi∈Var(X̄)

Xi = ai

︸ ︷︷ ︸

(∗)

}

where

1. p(R(ā)) is maximal among the matching tuples;

2. p(R(ā)) is the new upper bound for R(X̄) in (∗).

In other words, we process the tuple R(ā) in σā(Φ) and capture all
remaining tuples (but not R(ā)) in (∗) with decreased upper bound for
R(X̄). Efficiently obtaining the maximal p(R(ā)) can be achieved by keeping
R sorted by decreasing tuple probabilities.

Example 4.16. In the simplest case a query is equivalent to a single ex-
tensional literal with all variables being query variables. Assume our query
is WonAward(M,A) over the tuples of Figure 4.1 with k = 1. When we
perform one SLD step following Definition 4.9, we gain:

{I10} ∪ {WonAward(M,A) ∧ ¬(M = PulpFiction ∧A = BestPicture)}
︸ ︷︷ ︸

(∗)

85 CHAPTER 4. TOP-K QUERY PROCESSING

Now p(I10) is the lower bound for I10 and also the upper bound for all an-
swers in (*), which we obtain by setting the equalities to false and WonAward
to probability 0.9. Therefore, the set Prune of Proposition 4.5 contains (*).
So, we can stop and return I10 as answer.

The key for Definition 4.9 is that binding a query variable yields a
new query answer (see case 2(a) of Definition 4.4), while binding quanti-
fied variables can result in a disjunction in the lineage formula due to case
2(b) of Definition 4.4. This disjunction may result in a higher probabil-
ity than that of the individual input tuples due to Equation (2.4). For
example, if two independent tuples I1, I2 with a probability of 0.5 each
match a single literal with existentially bound variables, then we obtain
1− (1− 0.5) · (1− 0.5) = 0.75 > 0.5. Thus, an upper bound of 0.5 would be
incorrect.

4.6.2 Recursion

In this subsection, we develop an extension for handling deduction rules
with recursively defined intensional relations. To ensure a safe semantics for
the SLD grounding steps, we require the set of recursive deduction rules D
to be stratifiable [2]. That is, it is not allowed to deduce a tuple from its
own negation. Stratifiability is a pure syntactic check on the rule structure
and can be done prior to query processing. We remark that the combined
complexity (in terms of the size of both the data and the deduction rules)
for Datalog programs with a single, recursive, non-linear rule is known to be
EXPTIME-complete [57]. Although we cannot improve upon this worst-case
bound, we argue that top-k pruning may also help to improve the runtime
for many recursive queries in practice.

Example 4.17. If we want to obtain all predecessors of a politician P1 we
can write:

Predecessors(P1, P2) ← ∃P3 HasPredecessor(P1, P3) ∧ Predecessors(P3, P2)

The above rule is recursive, since its head literal and the second literal in
the body have the same intensional relation.

Recursion poses a challenging problem for any grounding algorithm.
Conceptually, the lineage formula of an answer could grow infinitely large
if a cycle arises within the deduction rules. To define cycles formally, let
SLD+(R(X̄),Φ) denote the repeated application of the first case of Defini-
tion 4.4 which resolves intensional literals for their deduction rules.

Definition 4.10. Given a first-order lineage formula Φ containing R(X̄),
we have a cycle, if R(X̄) occurs in Ψ where Ψ ∈ SLD+(R(X̄),Φ).

CHAPTER 4. TOP-K QUERY PROCESSING 86

Hence, R(X̄) forms a cycle if the resolving of it via deduction rules yields
R(X̄) again.

Example 4.18. If we expand Predecessors(P1, P2) via the deduction rule of
Example 4.17, we have

∃P3 HasPredecessor(P1, P3) ∧ Predecessors(P3, P2)

which features the Predecessors literal again, and hence forms a cycle.

Next, we develop a lemma ensuring the finiteness of a first-order lineage
formula Φ, without altering the possible worlds that satisfy Φ.

Lemma 4.2. On a set of recursive deduction rules let a first-order lin-
eage formula Φ which contains the literal R(X̄) be given. Then, for Ψ ∈
SLD+(R(X̄),Φ) and Ψ′ ∈ SLD+(R(X̄),SLD+(R(X̄),Φ)), it holds:

R(X̄) occurs in Ψ and Ψ′ ⇒ Ψ ≡ Ψ′

In other words, expanding a cycle more than once does not change the
validity of a lineage formula, which agrees with earlier results in the context
of probabilistic extensions to Datalog [122].

Proof. Without loss of generality, we assume all formulas to be in prenex
form. Furthermore, let Φ′∨

∨

i(Φ
′′
i ∧R(X̄)) be the disjunctive normal form of

Ψ. That is Φ′ is a formula in disjunctive normal form, Φ′′
i are conjunctions

of literals and both do not contain R(X̄). Due to stratification, R(X̄) must
occur positively in the above formula. Now, we can rewrite Ψ′ through the
following series of algebraic transformations:

Ψ′ ≡ Φ′ ∨
∨

i

(Φ′′
i ∧ (Φ′ ∨

∨

j

(Φ′′
j ∧R(X̄))))

Here, Ψ′ was expanded twice via the deduction rules. Now, we apply the
distributive law:

Φ′ ∨
∨

i

(Φ′′
i ∧ Φ′) ∨

∨

i,j

(Φ′′
i ∧ Φ′′

j ∧R(X̄))

Then, each (Φ′′
i ∧ Φ′) is subsumed by Φ′:

Φ′ ∨
∨

i,j

(Φ′′
i ∧ Φ′′

j ∧R(X̄))

Next, we separate the cases, when i = j and i 6= j:

Φ′ ∨
∨

i

(Φ′′
i ∧ Φ′′

i ∧R(X̄)) ∨
∨

i 6=j

(Φ′′
i ∧ Φ′′

j ∧R(X̄))

87 CHAPTER 4. TOP-K QUERY PROCESSING

Since it holds that Φ′′
i ∧ Φ′′

i ≡ Φ′′
i , we write:

Φ′ ∨
∨

i

(Φ′′
i ∧R(X̄)) ∨

∨

i 6=j

(Φ′′
i ∧ Φ′′

j ∧R(X̄))

Now, Φ′′
i ∧R(X̄) subsumes Φ′′

i ∧ Φ′′
j ∧R(X̄):

Φ′ ∨
∨

i

(Φ′′
i ∧R(X̄)) ≡ Ψ

This again yields the form of the first expansion of R(X̄).

We extend Algorithm 5 to handle recursive deduction rules as follows.
If a literal occurs in a cycle, we do not schedule it. The cycle can be broken
by new constants binding a variable, and hence enabling scheduling the
literal again. Furthermore, we add a new case to Definition 4.4: if a first-
order lineage formula contains only literals in cycles, no new results can be
obtained, so we replace all these literals by false.

4.6.3 Temporal Data

In principle, we can apply the top-k procedure to temporal data as follows.
Given a temporal queryQ(X̄) and temporal deduction rules D, we transform
the deduction rules following the procedure of the proof of Theorem 3.1 to
yield D′. Afterwards, deduplication (see Definition 3.5) is encoded in D′.
Also, all mentions of time in D′ are expressed by integer comparisons. Hence,
executing Algorithm 6 on D′ enables support for temporal data. As the proof
of Theorem 3.1 duplicates all rules and data, this approach is feasible, but
not very efficient.

4.6.4 Constraints

Let us extend the top-k algorithm to support constraints along with queries
Q(X̄) and their deduction rules Dq.

Fixed Constraints If the constraints are fixed to the propositional lineage
formula φc (see Section 2.2.6), then we invoke Algorithm 6 by:

Top-k(T ,Dq, Q(X̄) ∧ φc, k)

This produces the correctly ranked query answers according to the probabil-
ity defined in Equation (2.7). The reason is thatQ(X̄)∧φc yields the enumer-
ator of Equation (2.7). Additionally, the denominator of Equation (2.7) is a
constant which is shared by all query answers, and hence does not influence
the ranking. Nevertheless, we have to stress that the probability bounds are
correct for Q(X̄) ∧ φc, but do not necessarily bind the true probability of
the query answers anymore, since we are neglecting the denominator.

CHAPTER 4. TOP-K QUERY PROCESSING 88

Variable Constraints In this case, the constraints are altered along with
the queries. Let the constraints be given by the set of literals Cp (see Sec-
tion 2.2.6) with their deduction rules Dc. We then start Algorithm 6 by

Top-k

T ,Dq ∪ Dc, Q(X̄) ∧ ∀Ȳ ′
∧

C(Ȳ)∈Cp

C(Ȳ) , k

where Var(Ȳ ′) =
⋃

C(Ȳ)∈Cp
Var(Ȳ). Here, ∀Ȳ ′

∧

C(Ȳ)∈Cp
C(Ȳ) will be ex-

panded by case 2(d) of Definition 4.4 into the conjunction of all grounded
constraints, hence delivering once again the enumerator of Equation (2.7).
As in the case of fixed constraints, the ranking is correct and hence the
correct answers are computed. Still, the bounds might not capture the true
probabilities of the answers anymore.

Example 4.19. We run a top-k query with constraints relying on the data-
base T and deduction rules Dq from Figure 4.1. Let the query be Acted-
Only(X,Z) where the constraints are given by Constraints(D,M). Further-
more, we define Dc, that is the constraints, to comprise the deduction rule:

Constraints(D,M) ← Directed(D,M) ∧ Category(M,Crime)

It expresses that we fully trust into the category and director of crime movies.
Hence, we call Algorithm 6 by:

Top-k(T ,Dq ∪ Dc,ActedOnly(X,Z) ∧ ∀D ∀M Constraints(D,M), k)

If we apply the first case of Definition 4.4 to replace the literals in the above
query by their deduction rules we obtain:

ActedIn(X,Z) ∧ ¬Directed(X,Z)∧
∀D ∀M Directed(D,M) ∧ Category(M,Crime)

In the next steps, we exchange the literals in the lower line for their tuple
identifiers by repeatedly applying case 2(c) of Definition 4.4.

ActedIn(X,Z) ∧ ¬Directed(X,Z) ∧ (I2 ∧ I12) ∧ (I3 ∧ I13)
︸ ︷︷ ︸

(∗)

Then, each query answer as distinguished by X and Z has the conjunction
of all constraints (∗) attached. This coincides with the enumerator of Equa-
tion (2.7).

4.7 Experiments

The empirical evaluation of the presented top-k algorithm is fourfold. We
investigate the runtimes on established query classes in probabilistic data-
bases (Section 4.7.1), followed by queries which we consider to characterize

89 CHAPTER 4. TOP-K QUERY PROCESSING

well the strengths and weaknesses of our algorithm (Section 4.7.2), before we
experiment with recursive queries (Section 4.7.3), and then conclude with
an internals analysis, such as our scheduling algorithm (Section 4.7.4).

Competitors We employ two well-known probabilistic database engines
for comparison purposes, MayBMS1 [10] and Trio2 [14], both computing all
answers and their probabilities. Additionally, we implemented the multi-
simulation algorithm of [115], which we refer to as MultiSim. We also in-
clude comparisons against a purely deterministic database, denoted as Post-
greSQL, by storing probability values in all relations but omitting the actual
probability computations. The PostgreSQL baseline thus serves also as a
lower bound for any probabilistic top-k approach, including [108, 115], that
requires full data materialization (or full lineage tracing for intensional query
evaluations). Finally, we refer to our top-k implementation as ProbTop-k.

4.7.1 Query Classes

We first focus on four established query classes in probabilistic databases,
which are performed on the IMDB dataset (see Appendix A.2.2) comprising
knowledge about movies. The tuple probabilities are synthetically created
by drawing them from the uniform distribution.

Queries Here, we present four query patterns which are instantiated by
constants to deliver 1000 queries each. The first query class Q1 is non-
repeating hierarchical [31, 139], which may use every relation symbol at
most once. For this reason, probability computations are efficient, i.e. fully
captured by Equation (2.4). We instantiate Query(P,Constant) to 1000
queries over the deduction rules:

Query(P,M) ← ActedIn(P,M)
Query(P,M) ← Subquery(P,M)

Subquery(P,M1) ← ∃M2 Edited(P,M1) ∧Directed(P,M2)
Subquery(P,M1) ← ∃M2 Produced(P,M1) ∧Written(P,M2)

In Q2, we focus on repeating hierarchical queries [139], where we ask for
Query(P,Constant) defined as follows:

Query(P,M) ← ActedIn(P,M) ∧ HasCategory(P,Action)

Query(P,M) ←

(
Produced(P,M) ∧HasCategory(P,Action)

∧HasCategory(P,Drama)

)

Query(P,M) ←Written(P,M) ∧HasCategory(P,Drama)

The resulting lineage formulas generally require Shannon expansions, but
at most two of them. Then, we work on non-repeating head-hierarchical

1http://maybms.sourceforge.net/
2http://infolab.stanford.edu/trio/

http://maybms.sourceforge.net/
http://infolab.stanford.edu/trio/

CHAPTER 4. TOP-K QUERY PROCESSING 90

queries [108], whose probabilities are known to be computable in polynomial
time for ranking, but not for fully computing the probability of each answer.
The query pattern Q3 hence has a subquery Expensive which may not be
evaluated for ranking, when we run Query(Constant ,M) over:

Query(P,M) ← Edited(P,M)
Query(P,M) ← Produced(P,M)
Query(P,M) ← ∃M2 ∃C Directed(P,M) ∧ Expensive(M2, C)

Expensive(M1, C) ← ∃P ∃M2

(
ActedIn(P,M1) ∧Written(P,M2)

∧HasCategory(M2, C)

)

Finally, general unsafe queries [31, 139], as used in our query pattern Q4,
can produce very large lineage formulas with many Shannon expansions:

Query(P,M) ← ∃M2 ∃P2 ∃M3 ∃C

Edited(P,M2) ∧ Produced(P2,M2)
∧Written(P2,M)

∧HasCategory(M3, C)

Query(P,M) ← Directed(P,M)
Query(P,M) ← ActedIn(P,M)

Here, we execute the query Query(Constant ,M). Additionally, we note that
sorted input lists can be employed for the latter two deduction rules.

Results We measure the average runtime over the 1000 queries and show
them in Figure 4.2. Moreover, the table in Figure 4.3 depicts the fraction
of database tuples our top-k approach reads in comparison to the number
of database tuples necessary for computing all answers. For presentation
purposes, we depict runtimes of only up to 100 seconds for all systems.

Q1 Non-Rep. Hierarchical Q2 Rep. Hieararchical Q3 Head-Hierarchical Q4 Unsafe
10

0

10
1

10
2

10
3

10
4

10
5

m
ill

is
ec

on
ds

ProbTop-10
ProbTop-20
ProbTop-50
MultiSim Top-10

MultiSim Top-20

MultiSim Top-50
PostgreSQL

MayBMS
Trio

Figure 4.2: Query Classes Experiments

Discussion For the non-repeating hierarchical queries (Q1), our top-k ap-
proach outperforms all systems including the deterministic one. We mainly

91 CHAPTER 4. TOP-K QUERY PROCESSING

ProbTop-10 ProbTop-20 ProbTop-50
Q1 32.8% 43.8% 76.3%
Q2 17.5% 28.5% 60.6%
Q3 0.001% 0.001% 0.001%
Q4 0.2% 0.2% 0.2%
Q5 14.6% 23.2% 48.4%
Q6 21.9% 35.1% 74.8%
Q7 8.7% 14.1% 30.0%
Q8 23.7% 36.9% 74.9%

Figure 4.3: Percentage of Scanned Database Tuples

benefit, because by far not all database tuples need to be scanned, and
probabilities, and hence bounds, can be computed efficiently, i.e. by Equa-
tion (2.4). Q2 contains repeated relations and the gains in data computa-
tions are partially diminished by the Shannon expansions needed for comput-
ing the bounds. Q3 includes expensive data computations caused by a sub-
query that is shared among all answers. Since the subquery is not required
to rank the results, our approach reads only very few tuples (Figure 4.3).
Here, our top-k algorithm successfully terminates and even outperforms the
deterministic PostgreSQL baseline. Q4 has a subquery with both expen-
sive probability computations and major data computations. However, we
can prune answers even before the expensive subqueries are fully evaluated.
PostgreSQL exhibits a low runtime for the unsafe query Q4. In all queries,
Trio and MultiSim show an at least 100 times slower performance. For Mul-
tiSim, the majority of the runtime is spent in sampling (except for Q3). The
runtime does not significantly increase with k, but rather depends on the
distance of the k-th and k + 1-th answers’ probabilities. The smaller the
distance, the longer it takes to run MultiSim.

4.7.2 Performance Factors

We next highlight the different factors that impact how our top-k approach
performs against the competitors. For this, we create for four additional
query patterns Q5, Q6, Q7, and Q8, which are again instantiated into 1, 000
queries each, and their average runtime is depicted in Figure 4.4. As pre-
viously, we run on the IMDB dataset (see Appendix A.2.2) with synthetic
uniformly drawn probabilities.

The first query pattern Query(M,Constant), which we refer to as Q5,
allows exactly one proof for each answer candidate:

Query(M1,M2) ← ∃P ActedIn(P,M1) ∧Directed(P,M2)

Hence, pruning in terms of omitting a proof is impossible for our sys-
tem. Also, the single proof involves an existentially quantified variable ∃P

CHAPTER 4. TOP-K QUERY PROCESSING 92

Q5 Q6 Q7 Q8
10

0

10
1

10
2

10
3

10
4

10
5

m
ill

is
ec

on
ds

ProbTop-10
ProbTop-20
ProbTop-50
PostgreSQL

MayBMS
Trio

Figure 4.4: Performance Factors Experiments

which limits the use of sorted input lists. Inspecting Figure 4.4, MayBMS’
bottom-up grounding and probability computation of all answers is much
more efficient, since our system computes most answers. In Q6, we run
Query(P,Constant) with the deduction rules:

Query(P,M) ←Written(P,M) ∧Directed(P,M)
Query(P,M) ← ActedIn(P,M) ∧ HasCategory(M,Action)
Query(P,M) ← Produced(P,M)

Here, the possibility of three proofs per answer enables pruning and the lack
of existential quantifiers puts our approach in favor of the others. In the
next query pattern Q7, the query Query(P,Constant ,M) is a join of two
existential relations:

Query(P,M1,M2) ← Produced(P,M1) ∧Written(P,M2)

This, is the prime target of sorted input lists which hence provided a sig-
nificant performance gain for our approach. Finally, in Q8 we execute
Query(P,Constant) which is defined by:

Query(P,M) ← ActedIn(P,M) ∧ HasCategory(M,Action)
Query(P,M) ← Produced(P,M) ∧HasCategory(M,Action)
Query(P,M) ← ∃C Produced(P,M) ∧ HasCategory(M,C) ∧ C 6= Action

Here, each answer has up to three proofs, however the joined relations over-
lap and hence require Shannon expansions. Since we repeatedly invoke these
expansions to determine the bounds, the advantages of top-k pruning even
out with the competitors.

4.7.3 Recursion

We investigate how our top-k approach performs for recursive deduction
rules over the YAGO knowledge base (see Appendix A.2.1). The recursive

93 CHAPTER 4. TOP-K QUERY PROCESSING

query patterns are instantiated to 50 queries each. First, Q12 attempts to
collect all probability mass from the children

Ancestor(P1, P2) ← HasChild(P1, P2)
Ancestor(P1, P2) ← ∃P3 HasChild(P1, P2) ∧Ancestor(P2, P3)

where we query for Ancestor(Constant , P). The second query pattern Q13
is given by the query Politician(P,Constant), and asks for politicians of
nations by transitively following the HasPredecessor relation:

Politician(P,N) ← PoliticianOf (P,N)
Politician(P,N) ← ∃P2 HasPredecessor(P, P2) ∧ Politician(P2, N)

In Figure 4.5 we display the runtimes averaged runtimes over the 50 queries
for our top-k algorithm along with the FullGrounding approach. The latter
corresponds to an SLD grounding algorithm which computes all answers
with their lineage, but does not perform any probability computations. For

Q12 Q13
10

0

10
1

10
2

10
3

10
4

10
5

m
ill

is
ec

on
ds

ProbTop-1
ProbTop-5
ProbTop-10
FullGrounding

Figure 4.5: Recursion Experiments

Q12, the runtime increases with k, since more children being generations
away from the queried person have to be computed. For Q13 our top-k
algorithm takes the same amount of time for all k’s, because more than
10 politicians are known per country and are ranked in the top-10 results.
For the full grounding, the lineage computation of all answers becomes very
expensive.

4.7.4 Algorithm Analysis

In this section we first evaluate our algorithms with respect to the impact
of different probability distributions in the tuples. Then, we determine the
break-even point between running a top-k query versus computing all an-
swers in a bottom-up manner. Finally, we compare different scheduling
strategies.

CHAPTER 4. TOP-K QUERY PROCESSING 94

Probability Distributions So far, we focused on a uniform distribu-
tion of tuple probabilities. Instead, we now explore how different distri-
butions can affect our performance by comparing uniform, Gaussian, and
exponential distributions. Figure 4.6(a) shows the results for a join query
Query(M,P,M) on two existential relations over the IMDB dataset:

Query(M,P,M) ← HasCategory(M,Talk -Show) ∧ Produced(P,M)

As k grows, the uniform distribution yields the highest increase in runtime
while the exponential distribution has the slowest grow, as only few tuples
have high probabilities. The Gaussian distribution shows a jump at k = 40
as more answer candidates with similar probabilities are found.

0 10 20 30 40 50

k

0

100

200

300

400

500

600

700

m
ill

is
ec

on
ds

ProbTop-k uniform
ProbTop-k gaussian
ProbTop-k exponential

(a) Probability Distributions

0 10 20 30 40 50 60

k

0

1

2

3

4

5

6

7

8

9

se
co

nd
s

ProbTop-k

MayBMS
PostgreSQL

(b) Break-Even Point

Q9 Nesting-depth 1 Q10 Nesting-depth 2 Q11 Nesting-depth 2
10

0

10
1

10
2

10
3

10
4

10
5

m
ill

is
ec

on
ds

MBF Top-10
MBF Top-20
MBF Top-50
Postgres’ Plan Top-10
Postgres’ Plan Top-20
Postgres’ Plan Top-50

Selectivity Top-10

Selectivity Top-20
Selectivity Top-50

Selectivity+Imp Top-10

Selectivity+Imp Top-20

Selectivity+Imp Top-50

(c) Scheduling

Figure 4.6: Algorithm Analysis Experiments

Break-Even Point In this experiment, we compare our top-k approach
against a full materialization of all answers, i.e. investigating for which values
of k it is beneficial to compute all answers rather than running our top-k
procedure. The query Query(P,M) asks for directors of comedies:

Query(P,M) ← Directed(P,M) ∧ HasCategory(M,Comedy)

95 CHAPTER 4. TOP-K QUERY PROCESSING

It is again performed on the IMDB dataset (see Appendix A.2.2) with syn-
thetic uniform probabilities. Our top-k system computes the top-ranked
answers for different ks. In contrast, MayBMS and PostgreSQL fully ma-
terialize a table containing all results, where PostgreSQL ignores the prob-
ability computation. Inspecting Figure 4.6(b), we notice that for k < 50,
our top-k approach outperforms the others, but for larger values, the book-
keeping overhead starts dominating and it is more efficient to compute all
answers by a full join.

Scheduling Finally, we evaluate our scheduling techniques based on se-
lectivity estimation (see Definition 4.7) and impact (see Definition 4.6).
Our first baseline for dynamic literal scheduling, called “most-bound-first”
(MBF) (aka. “bound-is-easier” [2]), chooses the literal with the maximum
number of arguments bound at each SLD grounding step. For the second
baseline, we obtained PostgreSQL’s static query plan for these query pat-
terns and forced our system to adhere to this plan (denoted as Postgres’
Plan). Using the YAGO dataset (see Appendix A.2.1), the three query
patterns Q9, Q10, and Q11 were instantiated by 100 constants each (see
Appendix A.3.2). We order the query patterns by increasing nesting depth
of their deduction rules, such that Q9, Q10, and Q11 come with nesting
depths of 1, 2, and 3, respectively.

In Figure 4.6(c) we display the average runtime over the 100 queries
for each setup. For Q9, MBF is outperformed by both Postgres’ Plan and
our scheduler relying on selectivity estimates (Selectivity). Here, adding the
impact calculations to the selectivity estimation does not yield any perfor-
mance gains, but even results in slight losses. However, when moving to
the higher nesting depths of Q10 and Q11, the impact calculations start
improving the performance of the selectivity and impact based scheduler.
The reason is that the first-order lineage formulas get more complicated,
and hence the impact for the different literals varies more.

4.8 Summary and Outlook

Contribution We presented efficient processing strategies for top-k que-
ries over tuple-independent probabilistic databases. Our approach does nei-
ther assume safe query plans nor read-once lineage formulas, and it is able
to return the exact top-k answers according to their probabilities in many
cases even when exact probability computations for these answers are diffi-
cult. To capture intermediate states in top-k processing, we introduced first-
order lineage formulas, which represent sets of answer candidates. Based on
theoretically derived probability bounds of first-order lineage formulas, we
are able to prune (sets of) answer candidates without fully grounding the
lineage formula. Hence, this is the first top-k work in the context of prob-

CHAPTER 4. TOP-K QUERY PROCESSING 96

abilistic databases which can save on the data computation step. This is
an often neglected issue when querying a probabilistic database. Extensions
of our framework allow us to adopt sequential access patterns known from
managing extensional data, querying under constraints, and they even help
to improve the runtime for recursive rules.

Future Directions Besides sorted input lists, there are other promising
cases in which the probability bounds on a first-order literal could be tight-
ened. These can arise from constraints, i.e. if a relation is functional, or from
correlations in the database tuples, e.g. block-disjoint probabilistic databases
can rule out the co-occurrence of two literals. Moreover, since probabili-
ties are computed repeatedly in order to obtain bounds, this step can form
a bottleneck in our approach. One solution is to investigate rearranging
the structure of the first-order logical formulas such that less Shannon ex-
pansions are caused. Another interesting approach is to approximate the
probability bounds to speed up the probability computations of the bounds.

Chapter 5

Learning Tuple Probabilities

5.1 Introduction

Most works in probabilistic databases assume the data along with its prob-
abilities to be given as an input. Also the preceding chapters of this work
followed this line. Nevertheless, when creating, updating or cleaning a prob-
abilistic database, the tuple probabilities have to be altered or even newly
created, that is learned. This is the subject of the present chapter.

Applications Consider a user who labels a query answer to be correct.
This additional information should be incorporated into the probabilistic
database by updating the probabilities stored therein. Also, when we de-
sign consistency constraints for the probabilistic database, these constraints
rule out specific possibilities. Since this reduces uncertainty, the probabil-
ities of the data have to be altered. Moreover, on top of the probabilistic
database an automated process might be running. This process can hand
back large amounts of feedback to the database, maybe in the form of con-
fidence values. Furthermore, if we wish to turn an incomplete database into
a probabilistic database, we have to learn probability values for each of the
possible completions. Finally, the process of updating the probabilities of
the tuples can be employed to clean a given probabilistic database. The
reason is when we add feedback or constraints to a probabilistic database
the uncertainty degrades. This can yield tuples which certainly exist or are
invalid at all, as in conventional database systems.

Existing Approaches Although this has been stated as a challenge al-
ready in [27], to this date, there are only few works [83, 137] which aim for
creating or updating probabilistic databases. The authors of [137] derive a
probabilistic database from an incomplete database by estimating probabil-
ities from the complete part of the incomplete database. In Section 5.7.5,
we devise how to emulate their approach in our setting. In [83] condition-

97

CHAPTER 5. LEARNING TUPLE PROBABILITIES 98

ing a probabilistic database onto a given set of consistency constraints is
introduced. These constraints are logical formulas over the probabilistic
database which must either be true or false. This thesis heavily relies on
their methodology (see Section 2.2.6). In Section 5.7.3, we discuss the rela-
tionship between learning and conditioning in detail.

Our Approach We integrate feedback into a probabilistic database as fol-
lows. As feedback we consider a set of propositional lineage formulas over a
probabilistic database, where the formulas are labeled by target probabilities.
Each propositional lineage formula of the feedback can represent a query an-
swer or a consistency constraint, for instance. We then learn the probability
values associated with the tuples in this probabilistic database. The tuples’
probabilities are set such that the probabilities of the lineage formulas again
yield the given probability labels. This problem can be seen as the inverse
problem to probability computations in probabilistic databases, where tuple
probabilities are known, and then produce probabilities of lineage formulas.

Problem Statement In short, as input we are given:

• a tuple-independent probabilistic database, where some or all tuple
probabilities are missing;

• propositional lineage formulas over the database each of which is la-
beled by a target probability.

Then, our approach delivers as output:

• new tuple probability values such that the probability of the lineage
formulas meets the given target probability.

The resulting probabilistic database instance encodes the additional infor-
mation as provided by the labeled lineage formulas in the tuple probabilities.
We allow probability labels for lineage formulas, rather than the special case
of Boolean labels, because they occur in practice (see Section 5.9.1). Next,
we illustrate our setting by the following running example.

Example 5.1. Our running example resembles the information-extraction
setting of Section 2.5 in which we employ a set of textual patterns to extract
facts from various Web domains. However, instead of knowing all prob-
abilities of all tuples the respective values in the UsingPattern and From-
Domain relations are missing as indicated by the question marks in Fig-
ure 5.1. We thus are unsure about the reliability—or trustworthiness—
of the textual patterns and the Web domains that led to the extraction of
our remaining facts, respectively. Grounding the deduction rules of Equa-
tion (2.8) and Equation (2.9) against the database tuples of Figure 5.1 yields

99 CHAPTER 5. LEARNING TUPLE PROBABILITIES

WonPrizeExtraction
Subject Object Pid Did p

I1 Spielberg AcademyAward 1 1 0.6
I2 Spielberg AcademyAward 2 1 0.3

BornInExtraction
Subject Object Pid Did p

I3 Spielberg Cinncinati 3 1 0.7
I4 Spielberg LosAngeles 3 2 0.4

UsingPattern FromDomain
Pid Pattern p Did Domain p

I5 1 Received ? I8 1 Wikipedia.org ?
I6 2 Won ? I9 2 Imdb.com ?
I7 3 Born ?

Figure 5.1: Example Probabilistic Database with Missing Probability Values

the new tuples BornIn(Spielberg, Cinncinati), BornIn(Spielberg, LosAnge-
les), and WonPrize(Spielberg,AcademyAward). Figure 5.2 shows these new
tuples along with their propositional lineage formulas. A closer look at the

Figure 5.2: Example Lineages and Labels

new tuples reveals, however, that not all of them are correct. For instance,
BornIn(Spielberg,LosAngeles) is wrong, so we label it with the probability
of 0.0. Moreover, WonPrize(Spielberg,AcademyAward) is likely correct, but
we are unsure, hence we label it with the probability of 0.7, as shown on top
of Figure 5.2. Given the probability labels of the query answers, the goal of
the learning procedure is to learn the database tuples’ unknown probability
values for UsingPattern and FromDomain, such that the lineage formulas
again produce the given probability labels. Instead, the probabilities of the
tuples of WonPrizeExtraction and BornInExtraction remain unchanged.

CHAPTER 5. LEARNING TUPLE PROBABILITIES 100

5.2 Related Work

Many machine learning approaches have been applied to large scale datasets
where an overview is provided in [13]. Nonetheless, the scalable methods
tend to not offer a declarative language (similar to deduction rules or con-
straints) in order to induce correlations among tuples, as queries and lineage
do in probabilistic databases. Hence, in this section we review approaches
which address learning in the presence of correlations induced by logical
formulas and, at the same time, have the ability to scale to database like
instance sizes.

Learning in Markov Logic Networks In [91, 131] a number of learn-
ing algorithms for Markov logic networks are studied, where some of them
employ a per-weight learning rate as in this work. Still, the objective func-
tion for learning in Markov logic networks (as well as in relational Markov
networks [56, 141]) is very different to ours. For each first-order clause they
count how many true literals there are in the ground truth. Then, their
learning procedure attempts to set the weights such that the expected num-
ber of true groundings equals the number of true groundings in the ground
truth. In other words, the true groundings after weight learning might be
very different from the true ones in the ground truth, but their cardinality
will be the same. Nevertheless, in our setting labels are attached directly to
propositional lineage formulas hence enforcing the involved tuples to fulfill
their specific labels.

Learning in ProbLog The learning procedure of ProbLog [63] allows for
labels in the form of partial interpretations. These labels are logical formulas
over tuples which follow the semantics of tuple-independent probabilistic
databases. The authors devise a expectation maximization algorithm for
learning the tuple probability values. Still, our stochastic gradient descent
implementation is several orders of magnitude faster (see Section 5.9.1 and
Section 5.9.2). Within the ProbLog framework, [62] proposes an objective
similarly to ours, however lacking both a theoretical analysis and large scale
experiments.

Creating Probabilistic Databases There are very few works on the cre-
ation of probabilistic databases. The authors of [137] induce a probabilistic
database by estimating probabilities from a given incomplete database. We
can emulate their approach in our setting, which we discuss in detail in
Section 5.7.5. Enforcing consistency constraints by conditioning the data-
base tuples of a probabilistic database [83] onto these constraints allows for
altering the tuple probabilities. In comparison to this work, conditioning
lacks support for non-Boolean or inconsistent constraints. On the other

101 CHAPTER 5. LEARNING TUPLE PROBABILITIES

hand, conditioning supports correlations between tuples by storing world-
set-trees, whereas the result of our learning problem are independent tuple
probabilities (see Section 5.7.3 for a detailed technical discussion).

Probability Distributions over Databases There are several works [94,
96, 118] which estimate a probability distribution over an entire database,
e.g. over all possible worlds. To derive this distribution they often employ
the maximum entropy principle which guarantees an unbiased distribution
incorporating the evidence. In [96, 118] the methodology is used for selectiv-
ity estimation of queries over a database given the selectivities of previous
queries. Also, a similar approach is employed in data mining [94] to predict
frequencies of item sets in a database. Still, this distribution is expensive
to compute and does not take advantage of the independence present in
a probabilistic database model. In our setting, we specifically compute a
distribution adhering the tuple-independence.

Data Integration Imagine we are given two or more sources of data and
attempt to integrate them into one database. The resulting inconsisten-
cies and alternatives can be modeled probabilistically [93], hence creating a
probabilistic database. In this setting [150] presented an approach to merge
XML documents such that probabilistic XML documents arise. Neverthe-
less, their way of creating probabilities is rather simple. For example, they
employ 0.5 if there are two alternatives. As an extension [80] incorporates
user feedback in the information integration process to reduce the uncer-
tainty. Anyhow, they rely on consistent Boolean labels only.

Optimization Methods Our algorithm learning the tuple probabilities is
based on stochastic gradient descent, an optimization procedure. Due to the
various applications of optimization, there is an entire zoo of gradient-based
optimization techniques [103]. Approaches, such as Newton’s method, which
are based on the Hessian, do not to scale to database-like instance sizes.
This disadvantage is circumvented by Quasi-Newton methods, for instance
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [103], which
estimates the Hessian. We compare our approach to L-BFGS and plain
gradient descent in the experiments of Section 5.9.2.

Polynomials for Probability Computations The theoretical analysis
of our learning problem (Section 5.4) is based on computing probabilities
of lineage formulas via polynomials. Similarly, the authors of [59] used
semirings over polynomials to model provenance, where lineage is a special
case. Likewise, [46] employs arithmetic expressions to compute aggrega-
tions over probabilistic databases. However, all of the above works do not
consider learning or altering of tuple probabilities. Finally, Sum-Product

CHAPTER 5. LEARNING TUPLE PROBABILITIES 102

Networks [113] investigate tractable graphical models by representing these
as polynomial expressions with polynomially many terms. Still, in this work
polynomials serve as theoretical tool only having no restriction on size.

5.3 Contribution

In this chapter we present the first work to tackle the problem of learning
unknown (or missing) tuple probabilities from labeled lineage formulas in
the context of probabilistic databases.

• More specifically, in Section 5.5, we formally define the learning prob-
lem and analyze its properties from a theoretical perspective by char-
acterizing its computational complexity as well as the nature of its
solutions.

• We formulate the learning problem as an optimization problem, devise
two different objective functions for solving it, and discuss both in
Section 5.6.

• In Section 5.8, we present a learning algorithm based on stochastic
gradient descent which scales to problem instances with hundreds of
thousands of labels and millions of tuples to learn the probability val-
ues for (Section 5.9.3).

• In Section 5.7, we show that the learning problem supports prior prob-
abilities of database tuples which can be incorporated to update and
clean probabilistic databases. Also, we demonstrate that the learning
problem supports the creation of probabilistic databases from incom-
plete databases and applying constraints to probabilistic databases.

• Additionally, we perform an experimental evaluation on three different
real world datasets as well as on synthetic data, where we compare our
approach to various techniques based on statistical relational learning,
reasoning in information extraction, and optimization (Section 5.9).

5.4 Preliminary

For the theoretical analysis of the learning problem presented next, we de-
vise an alternative way of computing probabilities of lineage formulas via
polynomial expressions. First, we reduce the number of terms in the sum of
Equation (2.3) by considering just tuples Tup(φ) that occur in the proposi-
tional lineage formula φ.

103 CHAPTER 5. LEARNING TUPLE PROBABILITIES

Proposition 5.1. We can compute P (φ) relying on tuples in Tup(φ), only,
by writing:

P (φ) =
∑

V∈M(φ,Tup(φ))

P (V ,Tup(φ))
︸ ︷︷ ︸

Definition 2.10

(5.1)

Proof.

P (φ) =
∑

W∈M(φ,T) P (W, T)

=
(
∑

V∈M(φ,Tup(φ)) P (V ,Tup(φ))
)

·
(
∑

V⊆(T \Tup(φ))P (V , T \Tup(φ))
)

︸ ︷︷ ︸

=1 by Proposition 2.1

So, Equation (5.1) expresses P (φ) as a polynomial. Its terms are defined
as in the third item of Definition 2.10, and the variables are p(I) for I ∈
Tup(φ). The degree of the polynomial is limited as follows.

Corollary 5.1. The probability P (φ) of a propositional lineage formula φ
can be expressed by a multi-linear polynomial over variables p(I), for I ∈
Tup(φ), with a degree of at most |Tup(φ)|.

Proof. By inspecting Proposition 5.1, we note that the sum ranges over
subsets of Tup(φ) only, hence each term has a degree of at most |Tup(φ)|.

Example 5.2. Considering the propositional lineage formula φ ≡ I1 ∨ I2,
the occurring tuples are Tup(φ) = {I1, I2}. Then, it holds that {I1, I2} |= φ,
{I1} |= φ, and {I2} |= φ. Hence, we can write P (φ) = p(I1) · p(I2) + p(I1) ·
(1−p(I2))+(1−p(I1)) ·p(I2). Thus, P (φ) is a polynomial over the variables
p(I1), p(I2) and has degree 2 = |Tup(φ)| = |{I1, I2}|.

5.5 Learning Problem

We now move away from the case where the probability values of all data-
base tuples are known, which was true for all previous chapters. Instead,
we intend to learn the unknown probability values of (some of) these tuples
(e.g. of I5–I9 in Example 5.1). More formally, for a tuple-independent prob-
abilistic database (T , p), we consider Tl ⊆ T to be the set of base tuples for
which we learn their probability values. That is, initially p(I) is unknown
for all I ∈ Tl. Conversely, p(I) is known and fixed for all I ∈ T \Tl. To be
able to complete p(I), we are given labels in the form of pairs (φi, li), each
containing a propositional lineage formula φi (i.e., a query answer) and its
desired probability li. We formally define the resulting learning problem as
follows.

CHAPTER 5. LEARNING TUPLE PROBABILITIES 104

Definition 5.1. We are given a probabilistic database (T , p), a set of tuples
Tl ⊆ T with unknown probability values p(Il) and a multi-set of given labels
L = 〈(φ1, l1), . . . , (φn, ln)〉, where each φi is a propositional lineage formula
over T and each li ∈ [0, 1] ⊂ R is a probability for φi. Then, the learning
problem is defined as follows:

Determine: p(Il) ∈ [0, 1] ⊂ R for all Il ∈ Tl
such that: P (φi) = li for all (φi, li) ∈ L

Intuitively, we aim to set the probability values of the base tuples Il ∈ Tl
such that the labeled lineage formulas φi yield the probability li. We want
to remark that probability values of tuples in T \Tl remain unaltered. Also,
we note that the Boolean labels true and false can be represented as li = 0.0
and li = 1.0, respectively. Hence, Boolean labels resolve to a special case of
the labels of Definition 5.1.

Example 5.3. Formalizing the problem setting of Example 5.1, we obtain
T := {I1, . . . , I9}, Tl := {I5, . . . , I9} with labels ((I1∧I5∧I8)∨(I2∧I6∧I8), 0.7),
and ((I3 ∧ I7 ∧ I9), 0.0).

5.5.1 Complexity

We next discuss the complexity of solving the learning problem. Unfortu-
nately, it exhibits hard instances. First, computing P (φi) may be #P-hard
(see Lemma 2.2), which would require many Shannon expansions. But even
for cases when all P (φi) can be computed in polynomial time (i.e., when
Equation (2.4) is applicable), there are combinatorially hard cases of the
above learning problem.

Lemma 5.1. For a given instance of the learning problem of Definition 5.1,
where all P (φi) with (φi, li) ∈ L can be computed in polynomial time, decid-
ing whether there exists a solution to the learning problem is NP-hard.

Proof. We encode the 3-satisfiability problem (3SAT) [54] for a Boolean
formula ψ ≡ ψ1 ∧ · · · ∧ ψn in conjunctive normal form into the learning
problem of Definition 5.1. For each variable Xi ∈ Var(ψ), we create two
tuples Ii, I

′
i whose probability values will be learned. Hence, 2 · |Var(ψ)| =

|Tl| = |T |. Then, for eachXi, we add the label ((Ii∧I
′
i)∨(¬Ii∧¬I

′
i), 1.0). The

corresponding polynomial equation p(Ii)p(I
′
i) + (1 − p(Ii))(1 − p(I ′i)) = 1.0

has exactly two possible solutions for p(Ii), p(I
′
i) ∈ [0, 1], namely p(Ii) =

p(I ′i) = 1.0 and p(Ii) = p(I ′i) = 0.0. Next, we replace all variables Xi in
ψ by their tuple Ii. Now, for each clause ψi of ψ, we introduce one label
(ψi, 1.0). Altogether, we have |L| = |Var(ψ)| + n labels for the problem of
Definition 5.1. Each labeled lineage formula φ has at most three variables,
hence P (φ) takes at most 8 steps. Still, Definition 5.1 solves 3SAT, where
the learned values of each pair of p(Ii), p(I

′
i) (either 0.0 or 1.0) correspond

105 CHAPTER 5. LEARNING TUPLE PROBABILITIES

to truth value of Xi for a satisfying assignment of ψ. From this, it follows
that the decision problem formulated in Lemma 5.1 is NP-hard.

5.5.2 Solutions

After discussing the complexity of the learning problem, we characterize its
solutions. First, there might also be inconsistent instances of the learning
problem. That is, it may be impossible to define p : Tl → [0, 1] such that all
labels are satisfied.

Example 5.4. If we consider Tl := {I1, I2} with the labels L := 〈(I1, 0.2),
(I2, 0.3), (I1 ∧ I2, 0.9)〉, then it is impossible to fulfill all three labels at the
same time.

From a practical point of view, there remain a number of questions
regarding Definition 5.1. First, how many labels do we need in comparison
to the number of tuples for which we are learning the probability values (i.e.,
|L| vs. |Tl|)? And second, is there a difference in labeling lineage formulas
that involve many tuples or very few tuples (i.e., |Tup(φi)|)? These questions
are addressed by the following theorem. It is based on the computation of
probabilities of lineage formulas via their polynomial representation as in
Corollary 5.1. We write the conditions of the learning problem P (φi) = li
as polynomials over variables p(Il) of the form P (φi)− li, where Il ∈ Tl and
the probability values p(I) for all I ∈ T \Tl are fixed and hence represent
constants.

Theorem 5.1. If the labeling is consistent, the problem instances of Defi-
nition 5.1 can be classified as follows:

1. If |L| < |Tl|, the problem has infinitely many solutions.

2. If |L| = |Tl| and the polynomials P (φi) − li have common zeros, then
the problem has infinitely many solutions.

3. If |L| = |Tl| and the polynomials P (φi) − li have no common zeros,
then the problem has at most

∏

i |Tup(φi) ∩ Tl| solutions.

4. If |L| > |Tl|, then the polynomials P (φi)− li have common zeros, thus
reducing this to one of the previous cases.

Proof. The first case is a classical under-determined system of equations.
In the second case, without loss of generality, there are two polynomials
P (φi) − li and P (φj) − lj with a common zero, say p(Ik) = ck. Setting
p(Ik) = ck satisfies both P (φi) − li = 0 and P (φj) − lj = 0, hence we
have L′ := L\〈(φi, li), (φj , lj)〉 and T ′

l := Tl\{Ik} which yields the first case
of the theorem again (|L′| < |T ′

l |). Regarding the third case, Bezout’s
theorem [36], a central result from algebraic geometry, is applicable: for a

CHAPTER 5. LEARNING TUPLE PROBABILITIES 106

system of polynomial equations, the number of solutions (including their
multiplicities) over variables in C is equal to the product of the degrees of
the polynomials. In our case, the polynomials are P (φi)− li with variables
p(Il) where Il ∈ Tl. So, according to Corollary 5.1 their degree is at most
|Tup(φi) ∩ Tl|. Since our variables p(Il) range only over [0, 1] ⊂ R, and
Corollary 5.1 is an upper bound only,

∏

i |Tup(φi) ∩ Tl| is an upper bound
on the number of solutions. In the fourth case, the system of equations
is over-determined, such that redundancies like common zeros reduces the
problem to one of the previous cases.

Example 5.5. We illustrate the theorem by providing examples for each of
the four cases.

1. In Example 5.3’s formalization of Example 5.1, we have |Tl| = 5 and
|L| = 2. So, the problem is under-specified and has infinitely many
solutions, since assigning p(I7) = 0.0 enables p(I9) to take any value
in [0, 1] ⊂ R.

2. We assume Tl = {I5, I6, I7}, and L = 〈(I5 ∧ ¬I6, 0.0), (I5 ∧ ¬I6 ∧
I7, 0.0), (I5∧ I7, 0.0)〉. This results in the equations p(I5) · (1− p(I6)) =
0.0, p(I5) · (1− p(I6)) · p(I7) = 0.0, and p(I5) · p(I7) = 0.0, where p(I5)
is a common zero to all three polynomials. Hence, setting p(I5) = 0.0
allows p(I6) and p(I7) to take any value in [0, 1] ⊂ R.

3. Let us consider Tl = {I7, I8}.

(a) If L = 〈(I7, 0.4), (I8, 0.7)〉, then there is exactly one solution as
predicted by |Tup(I7)| · |Tup(I8)| = 1.

(b) If L = 〈(I7 ∧ I8, 0.1), (I7 ∨ I8, 0.6)〉, then there are two solutions,
namely p(I7) = 0.2, p(I8) = 0.5 and p(I7) = 0.5, p(I8) = 0.2.
Here,

∏

i |Tup(φi) ∩ Tl| = |Tup(I7 ∧ I8)| · |Tup(I7 ∨ I8)| = 4 is an
upper bound.

4. We extend the second case of this example by the label (I5, 0.0), thus
yielding the same solutions but having |L| > |Tl|.

In general, a learning problem instance has many solutions, where Def-
inition 5.1 does not specify a precedence, but all of them are equivalent.
The number of solutions shrinks by adding labels to L, or by labeling lin-
eage formulas φi that involve fewer tuples in Tl (thus resulting in a smaller
intersection |Tup(φi)∩Tl|). Hence, to achieve more uniquely specified prob-
abilities for all tuples Il ∈ Tl, in practice we should obtain the same number
of labels as the number of tuples for which we learn their probability values,
i.e., |L| = |Tl|, and label those lineage formulas with fewer tuples in Tl.

Now that we characterized the number of solutions, we furthermore pro-
vide an insight on their nature. We give conditions on learning problems

107 CHAPTER 5. LEARNING TUPLE PROBABILITIES

which imply the existence of an integer solution, i.e. that assigns only 0 or
1 as tuple probabilities. Hence, the resulting tuples are either non-existent
or deterministic as in conventional databases.

Proposition 5.2. For a learning problem, where

1. ∀I ∈ T \Tl : p(I) ∈ {0, 1}

2. (φi, li) ∈ L : li ∈ {0, 1}

3.
∧

(φi,1)∈L
φi ∧

∧

(φi,0)∈L
¬φi is satisfiable,

there exists an integer solution p′, that is for all Il ∈ Tl : p
′(Il) ∈ {0, 1}.

Proof. Due to the first requirement we can remove all tuples in T \Tl from the
labels’ formulas φ, since these tuples correspond to either true or false. Like-
wise, the second condition allows the construction of the formula

∧

(φi,1)∈L
φi ∧

∧

(φi,0)∈L
¬φi. As we require the existence of a satisfying assignment for this

formula, precisely this assignment is the integer solution.

5.5.3 Visual Interpretation

Based on algebraic geometry, the learning problem allows for a visual in-
terpretation. All possible definitions of probability values for tuples in Tl,
that is, p : Tl → [0, 1], span the hypercube [0, 1]|Tl|. In Example 5.5, cases
3(a) and 3(b), the hypercube has two dimensions, namely p(I7) and p(I8),
as depicted in Figures 5.3(a) and 5.3(b). Hence, one definition of p specifies
exactly one point in the hypercube. Moreover, all definitions of p that sat-
isfy a given label define a curve (or plane) through the hypercube (e.g., the
two labels in Figure 5.3(a) define two straight lines). Also, the points, in
which all labels’ curves intersect, represent solutions to the learning prob-
lem (e.g., the solutions of Example 5.5, case 3(b), are the intersections in
Figure 5.3(b)). If the learning problem is inconsistent, there is no point in
which all labels’ curves intersect. Furthermore, if the learning problem has
infinitely many solutions, the labels’ curves intersect in curves or planes,
rather than points.

5.6 Gradient Based Solutions

In the previous section, we formally characterized the learning problem and
devised the basic properties of its solutions. From a visual perspective,
Definition 5.1 established curves and planes whose intersections represent
the solutions (see, e.g., Figure 5.3(b)). In this section, we introduce different
objective functions that describe surfaces whose optima correspond to these
solutions. For instance, the problem of Figure 5.3(b) has the surface of
Figure 5.4(a) if we the employ mean squared error (MSE) as the objective,

CHAPTER 5. LEARNING TUPLE PROBABILITIES 108

(a) Labels of case 3(a) of Example 5.5 (b) Labels of case 3(b) Example 5.5

Figure 5.3: Visualization of the Learning Problem

which will be defined in this section. Calculating a gradient on such a surface
thus allows the application of an optimization method to solve the learning
problem.

Alternative Approaches In general, based on the polynomial equations,
an exact solution to an instance of the learning problem can be computed in
exponential time [36], which is not acceptable in a database setting. Also,
besides gradient-based optimization methods, other approaches, such as ex-
pectation maximization [61, 63], are possible and represent valuable targets
for future work.

5.6.1 Desired Properties

Before we define objective functions for solving the learning problem, we
establish a list of desired properties of these (which we do not claim to be
complete). Later, we judge different objectives based on these properties.

Definition 5.2. An objective function to the learning problem should satisfy
the following three desired properties:

1. All instances of the learning problem of Definition 5.1 can be expressed,
including inconsistent ones.

2. If all P (φi) are computable in polynomial time, then also the objective
is computable in polynomial time.

3. The objective is stable, that is L := 〈(φ1, l1), . . . , (φn, ln)〉 and L ∪
〈(φ′

i, li)〉 with φ′
i ≡ φi, (φi, li) ∈ L define the same surface.

Here, the first case ensures that the objective can be applied to all in-
stances of the learning problem. We insist on inconsistent instances, because

109 CHAPTER 5. LEARNING TUPLE PROBABILITIES

they occur often in practice (see Table A.1). The second property restricts
a blow-up in computation, which yields the following useful characteristic:
if we can compute P (φ) for all labels, e.g., for labeled query answers, then
we can also compute the objective function. Finally, the last of the desider-
ata reflects an objective function’s ability to detect dependencies between
labels. Since φi ≡ φ′

i both L and L ∪ 〈(φ′
i, li)〉 allow exactly the same so-

lutions, the surface should be the same. Unfortunately, including convexity
of an objective as an additional desired property is not possible. For exam-
ple Figure 5.3(b) has two disconnected solutions, which induce at least two
optima, thus prohibiting convexity. In the following, we establish two ob-
jective functions, which behave very differently with respect to the desired
properties.

(a) Example 5.5: 3(b): MSE objective (b) Example 5.6: Logical objective

(c) Example 5.8: MSE objective (d) Example 5.8: MSE objective, unstable

Figure 5.4: Visualization of the Objective Functions

5.6.2 Logical Objective

If we restrict the probability labels of the learning problem to li ∈ {0.0, 1.0},
we can define a objective function based on computing probabilities of lin-

CHAPTER 5. LEARNING TUPLE PROBABILITIES 110

eage formulas as follows.

Definition 5.3. Let an instance of the learning problem of Definition 5.1
be given by a probabilistic database (T , p), tuples with unknown probability
values Tl ⊆ T , and labels L = 〈(φ1, l1), . . . , (φn, ln)〉 such that all li ∈
{0.0, 1.0}. Then, the logical objective is formulated as follows:

Logical(L, p) := P

∧

(φi,li)∈L,li=1.0

φi ∧
∧

(φi,li)∈L,li=0.0

¬φi

 (5.2)

The above definition is a maximization problem, and its global optima
are identified by Logical(L, p) = 1.0. Moreover, from Definition 2.13, we
may obtain its derivative.

Example 5.6. Let T = Tl := {I1, I2} and L := 〈(I1 ∨ I2, 1.0), (I1, 0.0)〉 be
given. Then, Logical(L, p) is instantiated as P ((I1 ∨ I2) ∧ ¬I1) = P (¬I1 ∧
I2). Visually, this defines a surface whose optimum lies in p(I1) = 0.0 and
p(I2) = 1.0, as shown in Figure 5.4(b).

With respect to Definition 5.2, the third desired property is fulfilled, as
P (φ′

i ∧ φi) = P (φi). Hence, the surface of the logical objective, shown for
instance in Figure 5.4(b), is never altered by adding equivalent labels. Still,
the first property is not given, since the probability labels are restricted to
li ∈ {0.0, 1.0} and inconsistent problem instances collapse Equation (5.2)
to P (false), thus rendering the objective non-applicable. Also, the second
property is violated, because in the spirit of the proof of Lemma 5.1, we
can construct an instance where for each label P (φi) on its own is com-
putable in polynomial time, whereas the computation of the probability for
Equation (5.2) is #P-hard.

5.6.3 Mean Squared Error Objective

Another approach, which is common in machine learning, lies in using the
mean squared error (MSE) to define the objective function.

Definition 5.4. Let an instance of the learning problem of Definition 5.1
be given by a probabilistic database (T , p), tuples with unknown probability
values Tl ⊆ T , and labels L = 〈(φ1, l1), . . . , (φn, ln)〉. Then, the mean
squared error objective function is formulated as:

MSE (L, p) :=
1

|L|

∑

(φi,li)∈L

(P (φi)− li)
2

Moreover, its partial derivative with respect to the probability value p(I) of
the tuple is:

∂MSE (L, p)

∂p(I)
:=

1

|L|

∑

(φi,li)∈L,I∈Tup(φi)

2 · (P (φi)− li) ·
∂P (φi)

∂p(I)
︸ ︷︷ ︸

Definition 2.13

111 CHAPTER 5. LEARNING TUPLE PROBABILITIES

The above formulation is a minimization problem whose solutions have
0.0 as the value of the objective.

Example 5.7. Example 5.5, case 3(b), is visualized in Figure 5.3(b). The
corresponding surface induced by the MSE objective is depicted in Figure 5.4(a)
and has its minima at the the solutions of the learning problem.

Judging the above objective by means of Definition 5.2, we realize that
the first property is met, as there are no restrictions on the learning problem,
and inconsistent instances can be tackled (but deliver objective values larger
than zero). Furthermore, since the P (φi)’s occur in separate terms of the
sum of the objective, the second desired property is maintained. However,
the third desired property is violated, as illustrated by the following example.

Example 5.8. In accordance to Example 5.6 and Figure 5.4(b), we set
T = Tl := {I1, I2} and L := 〈(I1 ∨ I2, 1.0), (I1, 0.0)〉. Then, the MSE
objective defines the surface in Figure 5.4(c). However, if we replicate the
label (I1, 0.0), thus resulting in Figure 5.4(d) (note the “times two” in the
objective), its surface becomes steeper along the p(I1)-axis, but has the same
minimum. Thus, MSE’s surface is not stable. Instead, it becomes more
ill-conditioned [103].

5.6.4 Discussion

Both the logical objective and the MSE objective have optima exactly at
the solutions of the learning problem of Definition 5.1. With respect to
the desired properties of Definition 5.2, we summarize the behavior of both
objectives in the following table:

Properties
Objective 1. 2. 3.

Logical × × X

MSE X X ×

The two objectives satisfy opposing desired properties, and it is certainly
possible to define other objectives behaving similarly to one of them. Un-
fortunately, there is little hope for an objective that is adhering to all three
properties. The second property inhibits computational hardness. How-
ever, Lemma 5.1 and the third property’s logical tautology checking (i.e.,
|= φi ↔ φ′

i, which is co-NP-complete) require this. In this regard the logi-
cal objective addresses both computationally hard problems by computing
probabilities, whereas the MSE objective avoids them.

In the remainder of this chapter, we will favor the MSE objective, as
it is more practical. In reality, many learning problem instances are in-
consistent or have non-Boolean labels (see Table A.1), and the probability
computations of Equation (5.2) are often too expensive (see Section 5.9.4).

CHAPTER 5. LEARNING TUPLE PROBABILITIES 112

5.7 Extensions and Applications

In this section we present extensions to the learning problem being priors
for tuple probabilities (see Section 5.7.1), support of temporal data in the
learning problem (see Section 5.7.2) and encoding of constraints in form
of labels (see Section 5.7.3). Furthermore, we devise how tuple-independent
probabilistic databases can be updated or cleaned using the learning problem
(see Section 5.7.4), and how tuple-independent probabilistic databases can
be derived from incomplete databases (see Section 5.7.5).

5.7.1 Priors

In order to explicitly incorporate preferences in the form of prior proba-
bilities of base tuples Il ∈ Tl into our learning objective (instead of just
considering them to be “unknown”), we can extend the MSE objective of
Definition 5.4 as follows.

Definition 5.5. Given a function prior : Tl → [0, 1] ⊂ R, the MSE objective
function of Definition 5.4 can be extended to

c

|L|
·

∑

(φi,li)∈L

(P (φi)− li)
2 +

1− c

|Tl|
·
∑

Il∈Tl

(P (Il)− prior(Il))
2

where c ∈ [0, 1] is a constant.

Utilizing c, we can control the trade-off between the impact of the lineage
labels and the prior function.

Example 5.9. We extend the setting of Example 5.1 by utilizing priors
encoding our intuition on the correctness for each textual pattern. For in-
stance, an information extraction expert could deliver prior(I5) = 0.6 (Re-
ceived), prior(I6) = 0.9 (Won), prior(I7) = 0.9 (Born) and for each domain
prior(I8) = 0.8 (Wikipedia.org), prior(I9) = 0.9 (Imdb.com). Therefore,
in contrast to the problem lacking priors which was under-determined (see
Example 5.3), we end up in an over-determined learning problem, thus en-
coding more information.

Expressiveness Definition 5.5 is not more general than the original MSE
objective. We can express priors in Definition 5.4 by creating a label (Il,
prior(Il)) for each tuple Il ∈ Tl, which then produces

∑

Il∈Tl
(P (Il)−prior(Il))

2

also in the objective of Definition 5.4. The coefficients preceding the sums
can be emulated by replicating labels in L. Thus, priors are a special case
of lineage labels.

113 CHAPTER 5. LEARNING TUPLE PROBABILITIES

5.7.2 Temporal Data

We turn to the support of temporal data within the learning problem. As
stated in Observation 3.1 temporal deduction rules and temporal constraints
produce purely propositional lineage formulas, which hence can be employed
directly within labels. Of course, these lineage formulas can be induced by
temporal deduction rules and temporal constraints. In Section 5.9.1, we will
encode a real-life temporal information extraction instance in the learning
problem.

5.7.3 Constraints

In the following, we investigate the relationship between constraints, that
is, conditioning [83] of Section 2.2.6, and the learning problem, by encoding
one in to the other in both ways.

Conditioning by Learning In Section 2.2.6 we represented constraints
as the propositional formula φc over the tuples of a probabilistic database.
We can encode the constraint φc with the label (φc, 1.0) into an instance of
the learning problem.

Example 5.10. In Example 5.1 we can require the BornIn relation to be
functional, since people are born in only one place. Hence, BornIn(Spielberg,
Cinncinati) and BornIn(Spielberg, LosAngeles) can not co-exist, which we
express via their lineage formulas as ¬(I3 ∧ I7 ∧ I8) ∨ ¬(I4 ∧ I7 ∧ I9). If we
label this formula by 1.0, we can enforce it during learning.

Next, we show that after learning the resulting tuple-independent data-
base is conditioned as of Definition 2.15.

Proposition 5.3. Given a probabilistic database (T , p) and constraints in
the form of a satisfiable propositional formula φc over T . Then, if we create
a learning problem instance by setting Tl := T and L := 〈(φc, 1.0)〉, its
solution p′ conditions the probabilistic database (T , p) with respect to φc.
Hence, for a query answer represented by its propositional lineage formula
ψ, over (T , p′) it holds that:

P (ψ | φc) = P (ψ)

Proof. We observe that in the solution p′ of the learning problem, we receive
P (φc) = 1.0. As φc holds in p′ we can rewrite the probability of a query
answer ψ as follows.

P (ψ)
(2.3)
=

∑

W∈M(ψ) P (W)

=
∑

W∈M(ψ)∩M(φc)
P (W)

=
∑

W∈M(ψ∧φc)
P (W)

= P (ψ ∧ φc)

CHAPTER 5. LEARNING TUPLE PROBABILITIES 114

By combining both equations, we obtain over (T , p′):

P (ψ | φc) =
P (ψ ∧ φc)

P (φc)
=

P (ψ)

1.0
= P (ψ)

Therefore, after learning the constraints are satisfied in the resulting
tuple-independent probabilistic database. However, the original work on
conditioning [83] considers world-set decompositions [10], which are more
expressive than tuple-independent databases (without lineage). Hence, con-
ditioning and learning can yield different results as illustrated by the follow-
ing example.

Example 5.11. Consider T = {I1, I2} with p(I1) = 0.6, p(I2) = 0.5 and
the constraint φc = I1 ∨ I2. Then, learning assigns p′(I1) = 1 or p′(I2) = 1
to fulfill the constraint. In contrast, conditioning computes:

P (I1∧(I1∨I2))
P (I1∨I2)

= P (I1)
P (I1∨I2)

= 0.6
0.8 = 0.75

P (I2∧(I1∨I2))
P (I1∨I2)

= P (I2)
P (I1∨I2)

= 0.5
0.8 = 0.625

In conclusion, both approaches can tackle constraints, but do not neces-
sarily produce the same result.

Learning by Conditioning We now cover the inverse direction, namely
encoding a learning problem into a conditioning problem. Following the
logical objective of Definition 5.3, we can solve a subset of possible learning
problem instances by conditioning. The subset is characterized by instances
with consistent labels, having T = Tl, and by restricting the lineage labels to
li ∈ {0.0, 1.0}. We create a single constraint in the form of the conjunction of
Equation (5.2), initially set all tuple probabilities to the same value, e.g. 0.5,
and solve the resulting conditioning problem [83]. Again, since conditioning
keeps world-set decompositions in the result, the produced probability values
might differ from the learned ones.

5.7.4 Updating and Cleaning Probabilistic Databases

In this section, we discuss two applications of the learning problem, namely
updating and cleaning tuple-independent probabilistic databases.

Updating If we are given an existing probabilistic database (T , p) and
knowledge in the form of labeled lineage formulas L := 〈(φ1, l1), . . . , (φn, ln)〉,
we can update the tuples’ probability values via the learning problem. We
produce a new probabilistic database (T , p′), whose probability values p′ are
updated according to the information provided in L. To achieve this, we
create a learning problem instance (whose solution is p′) by using L, setting
Tl := T and defining a prior prior(t) := p(I) (see Section 5.7.1).

115 CHAPTER 5. LEARNING TUPLE PROBABILITIES

Example 5.12. Assume our probabilistic database consists of two tuples
T := {I1, I2} with p(I1) = 0.4 and p(I2) = 0.8. Now, a user tells us that
P (I1∨ I2) = 1.0 must hold for his application, so we update the database, by
solving the learning problem instance Tl = T and L := 〈(I1, 0.4), (I2, 0.8), (I1∨
I2, 1.0)〉. The first two labels, encode the old tuple probabilities as priors,
whereas the last label is the information provided by the user. The resulting
learning problem is inconsistent, but a local optimum is given by the updated
tuple probabilities of p′(I1) = 0.4 and p′(I2) = 1.0.

Cleaning After updating the new probability values p′ allow for cleaning
the probabilistic database as follows. If p′ defines the probability value of
a tuple to be 0.0, we can delete it from the database. Conversely, if p′

yields 1.0 for the probability value of a tuple, we can move it into a new,
deterministic relation.

Example 5.13. With respect to Example 5.12 after updating I2 is a deter-
ministic tuple, which we might want to move to a deterministic relation.

5.7.5 Incomplete Databases

A field that is related to probabilistic databases are incomplete databases.
Intuitively, in an incomplete database some attributes values or entire tuples
may be missing in the given database instance. A completion of an incom-
plete database can be seen as a possible world, where in a probabilistic
database we associate these worlds with a probability.

Missing Attribute Values In [137], a probabilistic database is derived
from an incomplete database which exhibits missing attributes in some of
its tuples. Their idea is to estimate the probability of a possible completion
of an incomplete tuple from the complete part of the database. We emulate
their approach by our learning problem on tuple-independent databases.

Let an incomplete database be given by a set of complete tuples Tc and
a set of incomplete tuples Ti. We consider an incomplete tuple R(X̄) ∈ Ti
of relation R, where X̄ besides constants comprises variables for the missing
attribute values. Assuming a finite universe of constants U , let T× := Ur

be its crossproduct, where r is the arity of R. Hence, G(R(X̄), T×) are
the substitutions standing for all possible completions of R(X̄). Then, we
create a new uncertain relation R′ := {σ(X̄) | σ ∈ G(R(X̄), T×)} and add
one deduction rule per substitution σi ∈ G(R(X̄), T×):

σi(R(X̄)) ← σi(R
′(X̄)) ∧

∧

σj∈G(R(X̄),T×),
σi 6=σj

¬σj(R
′(X̄))

The above rules allow at most one completion σi of R(X̄) to be true within
a possible world, since the other completions are ruled out by the negation.

CHAPTER 5. LEARNING TUPLE PROBABILITIES 116

Now, we create labels following the approach of [137]. We consider a subset
of argument values X̄ ′ ⊂ X̄, that is Var(X̄ ′) ⊃ Var(X̄). Then, we compute
the frequency of how often completions of X̄ ′ feature the constants bound
by σi.

fX̄′(σi) :=
|{σj | σj ∈ G(R(X̄ ′), Tc), σj(Var(X̄)) = σi(Var(X̄))}|

|G(R(X̄ ′), Tc)|

Then, for each completion σi, we generate the label (σi(R(X̄)), fX̄′(σi)).
Besides these labels, the resulting learning problem instance is given by Tl
comprising the tuples of the new relation R′.

Example 5.14. Assume we are given a database on living places of movie
directors:

LivesIn
Director Place

I1 Nolan LosAngeles
I2 Lynch LosAngeles
I3 Coppola NapaCounty
I4 Tarantino ?

However, for Tarantino we are not aware where he is residing, which we
estimate from the complete part of the database Tc = {I1, I2, I3} as follows.
The two possible completions of I4 are I5 = LivesIn(Tarantino,LosAngeles)
and I6 = LivesIn(Tarantino,NapaCounty). By counting how often each
place occurs in Tc, we create the labels (I5∧¬I6, 0.666) and (I6∧¬I5, 0.333),
which we can turn to the learning problem machinery.

Missing Tuples Generally, any deterministic relation instance can be seen
as a finite subset of the cross-product of its attributes’ domains. We now
consider an incomplete database, whose (finite sets of) existing tuples and
potentially missing tuples are Tc and Tm, respectively. Assume we intend to
enforce logical formulas φ1, . . . , φn over tuples Tc∪Tm, which could for exam-
ple result from constraints or user feedback. We create a learning problem
instance by setting T := Tc∪Tm, Tl := Tm and L := 〈(φ1, 1.0), . . . , (φn, 1.0)〉.
Thus, a solution to the learning problem completes Tc with (possibly uncer-
tain) tuples from Tm, such that the logical formulas φ1, . . . , φn are fulfilled.
In addition, if φ1 ∧ · · · ∧ φn is satisfiable, then Proposition 5.2 teaches us
that we can find a learning problem solution p′, where all tuple probabili-
ties p′(Im) ∈ {0, 1}. Otherwise, the we can find an approximating solution,
which hence has uncertain tuples from Tm.

5.8 Algorithm

Given the surface of a learning problem (see, e.g., Figure 5.4(a)), as it is
defined by the choice of the objective function, the learning algorithm of

117 CHAPTER 5. LEARNING TUPLE PROBABILITIES

this section determines how to move over this surface in order to reach an
optimum, that is to find a solution to the learning problem.

Learning Algorithm Our learning algorithm is based on stochastic gra-
dient descend (SGD) [17], which we demonstrate to scale to instance sizes
with millions of tuples and hundreds of thousands of labels (see Section 5.9.3).
It is initialized at a random point and repeatedly moves into the direction of
a partial derivative until convergence. Visually, we start at a random point
(e.g., somewhere in Figure 5.4(a)), and then in each step we move in parallel
to an axis (e.g., p(I1) or p(I2)), until we reach an optimum.

In Algorithm 7 best , represents the best known value of the objective,
where p holds the corresponding probability values of tuples in Tl. Also, ηl
is the learning rate, which exists and may differ for each tuple in Tl. The
loop of Line 4 is executed until convergence to the absolute error bound of
ǫabs . Then, Line 5 shuffles the order of the tuples in Tl for the inner loop of
Line 6. Within each iteration, Line 8 updates the probability value of one
tuple, which yields the updated definition p′ of p. If p′ is an improvement
over p with respect to the objective (as verified in Line 11), we assign p′ to
p and double the learning rate ηl of the tuple. Otherwise, p′ is discarded,
and the learning rate ηl is halved.

Algorithm 7 Learning((T , p), Tl,L, ǫabs)

Input: Probabilistic database (T , p), tuples Tl to learn the probability values for,
labeled propositional lineage formulas L, error bound ǫabs

Output: p with learned probability values, best value of objective
1: ∀Il ∈ Tl : p(Il) := Rand(0, 1) ⊲ Random initialization
2: ∀Il ∈ Tl : ηl := 1.0 ⊲ Per-tuple learning rate
3: best := MSE (L, p) ⊲ See Definition 5.4
4: while best > ǫabs do

5: sequence := Shuffle(Tl) ⊲ Permuted sequence
6: while ¬IsEmpty(sequence) do
7: Il := Pop(sequence) ⊲ Get first element

8: p′(Il) := p(Il)− ηl ·
∂MSE(L,p)

∂p(Il)
⊲ See Definition 5.4

9: p′ :=

{
p(I) if I 6= Il
p′(Il) otherwise

10: newVal := MSE (L, p′) ⊲ See Definition 5.4
11: if newVal < best then

12: ηl := 2 · ηl ⊲ Increase Il’s learning rate
13: p := p′ ⊲ Keep new value of p(Il)
14: best := newVal
15: else

16: ηl :=
1
2 · ηl ⊲ Decrease Il’s learning rate

17: return p, best

Example 5.15. We execute Algorithm 7 on the example of Figure 5.4(c).

CHAPTER 5. LEARNING TUPLE PROBABILITIES 118

Following Definition 5.4 the corresponding partial derivatives are:

∂MSE
∂p(I1)

:= (P (I1 ∨ I2)− 1.0) · (P (true ∨ I2)− P (false ∨ I2))

+(P (I1)− 0.0) · (P (true)− P (false))
∂MSE
∂p(I2)

:= (P (I1 ∨ I2)− 1.0) · (P (I1 ∨ true)− P (I1 ∨ false))

(5.3)

Assuming that Line 1 delivers p(I1) = 0.7 and p(I2) = 0.5, we obtain best =
(−0.15)2 + (0.7)2 ≈ 0.512 in Line 3. If ǫabs = 0.01 we enter the loop
of Line 4, where Line 5 randomly orders I2 before I1. Then, the partial
derivative of p(I2) evaluates as follows ∂MSE

∂p(I2)

∣
∣
(0.7,0.5)

= (0.85 − 1.0) · (1.0 −

0.7) = −0.055. Since η2 = 1.0, we have p′(I2) = 0.5 − (−0.055) = 0.555
in Line 8. Hence, in Line 10, newVal = (−0.1335)2 + 0.72 ≈ 0.508. As
0.508 < 0.512, the condition of Line 11 turns true, such that we obtain
η2 = 2.0, p(I1) = 0.7, p(I2) = 0.555 and best = 0.508. Hence, in further
iterations the increased η2 speeds up movements along the partial derivative
of p(I2).

Tackling Mean Squared Error’s Instability In Section 5.6, we chose
the mean squared error objective, which however comes with the disadvan-
tage that it does not satisfy the third desired property of Definition 5.2. We
argue that Algorithm 7 counters to some extent the instability, which we
illustrate by the following example.

Example 5.16. Let us evaluate the gradient of Figures 5.4(c) and 5.4(d)
in the point p(I1) = p(I2) = 0.5. Following Equation (5.3), we obtain the
gradient (0.375,−0.125) for Figure 5.4(c). Analogously, Figure 5.4(d) has
(0.875,−0.125). Even though both figures show the same minimum, the gra-
dients differ heavily in the partial derivative of p(I1).

Inspecting the above example, we note that the gradient is indeed af-
fected, but each partial derivative on its own points into the correct direc-
tion, i.e. increasing p(I2) and decreasing p(I1). Hence, weighting the partial
derivatives can counter the effect. We achieve this by keeping one learning
rate ηl per tuple and adapting them during runtime. In Section 5.9.2, we em-
pirically show a superior convergence over a global learning rate. Previously,
in the context of Markov logic networks the authors of [91] also reported
speed ups in ill-conditioned instances by introducing separate learning rates
per dimension.

Implementation Issues In this paragraph, we briefly describe two im-
plementation issues, which were omitted in Algorithm 7 for presentation
purposes. First, the absolute error bound in Line 4 is inconvenient, because
the optima of inconsistent learning problem instances have an MSE value
larger than 0.0. Therefore, we rely on both an absolute error bound ǫabs

119 CHAPTER 5. LEARNING TUPLE PROBABILITIES

and a relative error bound ǫrel . Next, Line 8 might yield a probability value
that exceeds the interval [0, 1], which we counter by the logit function. It
defines a mapping from probability values in [0, 1] to R ∪ {±∞}.

Definition 5.6. The logit function transforms a probability p ∈ [0, 1] to a
weight w ∈ R ∪ {±∞} as follows:

w = ln
p

1.0− p
p =

1

1 + exp(−w)

Example 5.17. If p = 0.5, then w = 0.0. Also p = 1.0 implies w = +∞,
whereas p = 0.0 yields w = −∞. ⋄

Therefore, whenever we add a partial derivative to a tuple probability we
perform this addition on the weights in R∪{±∞}, rather than on probability
values in [0, 1].

Algorithm Properties Algorithm 7 comes with three properties, which
we share with alternative approaches we are aware of, including other gradient-
based methods and expectation maximization [61, 63]. First, the algorithm
is non-deterministic, which is caused by Lines 1 and 5. Second, gradient-
based optimization methods, including Algorithm 7, can get stuck in local
optima, which is nevertheless hard to avoid in non-convex problems. In this
regard, the non-determinism is a potential advantage, since restarting the
algorithm yields varying solutions, thus increasing the chance for finding
a global optimum. Finally, the solutions returned by Algorithm 7 for the
mean squared error objective are not exact, but rather very close to an op-
timum. However this can be controlled by the error bounds ǫrel and ǫabs ,
which trades runtime for distance to the next optimum. In Section 5.9.4,
we provide an empirical investigation of this issue.

5.9 Experiments

Our evaluation focuses on the following four aspects. In Section 5.9.1 we
compare the quality of our approach to learning techniques in statistical
relational learning and to constraint-based reasoning techniques applied in
information extraction settings. In Section 5.9.2, we compare the runtime
behavior of our algorithm to statistical relational learning methods and to
other gradient-based optimization techniques. In Section 5.9.3, we explore
the scalability of our method to large datasets. Finally, in Section 5.9.4, we
analyze our algorithm by comparing both objective functions of Section 5.6,
varying the error rates ǫrel and ǫabs , and analyzing the ability of Algorithm 7
to find global optima. During all this section, if not stated otherwise, PDB
refers to a single-threaded implementation of Algorithm 7 with the mean

CHAPTER 5. LEARNING TUPLE PROBABILITIES 120

squared error objective, and a per-tuple learning rate. For checking con-
vergence, we set ǫabs = 10−6 and ǫrel = 10−4. Additionally, we present the
basic characteristics of all learning problem instances in Table A.1, which
can be found in the appendix.

5.9.1 Quality

Statistical Relational Learning Setting

In this task, we compare the predictive performance a probabilistic data-
base with tuple probability learning to established methods from statistical
relational learning.

Dataset We employ the UW-CSE dataset (see Appendix A.2.3), which
comprises a database describing the University of Washington’s computer
science department via the following relations: AdvisedBy, CourseLevel,
HasPosition, InPhase, Professor, ProjectMember, Publication, Student, Taugh-
tBy, Ta (teaching assistant), and YearsInProgram. Moreover, the dataset is
split into five sub-departments, and we consider the relations of this dataset
to be deterministic.

Task The goal is inspired by an experiment in [120], namely to predict the
AdvisedBy relation from all input relations except Student and Professor. We
train and test in a leave-one-out fashion by sub-department.

Deduction Rules We automatically create 49 deduction rules resembling
all joins (including self-joins) between two relations (except Student, Profes-
sor, and AdvisedBy), having at least one argument of type person. Further-
more, we add one uncertain relation Rules, containing one tuple for each of
the 49 rules and include the corresponding tuple in the join [38], for example:

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1, T) ∧

TaughtBy(D,C, P2, T) ∧
Rules(1)

)

The remaining rules are given in Appendix A.3.3. By this construction,
all lineage instances of a single rule share the same uncertain tuple (e.g.,
Rules(1)). Furthermore, every grounded instance of AdvisedBy is expressed
by the disjunction of tuples in Rules which deduce it. Then, we learn the
probability values of the 49 tuples in Rules, hence classifying how well each
rule predicts the AdvisedBy relation.

Labels Regarding labels, we employed the 113 instances of AdvisedBy as
positive labels, i.e., all their probability labels are 1.0. In addition, there
are about 16,000 person-person pairs not contained in AdvisedBy. Adhering
the closed world assumption we randomly draw pairs from these as negative
labels (with a probability label of 0.0).

121 CHAPTER 5. LEARNING TUPLE PROBABILITIES

Statistical Relational Learning Competitors We compete with The-
Beast [121], the fastest Markov logic networks [120] implementation we are
aware of. It is based on an in-memory database and performs inference via
integer linear programming. We ran it on the same set of data, rules and
probabilities to alter. Additionally, we ran the probabilistic Prolog engine
ProbLog [63], but even on the reduced data size of one sub-department it
did not terminate after one hour.

Results In Figure 5.5(a), we depict both the runtimes as well as the pre-
diction quality in terms of the F1 measure (the harmonic mean of precision
and recall [95]) for the AdvisedBy relation. TheBeast is a straight line, since
it allows only positive labels and negative labels are implicitly given by the
closed world assumption. For PDB, we started with all positive labels and
added increasing numbers of negative labels.

(a) Statistical Relation Learning Setting (b) Temporal Information Extraction

Figure 5.5: Quality Experiments

Analysis Regarding runtimes, PDB is consistently about 40 times faster
than TheBeast. PDB’s runtime is not altered by adding labels, as it is mainly
spent in grounding (see also Section 5.9.4). With respect to F1, adding more
negative labels to PDB yields improvements until we saturate at the same
level as TheBeast.

Temporal Information Extraction

In the spirit of Example 5.1, we tackle the problem of extracting facts from
free text by the use of textual patterns as introduced in Section 2.5. However,
we consider facts with temporal annotations in the form of time intervals
specifying the facts’ validity. The temporal probabilistic database we are
learning on follows the data model of Chapter 3.

CHAPTER 5. LEARNING TUPLE PROBABILITIES 122

Dataset The PRAVDA dataset [153] (see Appendix A.2.4) contains about
450,000 crawled web pages in the sports and celebrities domains, where
about 12,500 textual patterns are employed to extract temporal facts.

Task Following [153], we consider two different temporal relations, namely
WorksForClubT in the sports domain and IsMarriedToT in the celebrities
domain. The goal is to determine, for each textual pattern, whether it
expresses a temporal begin, during or end event of one of the two relations,
or none of them. For example, for WorksForClubT , we could find that David
Beckham joined Real Madrid in 2003 (begin), scored goals for them in 2005
(during), and left the club in 2007 (end). Having classified the patterns,
occurrences of entity pairs next to a textual pattern in the input documents
thus yield the facts.

Probabilistic Database Setup We model temporal data in the proba-
bilistic database as in Chapter 3. Text occurrences of a potential fact are
stored in the deterministic relation OccurrenceT(Pid ,E1,E2,Types, Tb, Te),
where Pid is the pattern id, Types holds the types of the entities E1, E2

and Tb, Te span the time interval. To encode the decision whether a pat-
tern expresses a temporal begin, during, or end event, we instantiate three
uncertain relations Begin(Pid), During(Pid), and End(Pid), which each
hold one entry per pattern and whose probability values we learn. Text
occurrences of potential facts are connected to the patterns by six rules (see
Appendix A.3.3 for details) of the following kind

IsMarriedToBeginT(E1, E2, Tb, Te)

← Begin(Pid) ∧OccurrenceT(Pid , E1, E1, pp, Tb, Te)
(5.4)

where pp stands for person-person type pair. To enforce that a textual
pattern expresses at most one of begin, during, or end, we require them to
be mutually exclusive via the deduction rules:

Constraint1 (Pid) ← Begin(Pid) ∧During(Pid)
Constraint2 (Pid) ← Begin(Pid) ∧ End(Pid)
Constraint3 (Pid) ← During(Pid) ∧ End(Pid)

Their resulting lineage formulas are labeled with 0.0. Moreover, we employ
temporal precedence constraints by instantiating six rules of the form

Constraint4 (E1, E2) ←
IsMarriedToBeginT(E1, E2, Tb, Te)∧
IsMarriedToDuringT(E1, E2, T

′
b, T

′
e)

∧ T ′
b <

T Te

and label their lineage with 0.0. From the original work [153] we deploy
266 labels for textual patterns, i.e. which directly set the probability of a

123 CHAPTER 5. LEARNING TUPLE PROBABILITIES

tuple in either Begin, During or End. Additionally, from [153] we adopt
the 341 labels for facts, that is for lineage formulas resulting from one of
the deduction rules like Equation (5.4). We have to stress that these labels
feature probabilities and hence are non-Boolean.

Competitor The authors of [153] utilized a combination of Label Propa-
gation and Integer Linear Programming to rate the textual patterns and to
enforce temporal constraints.

Results In Figure 5.5(b), we report our the result of our system (PDB)
along with the best result from [153] (PRAVDA). To evaluate precision, we
sampled 100 facts per relation and event type and annotated them manually.
Recall is the absolute number of facts obtained.

Analysis For relations with a few, decisive textual patterns, PDB keeps
up with precision, while slightly gaining in recall, probably due to the re-
laxation of constraints by the MSE objective. However, for WorksForClub’s
during relation, there is a vast number of relevant patterns, which puts the
undirected model of Label Propagation in favor, whereas our directed model
suffers in terms of recall.

5.9.2 Runtime

Statistical Relational Learning Methods

We compare the runtimes of statistical relational learning implementations
and our probabilistic database implementation with learning.

Setup To systematically verify scalability, we create synthetic datasets as
follows. We fix T = Tl to 100 tuples. Then, we instantiate a growing number
of deduction rules of the form

Head(c) ← R(i) ∧ ¬R(j) ∧ ¬R(k)
Head(c) ← R(l) ∧ ¬R(m) ∧ ¬R(n)

where all literals with relation R refer to a uniformly drawn tuple in Tl, and
negations exist with probability 0.5. The probability label of each Head(c)
is randomly set to either 0.0 or 1.0.

Competitors Besides TheBeast [121], we compete with ProbLog [63], a
probabilistic Prolog engine, whose grounding techniques and distribution
semantics are closest to ours.

Results For each value of |L|, we create five problem instances and depict
their average runtime in Figure 5.6(a).

CHAPTER 5. LEARNING TUPLE PROBABILITIES 124

(a) Statistical Relational Learning Methods (b) Gradient-based Optimization Methods

Figure 5.6: Runtime Experiments

Analysis PDB converges on average about 600 times faster than ProbLog
and about 70 times faster than TheBeast. We believe that ProbLog is slowed
down by its implementation which mainly connects a number of existing
software packages, hence prohibiting optimizations. TheBeast repeatedly
solves integer linear programs where our updating steps of Algorithm 7 are
faster.

Gradient-based Optimization Methods

We compare the stochastic gradient descent (SGD) of Algorithm 7 with
per-tuple learning rate to other gradient-based optimization methods.

Setup We employ the YAGO2 dataset (see Appendix A.2.1). The task is
to learn the probability values of tuples Tl in the LivesIn relation. Moreover,
we label the following rule’s

ToLabel(L) ← LivesIn(P,L)

lineage formulas with synthetic target probabilities uniformly drawn from
[0, 1]. Since the projection of the deduction rule on the first argument yields
disjoint lineage formulas φ with respect to their tuples T (φ), the resulting
learning problem instance is consistent. Hence, its global optima have a
mean squared error (MSE) of 0.0.

Competitors Algorithm 7 with per tuple learning rate (SGD Per-Tuple)
competes with a single learning rate (SGD Single), with gradient descent
(GD), and with L-BFGS [103], which approximates the Hessian with its
second derivatives. All methods are initialized with the same learning rate.

Results We plot the mean squared error (MSE) against the runtime of
the different methods in Figure 5.6(b).

125 CHAPTER 5. LEARNING TUPLE PROBABILITIES

Analysis GD takes less time per iteration. Hence its curve drops faster in
the beginning, but then stagnates. The two SGD variants behave similarly
at first. Later on, the per-tuple learning rate yields constant improvements,
whereas the single learning rate does not. This is caused by the fact that
the per-tuple learning rate can distinguish between tuples where the surface
of the objective function is smooth and where it is rigged. In contrast, the
global learning rate has to rely on the same step size for all tuples. L-BFGS,
finally, improves slowly in comparison.

5.9.3 Scalability

In this experiment, we study the scalability of our implementation.

Dataset As before, we run on YAGO2 (see Appendix A.2.1). For tuples
in T \Tl, we uniformly draw synthetic probability values from [0, 1].

Tuples and Labels In order to create labels, we run queries on YAGO2
and assign a synthetic target probability to their answers’ lineage formulas.

In P1, we set Tl := ActedIn ∪ WasBornIn, which comprise 217, 846
tuples. Then, we employ the following deduction rules:

Movie(M) ← ActedIn(P,M)
Creator(P) ← ActedIn(P2,M) ∧ Created(P,M)
Location(L) ←WasBornIn(P,L)
Person(P) ←WasBornIn(P,L)

Person2 (P) ←WasBornIn(P,L) ∧ IsLocatedIn(L,L2)

These rules result in 228, 050 lineage formulas. As the relations ActedIn
and WasBornIn are employed several times, each tuple in Tl occurs in many
labels.

In the second problem instance P2, we assign again Tl := ActedIn ∪
WasBornIn, but rely on different deduction rules inducing 79, 600 labeled
lineage formulas:

Movie(M) ← ActedIn(P,M)
Actor(P) ← ActedIn(P,M) ∧ Created(P2,M)

Location(L) ←WasBornIn(P,L)
Person(P) ←WasBornIn(P,L) ∧ LivesIn(P2, L)

We note that tuples of Created and LivesIn are not subject to learning,
but have fixed probability values. Here, the challenge are the large lineage
formulas caused by the deduction rule in the last line whose join involves
many tuples.

Finally, in P3 we set Tl := IsLocatedIn Transitive having about 1.7 · 106

tuples. Furthermore, we deploy a single deduction rule which generates

CHAPTER 5. LEARNING TUPLE PROBABILITIES 126

459, 597 labeled lineage formulas:

Location(L) ← IsLocatedIn Transitive(L,L2)

This is the largest learning problem instance. Nevertheless, we note that the
generated lineage formulas are disjoint with respect to the tuples occurring
therein. So the resulting learning problem instance is consistent.

Results Figure 5.7 contains the results of the three large learning problem
instances P1 to P3, where we report the time spent on Grounding the lineage
formulas, and in Algorithm 7, which had multi-threading enabled.

P1 P2 P3
0

50

100

150

200

250

se
co

nd
s

Grounding
Algorithm 7

Figure 5.7: Scalability Experiment

Analysis Even for these large problem instances our algorithms succeed
very fast, proving the scalability of our approach. In detail, the Grounding
time is determined by the number of labels |L| and the size, i.e. T (φ), of the
lineage formulas being instantiated. In P2 the lineage formulas involve on
average about 60 tuples (see Table A.1), which explains the long grounding
time. Algorithm 7 is faster on consistent instances, i.e. P3, even though |Tl|
is very large in this instance. In P1 the labeled lineage formulas heavily
overlap, i.e. each tuple is contained in many labels, which causes the longer
runtime of Algorithm 7.

5.9.4 Algorithm Analysis

In the last series of experiments we investigate (1) the runtime behavior of
the two objectives of Section 5.6, (2) the impact of varying the error rates
ǫabs and ǫrel on both runtime and quality, and (3) the ability of Algorithm 7
to find global optima.

127 CHAPTER 5. LEARNING TUPLE PROBABILITIES

Objectives

We run Algorithm 7 once with the Logical objective (see Definition 5.3) and
once with the mean squared error (MSE) objective (see Definition 5.4). The
synthetic data is created analogously to the experiment of Figure 5.6(a).

Results and Analysis Already on tiny instances of up to 15 labels as in
Figure 5.8(a), the Logical objective slows down significantly in comparison
to MSE, due to the expensive probability computations of Equation (5.2).

(a) Runtime of the Objectives (b) Varying the error rates ǫabs and ǫrel

(c) Finding Global Optima: Consistent (d) Finding Global Optima: Inconsistent

Figure 5.8: Algorithm Analysis Experiments

Varying Error Rates

We reuse the setup of Figure 5.5(a) with twice as many negative labels as
positive ones, that is, |L| = 339. Then, we vary ǫrel from 10−1 to 10−5,
where we set ǫabs := ǫrel

100 . In comparison, all other experiments had fixed
ǫrel = 10−4 and ǫabs = 10−6. In Figure 5.8(b) we display both runtime and
quality in terms of the F1 measure for each setting of the error rates.

CHAPTER 5. LEARNING TUPLE PROBABILITIES 128

Discussion Figure 5.8(b) shows that decreasing the error-rates increases
the runtime, as expected, where however the impact is small. Especially, if
we compare the overall runtime presented in Figure 5.5(a), which is about
three seconds, we realize that Algorithm 7 consumes only a tiny fraction of
the total runtime. With respect to quality, the F1 measure remains mostly
stable, with an exception for ǫrel > 10−3.

Finding Global Optima

As a last experiment, we rerun Algorithm 7 repeatedly on the problem
of Figure 5.5(a) and compare the resulting mean squared error (MSE). In
particular, we focus on two instances, where the first is consistent, since we
rely on the |L| = 113 positive labels only, and the second is inconsistent
featuring |L| = 339 both positive and negative labels. In Figures 5.8(c)
and 5.8(d), we depict histograms of the resulting mean squared error (MSE)
of 100 runs on the consistent and inconsistent instance, respectively.

Discussion In the consistent case Algorithm 7 always terminates in so-
lutions, which are extremely close to the global optimum of 0.0 (see Fig-
ure 5.8(c)). The inconsistent instance, however, has a more rigged opti-
mization landscape with global optima of values larger than 0.0. In this
case, Algorithm 7 converges very close to a (probably) global optimum in
78% of the runs.

5.10 Summary and Outlook

Contribution We presented the first work on learning tuple probabilities
in tuple-independent probabilistic databases. As input we consider lineage
formulas labeled by target probabilities. These lineage formulas can result
from a number of processes including query answers and constraints on the
probabilistic database. We analyzed the theoretical properties of this learn-
ing problem by characterizing its complexity and its solution space. Fur-
thermore, we cast the learning problem into an optimization problem which
allows gradient-based solutions, and we presented an algorithm that solves it
for database-like instance sizes. Finally, we investigated the relationship to
other problems including conditioning probabilistic databases and deriving
probabilistic databases from incomplete databases.

Future Directions For future work, we see numerous promising direc-
tions. Studying tractable subclasses of the learning problem or dropping
the tuple-independence assumption would improve our theoretical under-
standing. Also, other formulations of the optimization problem, such as
expectation maximization, might yield quality gains. Other valuable tar-
gets lie in the creation of a large, publicly available probabilistic database

129 CHAPTER 5. LEARNING TUPLE PROBABILITIES

benchmark and the application of the learning problem to a broader range
of related problems.

CHAPTER 5. LEARNING TUPLE PROBABILITIES 130

Chapter 6

Implementation

The algorithms and definitions of Chapter 3 and Chapter 5 were imple-
mented in a system called TPDBlearn which is publicly available for down-
load1. The present chapter hence discusses design decisions and implemen-
tation issues of the software. Within the variety of facets, we focus on
three key building-blocks, namely the encoding of a temporal probabilistic
database in a relational database (Section 6.1), the efficient modeling of
propositional lineage in memory (Section 6.2), and how to implement the
large scale learning algorithm (Section 6.4). Even though it is not contained
in the TPDBlearn software, we cover the implementation of first-order lin-
eage in Section 6.3. Throughout this chapter, we assume familiarity with
database design [65] and object-oriented programming [53, 156].

6.1 Database Layout

The main advantage of deploying a database in the back-end is to leverage
its capacities on conjunctive queries, which we leverage for both bodies of
deduction rules and queries.

Tables All extensional relations are stored in the relational database back-
end, for which we employed PostgreSQL2. We created one table for each
extensional relation, where we depict two generic ones, called Temporal-
Relation1 and TemporalRelation2 in the diagram of Figure 6.1. The first
N columns represent the non-temporal arguments followed by the time-
interval, which is encoded as begin and end time-point. Finally, the last
column is a lineage id, which points to a separate table holding all lineage
ids and the respective probability value of this tuple. The advantage of this
setup is that intensional relations come with exactly the same table layout
as extensional relations. The only difference is that their lineage id refers

1http://people.mpi-inf.mpg.de/~mdylla/tpdblearn
2http://www.postgresql.org/

131

http://people.mpi-inf.mpg.de/~mdylla/tpdblearn
http://www.postgresql.org/

CHAPTER 6. IMPLEMENTATION 132

Figure 6.1: Database Layout

to a datastructure in memory, rather than in database. Extensional tables
always reside in the database, whereas intensional tables are written on the
fly while grounding and are deleted once the query terminates.

Indices On all extensional relations we create indices in all permutations
(as far as possible) of the non-temporal arguments always followed by both
the begin time-point and the lineage id. Additionally, we instantiate one
index over the lineage id only. In contrast, intensional tables come with no
index at all, since we mostly read them only once.

Querying We query the database by rewriting the deduction rules and
queries to SQL [65], which we illustrate by the two deduction rules of Ex-
ample 3.7. The first rule defines marriages to start with the wedding and
end with the divorce:

MarriageT(P1, P2, Tb,1, Te,2)←

WeddingT(P1, P2, Tb,1, Te,1)∧
DivorceT(P1, P2, Tb,2, Te,2) ∧

Te,1<
T Tb,2

In SQL we write it as follows:

SELECT

t0.arg0 , t0.arg1 ,

t0.time_begin , t1.time_end ,

t0.lineage_id , t1.lineage_id

FROM

Wedding AS t0

JOIN

Divorce AS t1

ON t0.arg0 = t1.arg0 AND t0.arg1 = t1.arg1

WHERE

t0.time_end < t1.time_begin;

The first two columns of the result of the query above contain the constants
instantiating P1 and P2, followed by the limits for the time-interval, and
finally two lineage ids. These lineage ids indicate the lineage of the tuples,
which the current result originated from. Also, across different result rows,
a change in the lineage ids signalizes a new grounding, i.e. of Definition 2.4.
It is worthwhile to mention that the results of the above query are not

133 CHAPTER 6. IMPLEMENTATION

deduplicated, hence Algorithm 4 has to be applied afterwards. The second
deduction rule expresses that non-divorced couples remain married:

MarriageT(P1, P2, Tb,1, tmax)←

(
WeddingT(P1, P2, Tb,1, Te,1)∧

¬Divorce(P1, P2)

)

In SQL the deduction rule is encoded as follows:

SELECT

t0.arg0 , t0.arg1 ,

t0.time_begin ,

t0.lineage_id , t1.lineage_id

FROM

Wedding AS t0

LEFT OUTER JOIN

Divorce AS t1

ON t0.arg0 = t1.arg0 AND t0.arg1 = t1.arg1;

The major difference to the previous query is the usage of an outer join,
which can entail that the second lineage id is null. From a logical perspective
this replaces the Divorce literal by false.

6.2 Propositional Lineage

Since probability computations are the bottleneck in probabilistic databases,
an efficient lineage implementation can make the difference between a query
being executed in reasonable time or not.

Design Decisions As a first choice, we keep lineage at all times in mem-
ory, such that processing is sped up in comparison to disk-based approaches.
Second, for all lineage types we keep pools of objects, such that constructing
a lineage formula is done by merely setting attribute values.

Lineage Classes In detail, the classes are depicted in the unified model-
ing language (UML) diagram3 of Figure 6.2. Lineage is represented as an
abstract class called AbstractLineage whose attributes contain an array sub-
Lineage for the subformulas and a map tupleIdsToCount which points from
tuple ids to the number of times, this tuple occurs in a subformula. Hence,
Shannon expansions (see Section 2.2.5) are characterized by tuple ids whose
value in the map is greater than one. Also, when initializing a lineage object,
the new map results from counting how often tuple ids occur in the key sets
of the maps of the subformulas. The different types of lineage, logical and,
or, not, and tuple identifiers are subclasses of AbstractLineage. Here, only
LineageTuple sticks out, which stores the tuple id along with the probability
of the tuple. With respect to probability computations, we implemented

3http://www.omg.org/spec/UML/

http://www.omg.org/spec/UML/

CHAPTER 6. IMPLEMENTATION 134

Figure 6.2: UML Diagram for Propositional Lineage

them by the visitor design pattern [53] on the lineage classes as captured by
the interface LineageVisitor and its implementation ProbabilityCalculator.

In Memory Lineage The management of in-memory lineage is performed
in the LineageArray class (see Figure 6.2), which for convenient access is
implemented by the singleton design pattern [53]. The class stores one
huge array referencing all active lineage formulas. The lower ids of the
array coincide with the tuple ids of the database (see Figure 6.1). Hence,
whenever we touch a tuple in database, we lazily load, i.e. in batches, the
tuple probability from the probabilities table of Figure 6.1 and instantiate
the corresponding LineageTuple objects. The higher ids of the array refer
to lineage formulas which are created during grounding. When a query
terminates, we simply return all lineage objects in the higher id range to
their respective object pools.

135 CHAPTER 6. IMPLEMENTATION

Tuples and Time-Intervals Tuples, that is the Tuple class of Figure 6.2,
are only instantiated to represent query results. Intermediate results reside
just in the database. Besides the relation and the non-temporal arguments,
the Tuple class holds a list of time-intervals, which in turn refer to a lineage
id in the LineageArray each. This allows every interval to take a different
probability.

Shape of Lineage Since we store only pointers to subformulas in the
AbstractLineage class, the objects can represent lineage the form of a di-
rected acyclic graph [25]. In Figure 6.3 we display the propositional lineage
formulas of two answers which share subformulas. In this form caching

Figure 6.3: Propositional Lineage Example

of probabilities is very efficient, because lineage formulas are reused even
among different answers. We do not compile the propositional formula to
this form, but it can result from grounding.

6.3 First-Order Lineage

We next discuss the structure of an implementation of first-order lineage
(see Section 4.4) which supports creation via SLD steps (see Definition 4.4)
with scheduling. Attempting a correct implementation is a little bit more
challenging than for propositional lineage of the previous section. We display
the UML diagram of our first-order lineage implementation in Figure 6.4.

Connections to Algorithms To start with, the sets Atop and Acand of
Algorithm 6 hold instances of LineageAnswer which is a subclass of Lineage-
And, since queries are conjunctions of literals. In addition, the scheduler of
Algorithm 5 chooses instances of LineageLiteral to expand.

Variables As distinguished in Definition 4.4, variables can be of three
types, namely QueryVariable, ExistentialVariable, and UniversalVariable,

CHAPTER 6. IMPLEMENTATION 136

Figure 6.4: UML Diagram for First-Order Lineage

where the latter two are quantified. The class Bindings holds variables,
which are either assigned to a constant, that is bound, or free. If they are
free, then the set of constants (the value of the map) implicitly represents
negative bindings being constants the variable may not be assigned to. This
is necessary for implementing sorted input lists (see Section 4.6.1). Further-
more, we note that every lineage instance carries bindings, as they are an
attribute of AbstractLineage. By this we capture the scope of each variable,
which simply occurs in all lineage objects under the quantifier or query.
Quantifiers are implicitly contained at the upper most lineage object which
holds a variable.

Creating First-Order Lineage Instantiating the query and deduction
rules is straight forward. The tedious part, is binding variables to constants,
which can entail new answers, that is copying the lineage formula, or ex-
panding the lineage formula via Equation (4.1). For this, we employ the

137 CHAPTER 6. IMPLEMENTATION

visitor VariableBinder. It starts at the literal we are considering and moves
along the scope of the variable (up and down via the parentLineage and sub-
Lineage attributes of AbstractLineage) until all of the scope of the variable
is covered. Within this process, we rely on the attributes of VariableBinder
to keep track of lineage objects that have already been copied (copies), lin-
eage objects that must not be copied (boundary), and lineage objects which
should be deleted (toDelete). Deletion is performed after binding the vari-
ables, and has to ensure that the resulting lineage formula is valid.

If you enjoy implementing complicated datastructures, we note that for
lazy copying of first-order lineage, i.e. if new query answers are produced,
all of the attributes of AbstractLineage except for bindings have to exist and
to be managed separately for each query answer.

Sorted Input Lists To enable tuple by tuple reading from a relation, the
next tuple to read is saved in every LineageLiteral instance in the attribute
resultSet. Furthermore, as mentioned before, the set in Bindings attribute
free represent constants a variable may not be assigned to. In combination
these two features allow the implementation of Definition 4.9.

6.4 Learning Tuple Probabilities

In this section we present implementation details on Algorithm 7. The bot-
tleneck are probability computations of the labeled lineage formulas, which
are invoked repeatedly. To mitigate this effort, we employ the following set
of strategies:

• We preprocess each labeled lineage formula by Algorithm 3.

• Moreover, to check whether the new probability value of Il yielded an
improvement in the objective (Line 11), we compute only probabilities
of lineage formulas φ where Il occurs in, that is Il ∈ Tup(φ).

• Each lineage node has a probability cache (see Figure 6.2). When we
update the probability of a tuple occurring in a lineage formula, we
only recompute the path from the tuple to the root of the formula. All
other probabilities within the formula are reused.

• We cache the probability of each labeled formula. When we decide
to discard the new probability value of a tuple, i.e. in Line 16 of Al-
gorithm 7, we reuse the old cached probability of all lineage formulas
this tuple occurs in.

• Finally, if two tuples Il, I
′
l ∈ Tl are disjoint with respect to the la-

bels’ lineage formulas they occur in, that is {φi | (φi, li) ∈ L, Il ∈
Tup(φi), I

′
l ∈ Tup(φi)} = ∅, then their probability values can be up-

dated in parallel.

CHAPTER 6. IMPLEMENTATION 138

With respect to the implementation we depict its UML diagram in Fig-
ure 6.5. Algorithm 7 is modeled by several classes each corresponding to a

Figure 6.5: UML Diagram for Learning Tuple Probabilities

component, i.e. the learning rate, the objective function, and the stochas-
tic gradient descent implementation. The learning problem is captured in
its own class where all tuples of Tl are objects of type TupleToLearn and
all elements of L are represented by LabeledFormula objects. The learning
problem instance consists of several partitions which can be computed in
parallel.

Chapter 7

Conclusion

In modern settings, uncertain data is ubiquitous, since it can result from
physical measurements, automated information extraction from unstruc-
tured data, incomplete data which features missing data entries, and in-
consistent data, just to mention a few. On this kind of data, probabilistic
databases have the potential to change the way we manage uncertain data
as traditional relational databases did for deterministic data.

Contributions In this thesis, we advanced the state-of-the-art of proba-
bilistic databases in several ways. First, in Chapter 3 we devised a closed
and complete temporal probabilistic data model which allows us to cope
with data being variable over time as well as uncertain. Then, in Chap-
ter 4 we introduced an approach to query probabilistic databases for the
top-k most probable answers. Our method was the first to support partially
grounded query answers which were represented by first-order lineage. Next,
in Chapter 5 we addressed the learning of tuple probabilities from a data-
base perspective. Learning is a key building block for future probabilistic
database engines since it enables creating, updating and cleaning of proba-
bilistic databases. Finally, in Chapter 6 we presented implementation and
design details on how to turn the above contributions into software.

Future Directions Regarding possible extensions and improvements of
this work there are numerous opportunities. We present here the three most
important directions.

• First of all, the independence assumption among database tuples is
strong and can be replaced by more sophisticated correlations, such as
independent-disjoint probabilistic databases [30] or pc-tables [60]. In
this setting, however, further research is needed to extend our theo-
retical results.

139

CHAPTER 7. CONCLUSION 140

• Common to all probabilistic database systems is the inherent #P-
hardness of probability computations, which can result in non-interac-
tive query runtimes. To limit the impact of this, a valuable research
path is to consider more notions of relaxed answer semantics, such as
focusing on rankings, or to develop more approximation techniques of
answer probabilities which trade runtime for precision.

• As a final point, the introduction of first-order lineage calls for lifted
probability computations, which would then compute probabilities of
sets of query answers. This is a new direction in probabilistic databases
in which we are about to see the first work appearing [12].

Appendix A

Supplementary Material

A.1 System Setup

All experiments are performed on an 8-core Intel Xeon 2.4 GHz with 48
GB of RAM. The presented algorithms are implemented in Java, and rely
on a PostgreSQL 8.41 database as storage back-end. For more details on
the implementation we refer the interested reader to Chapter 6. We always
report average runtimes over warm disk caches by running each query or
problem instance 4 times in a row, and report the average runtime of the
latter 3 runs.

A.2 Datasets

In this section we elaborate on the datasets employed in experiments through-
out the thesis.

A.2.1 YAGO

Yet Another Great Ontology (YAGO)2 is a research project which creates
a high-quality knowledge base. Its data is mined automatically from the
infoboxes and categories of Wikipedia. The semantical classes originate
from Wordnet3. YAGO comes in two major releases which are discussed
next.

YAGO1

The original release of YAGO [138] comes with 82 manually defined relations,
such as BornIn, LivesIn, During, or SubClassOf which in total hold about
85 · 106 tuples. Each tuple is annotated with a confidence, which is derived

1http://www.postgresql.org/
2http://www.mpi-inf.mpg.de/yago-naga/yago/
3http://wordnet.princeton.edu/

141

http://www.postgresql.org/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://wordnet.princeton.edu/

APPENDIX A. SUPPLEMENTARY MATERIAL 142

from manual quality assessments. Nonetheless, these values are the same for
every entry in a relation. As this is a rather unrealistic setup for probabilistic
databases we draw synthetic a probability from the uniform distribution for
each tuple.

YAGO2

The successor version, YAGO2 [66], additionally contains location data.
Also, it offers specific support for temporal annotations, and entity names
are represented in many languages. This leads to an increase in size. YAGO2
comprises about 110 relations holding about 224.4 · 106 tuples of which 1.6 ·
106 have temporal annotations. Again, confidences are given, but they are
constant for all tuples in a relation. So, we employ synthetic probabilities
in the experiments.

A.2.2 IMDB

The international movie database (IMDB) webpage4 features data on nearly
every existing movie. We downloaded their dataset and extracted the six
relations Directed, Acted, Edited, Produced, Written, and HasCategory sum-
ming up to 26 · 106 tuples. As the data is deterministic, we synthetically
sampled tuple probabilities from the uniform distribution.

A.2.3 UW-CSE

The UW-CSE dataset5, comprises a database describing the computer sci-
ence department of University of Washington via the following relations:
AdvisedBy, CourseLevel, HasPosition, InPhase, Professor, ProjectMember,
Publication, Student, TaughtBy, Ta (teaching assistant), and YearsInPro-
gram. In total, there are 2, 161 tuples distributed to these relations. Thus,
the dataset is rather small. Moreover, it is split into five sub-departments,
namely artificial intelligence, graphics, language, systems, and theory.

A.2.4 PRAVDA

This dataset6 contains temporal facts in the sports and celebrities domain
which are automatically extracted from text. The considered relation are
WorksForClub and Marriage where begin, during and end observations are
distinguished (see [153]). For example, joining a soccer club marks a begin
event. In total the dataset comprises about 25, 000 fact candidates which are
extracted using about 12, 500 textual patterns. The distribution of pattern-
fact co-occurrence is heavily skewed, i.e. few patterns create most facts.

4http://www.imdb.com
5http://alchemy.cs.washington.edu/data/uw-cse/
6http://www.mpi-inf.mpg.de/yago-naga/pravda/

http://www.imdb.com
http://alchemy.cs.washington.edu/data/uw-cse/
http://www.mpi-inf.mpg.de/yago-naga/pravda/

143 APPENDIX A. SUPPLEMENTARY MATERIAL

A.3 Deduction Rules and Constraints

A.3.1 Temporal Probabilistic Data Model Experiments

We here present all deduction rules, all constraints and additional results of
the experiments described in Section 3.7.

Temporal Information Extraction

This section list all deduction rules and constraints of the temporal informa-
tion extraction experiment of Section 5.9.1. The experiment is conducted
on the PRAVDA dataset (see Appendix A.2.4).

Temporal Deduction rules Since each fact might have been found in
several documents, we aggregate the different extractions as distinguished
by their Ids to duplicate-free tuples:

AttendedSchoolT(P, S, Tb, Te) ← AttendedSchoolT(P, S, Id, Tb, Te)

BornT(P, Tb, Te) ← BornT(P, Id, Tb, Te)

DiedT(P, Tb, Te) ← DiedT(P, Id, Tb, Te)

DivorceT(P1, P2, Tb, Te) ← DivorceT(P1, P2, Id, Tb, Te)

FoundedT(P,O, Tb, Te) ← FoundingT(P,O, Id, Tb, Te)

GraduatedFromT(P, S, Tb, Te) ← GraduatedFromT(P, S, Id, Tb, Te)

IsDatingT(P1, P2, Tb, Te) ← IsDatingT(P1, P2, Id, Tb, Te)

MovedToT(P,L, Tb, Te) ← MovedToT(P,L, Id, Tb, Te)

WeddingT(P1, P2, Tb, Te) ← WeddingT(P1, P2, Id, Tb, Te)

Then, we deduce the MarriageT relation as in Example 3.7:

MarriageT(P1, P2, Tb, T
′
e) ←

(
WeddingT(P1, P2, Tb, Te)∧
DivorceT(P1, P2, T

′
b, T

′
e)∧

Te <
T T ′

b

)

MarriageT(P1, P2, Tb, tmax) ←

(
WeddingT(P1, P2, Tb, Te)∧

¬Divorce(P1, P2)

)

Divorce(P1, P2) ← DivorceT(P1, P2, Tb, Te)

After grounding all the above deduction rules we query for the relations
BornT , DiedT , FoundedT , GraduatedFromT , IsDatingT , MovedToT , and
MarriageT .

Constraints We manually designed the constraints by measuring their
effect on the precision-recall values in the training set. Our constraints can
be divided into three groups, namely irreflexive relations, and precedence
and disjointness among relations.

We achieved improved results by constraining DivorceT to be irreflexive:

¬(DivorceT(P1, P2, Tb, Te) ∧ P1 = P2)

APPENDIX A. SUPPLEMENTARY MATERIAL 144

The prime target for temporal precedence constraints is the birth date,
which should occur before any other event in the life of a person:

¬(BornT(P1, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧ AttendedSchoolT(P1, S, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧ FoundedT(P1, O, T ′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧GraduatedFromT(P1, S, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧ IsDatingT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P2, Tb, Te) ∧ IsDatingT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧MovedToT(P1, L, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧WeddingT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P2, Tb, Te) ∧WeddingT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

Also, the date of death should occur after any other fact relating to a person:

¬(MarriageT(P1, P2, Tb, Te) ∧DiedT(P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(FoundedT(P1, O, Tb, Te) ∧DiedT(P1, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(GraduatedFromT(P1, S, Tb, Te) ∧DiedT(P1, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(IsDatingT(P1, P2, Tb, Te) ∧DiedT(P1, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(IsDatingT(P1, P2, Tb, Te) ∧DiedT(P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(MovedToT(P1, L, Tb, Te) ∧DiedT(P1, T
′
b, T

′
e) ∧ T ′

b <
T Te)

Finally, we require the IsDatingT relation to take place before the couple is
married:

¬(IsDatingT(P1, P2, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

We enforce marriages of a person P1 to two different persons P2 and P3

to be temporally disjoint by writing:

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

Now, we give the same constraints, but with exchanged order of arguments:

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

145 APPENDIX A. SUPPLEMENTARY MATERIAL

We continue by restricting that married persons cannot date other persons
during their marriage:

¬

(
MarriageT(P1, P2, Tb, Te) ∧ IsDatingT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧ IsDatingT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧ IsDatingT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧ IsDatingT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧ IsDatingT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧ IsDatingT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧ IsDatingT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧ IsDatingT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

This concludes the constraints of the temporal information extraction ex-
periment.

Precision-Recall Plots In Figure A.1 we display the missing six detailed
precision-recall plots, where the first two are available in Figure 3.4(a).
Each plot is created by varying θp of Equation (3.7) such that the different
precision-recall pairs are induced.

Many Constraints

Next, we give all deduction rules and constraints from query Q5 of Sec-
tion 3.7.3. The deduction rules capture temporal knowledge about persons:

BornT(P, Tb, Te) ←WasBornOnDateT(Id, P, Tb, Te)

DiedT(P, Tb, Te) ← DiedOnDateT(Id, P, Tb, Te)

DivorceT(P, Y, Tb, Te) ←

(
IsMarriedTo(Id, P, Y)

∧OccursUntilT(Id2, Id, Tb, Te)

)

HasChildT(P1, P2, Tb, Te) ←

(
HasChild(Id, P1, P2)

∧WasBornOnDateT(Id2, P2, Tb, Te)

)

WeddingT(P1, P2, Tb, Te) ←

(
IsMarriedTo(Id, P1, P2)

∧OccursSinceT(Id2, Id, Tb, Te)

)

MarriageT(P1, P2, Tb, T
′
e) ←

(
WeddingT(P1, P2, Tb, Te)

∧DivorceT(P1, P2, T
′
b, T

′
e)

)

APPENDIX A. SUPPLEMENTARY MATERIAL 146

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(a) GraduatedFrom

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(b) Died

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(c) Born

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(d) MovedTo

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(e) AttendedSchool

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

TPDB-c
TPDB+c

Gurobi
TheBeast-c
TheBeast+c

(f) Founded

Figure A.1: Precision and Recall (varying θp)

We query for the relations Born, Died, HasChild, and Marriage, which are
restricted by precedence and disjointness constraints. The precedence con-
straints look as follows:

¬(BornT(P1, Tb, Te) ∧HasChildT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P1, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(BornT(P2, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(MarriageT(P1, P2, Tb, Te) ∧DiedT(P1, T
′
b, T

′
e) ∧ T ′

b <
T Te)

¬(MarriageT(P1, P2, Tb, Te) ∧DiedT(P2, T
′
b, T

′
e) ∧ T ′

b <
T Te)

Furthermore, as disjointness constraints we utilize:

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P1, P3, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

147 APPENDIX A. SUPPLEMENTARY MATERIAL

¬

(
MarriageT(P1, P2, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

b ∧ T ′
b <

T Te

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ Tb <
T T ′

e ∧ T ′
e <

T Te

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Tb ∧ Tb <
T T ′

e

)

¬

(
MarriageT(P2, P1, Tb, Te) ∧MarriageT(P3, P1, T

′
b, T

′
e)

∧P2 6= P3 ∧ T ′
b <

T Te ∧ Te <
T T ′

e

)

A.3.2 Top-k Query Processing Experiments

Scheduling

Here, we list the deduction rules and queries of the experiments of Fig-
ure 4.6(c). For Q9, having one level of deduction rules, the deduction rules
are:

Query(X,Y) ← DiedIn(X,Y) ∧ BornIn(X,Y)
Query(X,Y) ← ∃Z LivesIn(X,Y) ∧ IsMarriedTo(Z, Y)
Query(X,Y) ← IsCitizenOf (X,Y)
Query(X,Y) ← PoliticianOf (X,Y)

which are queried by Query(X,Constant) using 100 constants. The next
query pattern Q10 features two levels of deduction rules

Query(X,Y) ← ∃Z IsCitizenOf (X,Y) ∧DiedOnDate(X,Z)
Query(X,Y) ← Subquery(X,Y)
Query(X,Y) ← BornIn(X,Y)

Subquery(X,Y) ← DiedIn(X,Y)
Subquery(X,Y) ← LivesIn(X,Y)

Query(X,Y) ← ∃Z PoliticianOf (X,Y) ∧HasChild(X,Z)

and is initiated by Query(X,Constant). Finally, Q11 encodes three levels
of deduction rules

Query(X,Y) ← ∃Z LivesIn(X,Z) ∧DiedOnDate(X,Y)
Query(X,Y) ← Subquery1 (X,Y)

Subquery1 (X,Y) ← ∃ZBornOnDate(X,Y) ∧ BornIn(X,Z)
Subquery1 (X,Y) ← Subquery2 (X,Y)
Subquery2 (X,Y) ← CreatedOnDate(X,Y)
Subquery2 (X,Y) ← WrittenInYear(X,Y)

which are invoked by Query(X,Constant). We note that the temporal ar-
guments are treated as strings here, i.e. the 100 constants are all strings
representing a date.

APPENDIX A. SUPPLEMENTARY MATERIAL 148

A.3.3 Learning Tuple Probabilities Experiments

In this section we present the full set of deduction rules inducing the la-
beled lineage formulas as well as the definition of T and Tl for each of the
experiments of Section 5.9, where the information was presented only par-
tially. We start by providing statistics on all learning problem instances of
the experiments as depicted in Table A.1, where we calculate Avg. Tup(φ)
as 1

|L|

∑

(φi,li)∈L
|Tup(φi)|.

Statistical Relational Learning Setting

The database contains all relations from the UW-CSE dataset (see Ap-
pendix A.2.3) as well as the Rules relation, which reads as:

T :=
CourseLevel ∪HasPosition ∪ InPhase ∪ Professor ∪ ProjectMember
∪Publication ∪ Student ∪ TaughtBy ∪ Ta ∪ YearsInProgram ∪ Rules

Then, we assign Tl := Rules, which is also the only uncertain relation. The
49 automatically created rules in its full version are:

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
Ta(D,C, P2,Te)∧

Rules(0)

)

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
TaughtBy(D,C, P2,Te)∧

Rules(1)

)

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
Publication(D,Ti , P2)∧

Rules(2)

)

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
YearsInProgram(D,P2, Y)∧

Rules(3)

)

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
HasPosition(D,P2,Po)∧

Rules(4)

)

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
InPhase(D,P2,Ph)∧

Rules(5)

)

AdvisedBy(P1, P2) ←

(
Ta(D,C, P1,Te)∧
ProjectMember(D,Pr , P2)∧

Rules(6)

)

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
Ta(D,C, P2,Te)∧

Rules(7)

)

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
TaughtBy(D,C, P2,Te)∧

Rules(8)

)

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
Publication(D,Ti , P2)∧

Rules(9)

)

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
YearsInProgram(D,P2, Y)∧

Rules(10)

)

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
HasPosition(D,P2,Po)∧

Rules(11)

)

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
InPhase(D,P2,Ph)∧

Rules(12)

)

149
A
P
P
E
N
D
IX

A
.
S
U
P
P
L
E
M
E
N
T
A
R
Y

M
A
T
E
R
IA

L

Section Figure Source |T | |Tl| |L| Avg. Tup(φ) Boolean Inconsistent

5.9.1 5.5(a) UW-CSE 2, 161 49 113 to 452 5.8 to 8.3 yes yes
5.9.1 5.5(b) PRAVDA 75, 091 37, 383 89, 874 2.3 no yes
5.9.2 5.6(a) synthetic 100 100 10 to 100 5.8 yes some
5.9.2 5.6(b) YAGO2 224, 440, 854 19, 985 5, 562 3.6 no no
5.9.3 5.7 P1 217, 846 228, 050 2.7 no yes
5.9.3 5.7 P2 YAGO2 224, 440, 854 217, 846 79, 600 60.6 no yes
5.9.3 5.7 P3 1, 721, 156 459, 597 3.7 no no
5.9.4 5.8(a) synthetic 100 100 1 to 15 5.8 yes no
5.9.4 5.8(b) 339 6.0 yes yes
5.9.4 5.8(c) UW-CSE 2, 161 49 113 8.5 yes no
5.9.4 5.8(d) 339 6.0 yes yes

Table A.1: Learning Problem Instance Statistics

APPENDIX A. SUPPLEMENTARY MATERIAL 150

AdvisedBy(P1, P2) ←

(
TaughtBy(D,C, P1,Te)∧
ProjectMember(D,Pr , P2)∧

Rules(13)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
Ta(D,C, P2,Te)∧

Rules(14)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
TaughtBy(D,C, P2,Te)∧

Rules(15)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
Publication(D,Ti , P2)∧

Rules(16)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
YearsInProgram(D,P2, Y)∧

Rules(17)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
HasPosition(D,P2,Po)∧

Rules(18)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
InPhase(D,P2,Ph)∧

Rules(19)

)

AdvisedBy(P1, P2) ←

(
Publication(D,Ti , P1)∧
ProjectMember(D,Pr , P2)∧

Rules(20)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
Ta(D,C, P2,Te)∧

Rules(21)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
TaughtBy(D,C, P2,Te)∧

Rules(22)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
Publication(D,Ti , P2)∧

Rules(23)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
YearsInProgram(D,P2, Y)∧

Rules(24)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
HasPosition(D,P2,Po)∧

Rules(25)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
InPhase(D,P2,Ph)∧

Rules(26)

)

AdvisedBy(P1, P2) ←

(
YearsInProgram(D,P1, Y)∧
ProjectMember(D,Pr , P2)∧

Rules(27)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
Ta(D,C, P2,Te)∧

Rules(28)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
TaughtBy(D,C, P2,Te)∧

Rules(29)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
Publication(D,Ti , P2)∧

Rules(30)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
YearsInProgram(D,P2, Y)∧

Rules(31)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
HasPosition(D,P2,Po)∧

Rules(32)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
InPhase(D,P2,Ph)∧

Rules(33)

)

AdvisedBy(P1, P2) ←

(
HasPosition(D,P1,Po)∧
ProjectMember(D,Pr , P2)∧

Rules(34)

)

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
Ta(D,C, P2,Te)∧

Rules(35)

)

151 APPENDIX A. SUPPLEMENTARY MATERIAL

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
TaughtBy(D,C, P2,Te)∧

Rules(36)

)

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
Publication(D,Ti , P2)∧

Rules(37)

)

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
YearsInProgram(D,P2, Y)∧

Rules(38)

)

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
HasPosition(D,P2,Po)∧

Rules(39)

)

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
InPhase(D,P2,Ph)∧

Rules(40)

)

AdvisedBy(P1, P2) ←

(
InPhase(D,P1,Ph)∧
ProjectMember(D,Pr , P2)∧

Rules(41)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
Ta(D,C, P2,Te)∧

Rules(42)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
TaughtBy(D,C, P2,Te)∧

Rules(43)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
Publication(D,Ti , P2)∧

Rules(44)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
YearsInProgram(D,P2, Y)∧

Rules(45)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
HasPosition(D,P2,Po)∧

Rules(46)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
InPhase(D,P2,Ph)∧

Rules(47)

)

AdvisedBy(P1, P2) ←

(
ProjectMember(D,Pr , P1)∧
ProjectMember(D,Pr , P2)∧

Rules(48)

)

Regarding the variables, D is a department name, P1 and P2 are persons, C
is a course, Po is a position, Te is a term, Ph is a phase, Pr is a project, Ti is
a title, and Y is a year. Finally, the positive labels with label probability 1.0
are all instances of AdvisedBy. In contrast, negative labels (label probability
0.0) are uniformly drawn from the person-person pairs not present in the
AdvisedBy relation.

Temporal Information Extraction

The database is contained of T := Occurrence∪Begin∪During∪End , where
the tuples to learn are Tl := Begin ∪ During ∪ End . Moreover, Occurrence
is a deterministic relation, whereas the other three relations are set to be
uncertain. We employ three types of rules as described in Section 5.9.1.
First, for reconciling facts we have the following deduction rules

IsMarriedToBeginT(E1, E2, Tb, Te)

← BeginT(Pid) ∧OccurrenceT(Pid , E1, E1, pp, Tb, Te)

IsMarriedToDuringT(E1, E2, Tb, Te)

← DuringT(Pid) ∧OccurrenceT(Pid , E1, E1, pp, Tb, Te)

APPENDIX A. SUPPLEMENTARY MATERIAL 152

IsMarriedToEndT(E1, E2, Tb, Te)

← EndT(Pid) ∧OccurrenceT(Pid , E1, E1, pp, Tb, Te)

WorksForClubBeginT(E1, E2, Tb, Te)

← BeginT(Pid) ∧OccurrenceT(Pid , E1, E1, pc, Tb, Te)

WorksForClubDuringT(E1, E2, Tb, Te)

← DuringT(Pid) ∧OccurrenceT(Pid , E1, E1, pc, Tb, Te)

WorksForClubEndT(E1, E2, Tb, Te)

← EndT(Pid) ∧OccurrenceT(Pid , E1, E1, pc, Tb, Te)

where E1 and E2 are entities, Tb and Te encode the time-interval, Pid is
the pattern id, and pp and pc are constants standing for the type pairs
person-person and person-club, respectively. The next deduction rules en-
force mutual exclusion among the Begin, During, and End entry of each
pattern id

Constraint1 (Pid) ← Begin(Pid) ∧During(Pid)
Constraint2 (Pid) ← Begin(Pid) ∧ End(Pid)
Constraint3 (Pid) ← During(Pid) ∧ End(Pid)

which we achieve by labeling their resulting lineage with probability 0.0.
Finally, we encode temporal precedence constraints by the deduction rules

Constraint4 (E1, E2) ←

IsMarriedToBeginT(E1, E2, Tb, Te)∧
IsMarriedToDuringT(E1, E2, T

′
b, T

′
e)∧

T ′
b < Te

Constraint5 (E1, E2) ←

IsMarriedToBeginT(E1, E2, Tb, Te)∧
IsMarriedToEndT(E1, E2, T

′
b, T

′
e)∧

T ′
b < Te

Constraint6 (E1, E2) ←

IsMarriedToDuringT(E1, E2, Tb, Te)∧
IsMarriedToEndT(E1, E2, T

′
b, T

′
e)∧

T ′
b < Te

Constraint7 (E1, E2) ←

WorksForClubBeginT(E1, E2, Tb, Te)∧
WorksForClubDuringT(E1, E2, T

′
b, T

′
e)∧

T ′
b < Te

Constraint8 (E1, E2) ←

WorksForClubBeginT(E1, E2, Tb, Te)∧
WorksForClubEndT(E1, E2, T

′
b, T

′
e)∧

T ′
b < Te

Constraint9 (E1, E2) ←

WorksForClubDuringT(E1, E2, Tb, Te)∧
WorksForClubEndT(E1, E2, T

′
b, T

′
e)∧

T ′
b < Te

whose resulting lineage we label by probability 0.0 as well. Additionally, we
employ the 266 labels for textual patterns and the 341 labels for facts from
the original work.

Appendix B

Table of Symbols

Symbol Description Introduced in

a constant Section 2.1.1

ā vector of constants Section 2.1.1

U universe of constants Section 2.1.1

UT time universe, sequence of time-points Section 3.4.1

X variable Section 2.1.1

X̄ vector of variables and constants Section 2.1.1

Var(X̄) set of variables in X̄ Section 2.1.1

tb constant, time-point, start of an interval Section 3.4.1

te constant, time-point, end of an interval Section 3.4.1

tmin constant, time-point, begin of the time-universe Section 3.4.1

tmax constant, time-point, end of the time-universe Section 3.4.1

Tb temporal variable, begin of an interval Section 3.4.1

Te temporal variable, end of an interval Section 3.4.1

=T temporal equality predicate, compares time-points Section 3.4.4

<T temporal precedence predicate, compares time-points Section 3.4.4

R relation Section 2.1.1

RT temporal relation Section 3.4.2

R(ā) ground literal, tuple Section 2.1.1

R(X̄) first-order literal Section 2.1.1

Q(ā) query answer Section 2.1.4

Q(X̄) query Section 2.1.4

σ substitution of variables to constants or variables Section 2.1.3

R set of tuples, relation instance Section 2.1.1

T set of tuples, usually of all the database Section 2.1.1

W set of tuples, possible world Section 2.2.1

Tl set of tuples with probabilities to be learned Section 5.5

In tuple identifier Section 2.1.1

153

APPENDIX B. TABLE OF SYMBOLS 154

Symbol Description Introduced in

φ, ψ propositional lineage formula Section 2.2.4

Φ,Ψ first-order lineage formula Section 4.4

φlow propositional formula for lower bound of Φ Section 4.4.3

φup propositional formula for upper bound of Φ Section 4.4.3

φc propositional formula encoding constraints Section 2.2.6

λ function returning the lineage of its argument Section 2.2.4

p probability of a tuple Section 2.2.3

P (φ) probability of φ Section 2.2.5

Tup(φ) tuple identifiers occurring in φ Section 2.2.5

M models, satisfying assignments Section 2.2.5

D set of deduction rules Section 2.1.2

Dc set of deduction rules which ground constraints Section 2.2.6

Cp set of literals for grounding positive constraints Section 2.2.6

Cn set of literals for grounding negative constraints Section 2.2.6

L set of labels during learning Section 5.5

Bibliography

[1] S. Abiteboul, L. Herr, and J. V. den Bussche. Temporal Connectives
versus Explicit Timestamps in Temporal Query Languages. In J. Clif-
ford and A. Tuzhilin, editors, Recent Advances in Temporal Databases,
Proceedings of the International Workshop on Temporal Databases,
Zürich, Switzerland, 17-18 September 1995, Workshops in Comput-
ing, pages 43–57, Berlin, Heidelberg, New York, 1995. Springer.

[2] S. Abiteboul, R. Hull, and V. Vianu, editors. Foundations of Data-
bases. Addison-Wesley, Boston, MA, USA, 1st edition, 1995.

[3] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation
and querying of sets of possible worlds. SIGMOD Record, 16(3):34–
48, Dec. 1987.

[4] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart. On the expres-
siveness of probabilistic XML models. VLDB Journal, 18(5):1041–
1064, 2009.

[5] M. O. Akinde, O. G. Jensen, and M. H. Böhlen. Minimizing Detail
Data in Data Warehouses. In H.-J. Schek, F. Saltor, I. Ramos, and
G. Alonso, editors, Advances in Database Technology - EDBT’98, 6th
International Conference on Extending Database Technology, Valen-
cia, Spain, March 23-27, 1998, Proceedings, volume 1377 of Lecture
Notes in Computer Science, pages 293–307, Berlin, Heidelberg, New
York, 1998. Springer.

[6] J. F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832–843, Nov. 1983.

[7] P. Alvaro, W. R. Marczak, N. Conway, J. M. Hellerstein, D. Maier,
and R. Sears. Dedalus: datalog in time and space. In Proceedings of
the First international conference on Datalog Reloaded, Datalog, pages
262–281, Berlin, Heidelberg, New York, 2011. Springer.

[8] A. Amarilli and P. Senellart. On the Connections Between Relational
and XML Probabilistic Data Models. In Proceedings of the 29th British

155

BIBLIOGRAPHY 156

National Conference on Big Data, BNCOD, pages 121–134, Berlin,
Heidelberg, New York, 2013. Springer-Verlag.

[9] L. Anselma, P. Terenziani, and R. T. Snodgrass. Valid-Time Inde-
terminacy in Temporal Relational Databases: Semantics and Repre-
sentations. IEEE Transactions on Knowledge and Data Engineering,
25(12):2880–2894, Dec. 2013.

[10] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple
Relational Processing of Uncertain Data. In Proceedings of the 24th
International Conference on Data Engineering, ICDE, pages 983–992,
Washington, DC, USA, 2008. IEEE Computer Society.

[11] K. Apt. Principles of Constraint Programming. Cambridge University
Press, Cambridge, UK, 2003.

[12] P. Beame, J. Li, S. Roy, and D. Suciu. Model Counting of Query
Expressions: Limitations of Propositional Methods. In Proceedings of
the 17th International Conference on Database Theory, ICDT, New
York, NY, USA, 2014. ACM. To appear.

[13] R. Bekkerman, M. Bilenko, and J. Langford, editors. Scaling up ma-
chine learning: Parallel and distributed approaches. Cambridge Uni-
versity Press, Cambridge, UK, 1st edition, 2011.

[14] O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald, and J. Widom.
Databases with uncertainty and lineage. VLDB Journal, 17(2):243–
264, Mar. 2008.

[15] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal
Databases. In Proceedings of the 22th International Conference on
Very Large Data Bases, VLDB, pages 180–191, San Rafael, California,
USA, 1996. Morgan Kaufmann Publishers.

[16] B. Bollig and I. Wegener. Improving the Variable Ordering of OBDDs
Is NP-Complete. IEEE Transactions on Computers, 45(9):993–1002,
Sept. 1996.

[17] L. Bottou and O. Bousquet. The Tradeoffs of Large Scale Learning.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems,
pages 161–168. Curran Associates, 2008.

[18] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu.
MYSTIQ: a system for finding more answers by using probabilities. In
Proceedings of the International Conference on Management of data,
SIGMOD, pages 891–893, New York, NY, USA, 2005. ACM.

157 BIBLIOGRAPHY

[19] S. Brin. Extracting Patterns and Relations from the World Wide Web.
In Selected Papers from the International Workshop on The World
Wide Web and Databases, WebDB, pages 172–183, Berlin, Heidelberg,
New York, 1999. Springer.

[20] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods.
Springer, Berlin, Heidelberg, New York, 2nd edition, 1991.

[21] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to
Know About Datalog (And Never Dared to Ask). IEEE Transactions
on Knowledge and Data Engineering, 1(1):146–166, Mar. 1989.

[22] J. Chen and L. Feng. Efficient pruning algorithm for top-K ranking on
dataset with value uncertainty. In Proceedings of the 22nd ACM In-
ternational Conference on Conference on Information and Knowledge
Management, CIKM, pages 2231–2236, New York, NY, USA, 2013.
ACM.

[23] J. Chomicki. Polynomial Time Query Processing in Temporal Deduc-
tive Databases. In Proceedings of the Ninth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS, pages
379–391, New York, NY, USA, 1990. ACM.

[24] J. Chomicki and T. Imieliński. Temporal Deductive Databases and In-
finite Objects. In Proceedings of the Seventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS, pages
61–73, New York, NY, USA, 1988. ACM.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, USA, 3rd edition, 2009.

[26] Y. Cui, J. Widom, and J. L. Wiener. Tracing the Lineage of View
Data in a Warehousing Environment. ACM Transactions on Database
Systems, 25(2):179–227, June 2000.

[27] N. Dalvi, C. Ré, and D. Suciu. Probabilistic Databases: Diamonds in
the Dirt. Communications of the ACM, 52(7):86–94, July 2009.

[28] N. Dalvi, K. Schnaitter, and D. Suciu. Computing Query Probability
with Incidence Algebras. In Proceedings of the Twenty-ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS, pages 203–214, New York, NY, USA, 2010. ACM.

[29] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. VLDB Journal, 16(4):523–544, Oct. 2007.

[30] N. Dalvi and D. Suciu. Management of Probabilistic Data: Foun-
dations and Challenges. In Proceedings of the Twenty-sixth ACM

BIBLIOGRAPHY 158

SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS, pages 1–12, New York, NY, USA, 2007. ACM.

[31] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on
probabilistic structures. In Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, PODS, pages 293–302, New York, NY, USA, 2007. ACM.

[32] N. Dalvi and D. Suciu. The Dichotomy of Probabilistic Inference for
Unions of Conjunctive Queries. Journal of the ACM, 59(6):30:1–30:87,
Jan. 2013.

[33] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A Probabilistic
Prolog and Its Application in Link Discovery. In Proceedings of the
20th International Joint Conference on Artifical Intelligence, IJCAI,
pages 2468–2473, San Rafael, California, USA, 2007. Morgan Kauf-
mann Publishers.

[34] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks.
Artificial Intelligence, 49(1-3):61–95, May 1991.

[35] A. Dekhtyar, R. Ross, and V. S. Subrahmanian. Probabilistic tem-
poral databases, I: algebra. ACM Transactions on Database Systems,
26(1):41–95, Mar. 2001.

[36] A. Dickenstein and I. Z. Emiris. Solving Polynomial Equations: Foun-
dations, Algorithms, and Applications. Springer, Berlin, Heidelberg,
New York, 1st edition, 2010.

[37] A. Dignös, M. H. Böhlen, and J. Gamper. Temporal alignment. In
Proceedings of the International Conference on Management of Data,
SIGMOD, pages 433–444, New York, NY, USA, 2012. ACM.

[38] M. Dylla, I. Miliaraki, and M. Theobald. Top-k Query Process-
ing in Probabilistic Databases with Non-Materialized Views. Re-
search Report MPI-I-2012-5-002, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, June 2012.

[39] M. Dylla, I. Miliaraki, and M. Theobald. A Temporal-Probabilistic
Database Model for Information Extraction. Proceedings of the VLDB
Endowment, 6(14):1810–1821, 2013.

[40] M. Dylla, M. Sozio, and M. Theobald. Resolving Temporal Conflicts
in Inconsistent RDF Knowledge Bases. In T. Härder, W. Lehner,
B. Mitschang, H. Schöning, and H. Schwarz, editors, Datenbanksys-
teme für Business, Technologie und Web (BTW), GI Lecture Notes in
Informatics (LNI), pages 474–493. Gesellschaft für Informatik, 2011.

159 BIBLIOGRAPHY

[41] M. Dylla, M. Theobald, and I. Miliaraki. Top-k query processing in
probabilistic databases with non-materialized views. In Proceedings of
the 29th International Conference on Data Engineering, ICDE, pages
122–133, Washington, DC, USA, 2013. IEEE Computer Society.

[42] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time Indeter-
minacy. ACM Transactions on Database Systems, 23(1):1–57, Mar.
1998.

[43] T. Emrich, H.-P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle.
Querying Uncertain Spatio-Temporal Data. In A. Kementsietsidis and
M. A. V. Salles, editors, Proceedings of the 28th International Con-
ference on Data Engineering, ICDE, pages 354–365, Washington, DC,
USA, 2012. IEEE Computer Society.

[44] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms
for Middleware. In Proceedings of the Twentieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
PODS, pages 102–113, New York, NY, USA, 2001. ACM.

[45] W. Feller. An introduction to probability theory and its applications.
Wiley, Hoboken, NJ, USA, 3rd edition, 1968.

[46] R. Fink, L. Han, and D. Olteanu. Aggregation in Probabilistic Data-
bases via Knowledge Compilation. Proceedings of the VLDB Endow-
ment, 5(5):490–501, Jan. 2012.

[47] R. Fink, J. Huang, and D. Olteanu. Anytime approximation in prob-
abilistic databases. VLDB Journal, 22(6):823–848, 2013.

[48] R. Fink and D. Olteanu. On the optimal approximation of queries
using tractable propositional languages. In Proceedings of the 14th
International Conference on Database Theory, ICDT, pages 174–185,
New York, NY, USA, 2011. ACM.

[49] R. Fink, D. Olteanu, and S. Rath. Providing Support for Full Rela-
tional Algebra in Probabilistic Databases. In Proceedings of the 27th
International Conference on Data Engineering, ICDE, pages 315–326,
Washington, DC, USA, 2011. IEEE Computer Society.

[50] J. R. Finkel, T. Grenager, and C. Manning. Incorporating Non-local
Information into Information Extraction Systems by Gibbs Sampling.
In Proceedings of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL, pages 363–370, Stroudsburg, PA, USA,
2005. Association for Computational Linguistics.

BIBLIOGRAPHY 160

[51] M. Fisher, D. Gabbay, and L. Vila. Handbook of Temporal Reasoning
in Artificial Intelligence. Foundations of Artificial Intelligence. Else-
vier, Essex, UK, 1st edition, 2005.

[52] N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems. ACM
Transactions on Information Systems, 15(1):32–66, Jan. 1997.

[53] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-
Wesley, Boston, MA, USA, 1994.

[54] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, New York, NY,
USA, 1990.

[55] T. Ge, S. B. Zdonik, and S. Madden. Top-k queries on uncertain
data: on score distribution and typical answers. In U. Çetintemel,
S. B. Zdonik, D. Kossmann, and N. Tatbul, editors, Proceedings of the
International Conference on Management of Data, SIGMOD, pages
375–388, New York, NY, USA, 2009. ACM.

[56] L. Getoor and B. Taskar. Introduction to Statistical Relational Learn-
ing. MIT Press, Cambridge, MA, USA, 1st edition, 2007.

[57] G. Gottlob and C. Papadimitriou. On the Complexity of Single-rule
Datalog Queries. Information and Computation, 183(1):104–122, May
2003.

[58] E. Grädel, Y. Gurevich, and C. Hirsch. The Complexity of Query Re-
liability. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS, pages
227–234, New York, NY, USA, 1998. ACM.

[59] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings.
In Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pages 31–40,
New York, NY, USA, 2007. ACM.

[60] T. J. Green and V. Tannen. Models for Incomplete and Probabilistic
Information. IEEE Data Engineering Bulletin, 29(1):17–24, 2006.

[61] M. R. Gupta and Y. Chen. Theory and Use of the EM Algorithm.
Foundations and Trends in Signal Processing, 4(3):223–296, Mar.
2011.

[62] B. Gutmann, A. Kimmig, K. Kersting, and L. Raedt. Parameter
Learning in Probabilistic Databases: A Least Squares Approach. In

161 BIBLIOGRAPHY

Proceedings of the 2008 European Conference on Machine Learning
and Knowledge Discovery in Databases - Part I, PKDD, pages 473–
488, Berlin, Heidelberg, New York, 2008. Springer.

[63] B. Gutmann, I. Thon, and L. De Raedt. Learning the Parameters
of Probabilistic Logic Programs from Interpretations. In Proceedings
of the 2011 European Conference on Machine Learning and Knowl-
edge Discovery in Databases - Part I, PKDD, pages 581–596, Berlin,
Heidelberg, New York, 2011. Springer.

[64] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, Berlin, Heidelberg,
New York, 2nd edition, 2009.

[65] J. W. Hector Garcia-Molina, Jeffrey D. Ullman. Database systems:
the complete book. Prentice-Hall, Upper Saddle River, NJ, USA, 1st
edition, 2002.

[66] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A
Spatially and Temporally Enhanced Knowledge Base from Wikipedia.
Artificial Intelligence, 194:28–61, Jan. 2013.

[67] M. Hua, J. Pei, and X. Lin. Ranking queries on uncertain data. VLDB
Journal, 20(1):129–153, 2011.

[68] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking Queries on Uncertain
Data: A Probabilistic Threshold Approach. In Proceedings of the
International Conference on Management of Data, SIGMOD, pages
673–686, New York, NY, USA, 2008. ACM.

[69] I. F. Ilyas, G. Beskales, and M. A. Soliman. A Survey of Top-k Query
Processing Techniques in Relational Database Systems. ACM Com-
puting Surveys, 40(4):11:1–11:58, Oct. 2008.

[70] I. F. Ilyas and M. A. Soliman. Probabilistic Ranking Techniques in Re-
lational Databases. Synthesis Lectures on Data Management. Morgan
& Claypool, San Rafael, California, USA, 2011.

[71] C. S. Jensen. Temporal Database Management. PhD thesis, Aalborg
University, Aalborg, Denmark, April 2000.

[72] J. Jestes, G. Cormode, F. Li, and K. Yi. Semantics of Ranking Queries
for Probabilistic Data. IEEE Transactions on Knowledge and Data
Engineering, 23(12):1903–1917, 2011.

[73] A. Jha and D. Suciu. Probabilistic databases with MarkoViews. Pro-
ceedings of the VLDB Endowment, 5(11):1160–1171, July 2012.

BIBLIOGRAPHY 162

[74] A. Jha and D. Suciu. Knowledge Compilation Meets Database The-
ory: Compiling Queries to Decision Diagrams. Theory of Computing
Systems, 52(3):403–440, Apr. 2013.

[75] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling Infinite Tem-
poral Data. In Proceedings of the Ninth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS, pages
392–403, New York, NY, USA, 1990. ACM.

[76] B. Kanagal and A. Deshpande. Lineage processing over correlated
probabilistic databases. In Proceedings of the International Conference
on Management of data, SIGMOD, pages 675–686, New York, NY,
USA, 2010. ACM.

[77] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and ex-
planations for robust query evaluation in probabilistic databases. In
Proceedings of the International Conference on Management of data,
SIGMOD, pages 841–852, New York, NY, USA, 2011. ACM.

[78] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query lan-
guages. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, PODS, pages 299–313,
New York, NY, USA, 1990. ACM.

[79] O. Kennedy and C. Koch. PIP: A database system for great and small
expectations. In Proceedings of the 26th International Conference on
Data Engineering, ICDE, pages 157–168, Washington, DC, USA, 2010.
IEEE Computer Society.

[80] M. Keulen and A. Keijzer. Qualitative Effects of Knowledge Rules
and User Feedback in Probabilistic Data Integration. VLDB Journal,
18(5):1191–1217, Oct. 2009.

[81] S. Khanna, S. Roy, and V. Tannen. Queries with Difference on Proba-
bilistic Databases. Proceedings of the VLDB Endowment, 4(11):1051–
1062, 2011.

[82] B. Kimelfeld and P. Senellart. Probabilistic XML: Models and Com-
plexity. In Z. Ma and L. Yan, editors, Advances in Probabilistic Data-
bases for Uncertain Information Management, volume 304 of Studies
in Fuzziness and Soft Computing, pages 39–66. Springer, Berlin, Hei-
delberg, New York, 2013.

[83] C. Koch and D. Olteanu. Conditioning probabilistic databases. Pro-
ceedings of the VLDB Endowment, 1(1):313–325, Aug. 2008.

[84] K. Kulkarni and J.-E. Michels. Temporal Features in SQL:2011. SIG-
MOD Record, 41(3):34–43, Oct. 2012.

163 BIBLIOGRAPHY

[85] S. K. Lahiri and M. Musuvathi. An Efficient Decision Procedure for
UTVPI Constraints. In Proceedings of the 5th International Con-
ference on Frontiers of Combining Systems, FroCoS, pages 168–183,
Berlin, Heidelberg, New York, 2005. Springer.

[86] J. Li and A. Deshpande. Ranking Continuous Probabilistic Datasets.
Proceedings of the VLDB Endowment, 3(1):638–649, 2010.

[87] J. Li, C. Liu, R. Zhou, and W. Wang. Top-k Keyword Search over
Probabilistic XML Data. In Proceedings of the 27th International
Conference on Data Engineering, ICDE, pages 673–684, Washington,
DC, USA, 2011. IEEE Computer Society.

[88] J. Li, B. Saha, and A. Deshpande. A Unified Approach to Ranking in
Probabilistic Databases. VLDB Journal, 20(2):249–275, Apr. 2011.

[89] X. Lian and L. Chen. Probabilistic Inverse Ranking Queries in Uncer-
tain Databases. VLDB Journal, 20(1):107–127, Feb. 2011.

[90] J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
Heidelberg, New York, 2nd edition, 1987.

[91] D. Lowd and P. Domingos. Efficient Weight Learning for Markov
Logic Networks. In Knowledge Discovery in Databases: PKDD 2007,
11th European Conference on Principles and Practice of Knowledge
Discovery in Databases, PKDD, pages 200–211, Berlin, Heidelberg,
New York, 2007. Springer.

[92] C. Lutz, F. Wolter, and M. Zakharyashev. Temporal Description
Logics: A Survey. In Temporal Representation and Reasoning, 2008.
TIME ’08. 15th International Symposium on, pages 3–14, Washington,
DC, USA, 2008. IEEE Computer Society.

[93] M. Magnani and D. Montesi. A Survey on Uncertainty Management in
Data Integration. Journal of Data and Information Quality, 2(1):5:1–
5:33, July 2010.

[94] M. Mampaey, J. Vreeken, and N. Tatti. Summarizing Data Succinctly
with the Most Informative Itemsets. ACM Transactions on Knowledge
Discovery from Data, 6(4):16:1–16:42, Dec. 2012.

[95] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, Cambridge, UK, 2008.

[96] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and
T. M. Tran. Consistent selectivity estimation via maximum entropy.
VLDB Journal, 16(1):55–76, 2007.

BIBLIOGRAPHY 164

[97] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: A Database
Approach for Statistical Inference and Data Cleaning. In Proceedings
of the International Conference on Management of Data, SIGMOD,
pages 75–86, New York, NY, USA, 2010. ACM.

[98] T. Meiser, M. Dylla, and M. Theobald. Interactive reasoning in uncer-
tain RDF knowledge bases. In C. Macdonald, I. Ounis, and I. Ruthven,
editors, Proceedings of the 20th ACM International Conference on In-
formation and Knowledge Management, CIKM, pages 2557–2560, New
York, NY, USA, 2011. ACM.

[99] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, Cambridge, MA, USA, 2012.

[100] R. Murthy, R. Ikeda, and J. Widom. Making Aggregation Work in Un-
certain and Probabilistic Databases. IEEE Transactions on Knowledge
and Data Engineering, 23(8):1261–1273, 2011.

[101] N. Nakashole, G. Weikum, and F. Suchanek. PATTY: A Taxonomy of
Relational Patterns with Semantic Types. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning, EMNLP-CoNLL,
pages 1135–1145, Stroudsburg, PA, USA, 2012. Association for Com-
putational Linguistics.

[102] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling Up Statistical
Inference in Markov Logic Networks Using an RDBMS. Proceedings
of the VLDB Endowment, 4(6):373–384, Mar. 2011.

[103] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, Berlin,
Heidelberg, New York, 2nd edition, 2006.

[104] P. Ohrstrom. Temporal Logic: From Ancient Ideas to Artificial Intel-
ligence. Springer, Berlin, Heidelberg, New York, 2009.

[105] D. Olteanu and J. Huang. Using OBDDs for Efficient Query Eval-
uation on Probabilistic Databases. In S. Greco and T. Lukasiewicz,
editors, Scalable Uncertainty Management, Second International Con-
ference, SUM 2008, volume 5291 of Lecture Notes in Computer Sci-
ence, pages 326–340, Berlin, Heidelberg, New York, 2008. Springer.

[106] D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs. Eager Query
Plans for Tuple-Independent Probabilistic Databases. In Proceedings
of the 25th International Conference on Data Engineering, ICDE,
pages 640–651, Washington, DC, USA, 2009. IEEE Computer Soci-
ety.

165 BIBLIOGRAPHY

[107] D. Olteanu, J. Huang, and C. Koch. Approximate confidence computa-
tion in probabilistic databases. In Proceedings of the 26th International
Conference on Data Engineering, ICDE, pages 145–156, Washington,
DC, USA, 2010. IEEE Computer Society.

[108] D. Olteanu and H. Wen. Ranking Query Answers in Probabilistic
Databases: Complexity and Efficient Algorithms. In Proceedings of
the 28th International Conference on Data Engineering, ICDE, pages
282–293, Washington, DC, USA, 2012. IEEE Computer Society.

[109] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Upper Saddle River, NJ,
USA, 1st edition, 1982.

[110] L. Peng, Y. Diao, and A. Liu. Optimizing Probabilistic Query Pro-
cessing on Continuous Uncertain Data. Proceedings of the VLDB En-
dowment, 4(11):1169–1180, 2011.

[111] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,
Berlin, Heidelberg, New York, 3rd edition, 2008.

[112] D. Poole. First-order Probabilistic Inference. In Proceedings of the
18th International Joint Conference on Artificial Intelligence, IJCAI,
pages 985–991, San Rafael, California, USA, 2003. Morgan Kaufmann
Publishers.

[113] H. Poon and P. Domingos. Sum-Product Networks: A New Deep Ar-
chitecture. In F. G. Cozman and A. Pfeffer, editors, Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
UAI, pages 337–346. AUAI Press, 2011.

[114] Y. Qi, R. Jain, S. Singh, and S. Prabhakar. Threshold Query Op-
timization for Uncertain Data. In Proceedings of the International
Conference on Management of Data, SIGMOD, pages 315–326, New
York, NY, USA, 2010. ACM.

[115] C. Ré, N. N. Dalvi, and D. Suciu. Efficient Top-k Query Evaluation
on Probabilistic Data. In Proceedings of the 23rd International Con-
ference on Data Engineering, ICDE, pages 886–895, Washington, DC,
USA, 2007. IEEE Computer Society.

[116] C. Ré and D. Suciu. Approximate Lineage for Probabilistic Databases.
Proceedings of the VLDB Endowment, 1(1):797–808, Aug. 2008.

[117] C. Ré and D. Suciu. The trichotomy of HAVING queries on a proba-
bilistic database. VLDB Journal, 18(5):1091–1116, 2009.

BIBLIOGRAPHY 166

[118] C. Ré and D. Suciu. Understanding Cardinality Estimation Using
Entropy Maximization. In Proceedings of the Twenty-ninth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS, pages 53–64, New York, NY, USA, 2010. ACM.

[119] T. Rekatsinas, A. Deshpande, and L. Getoor. Local Structure and De-
terminism in Probabilistic Databases. In Proceedings of the Interna-
tional Conference on Management of Data, SIGMOD, pages 373–384,
New York, NY, USA, 2012. ACM.

[120] M. Richardson and P. Domingos. Markov Logic Networks. Machine
Learning, 62(1-2):107–136, Feb. 2006.

[121] S. Riedel. Improving the Accuracy and Efficiency of MAP Inference
for Markov Logic. In D. A. McAllester and P. Myllymäki, editors,
Proceedings of the 24th Conference in Uncertainty in Artificial Intel-
ligence, UAI, pages 468–475. AUAI Press, 2008.

[122] T. Rölleke and N. Fuhr. Probabilistic Reasoning for Large Scale
Databases. In Datenbanksysteme in Büro, Technik und Wissenschaft
(BTW), Informatik Aktuell, pages 118–132, Berlin, Heidelberg, New
York, 1997. Springer.

[123] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education, Upper Saddle River, NJ, USA, 2nd edi-
tion, 2003.

[124] Y. Sagiv and M. Yannakakis. Equivalences Among Relational Expres-
sions with the Union and Difference Operators. Journal of the ACM,
27(4):633–655, Oct. 1980.

[125] A. D. Sarma, M. Theobald, and J. Widom. Exploiting Lineage for
Confidence Computation in Uncertain and Probabilistic Databases.
In Proceedings of the 24th International Conference on Data Engi-
neering, ICDE, pages 1023–1032, Washington, DC, USA, 2008. IEEE
Computer Society.

[126] A. D. Sarma, M. Theobald, and J. Widom. LIVE: a lineage-supported
versioned DBMS. In Proceedings of the 22nd international conference
on Scientific and statistical database management, volume 6187 of Lec-
ture Notes in Computer Science, pages 416–433, Berlin, Heidelberg,
New York, 2010. Springer.

[127] S. Sathe, H. Jeung, and K. Aberer. Creating Probabilistic Databases
from Imprecise Time-series Data. In Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE, pages 327–338, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

167 BIBLIOGRAPHY

[128] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and ex-
ploiting rich correlations in probabilistic databases. VLDB Journal,
18(5):1065–1090, Oct. 2009.

[129] P. Sen, A. Deshpande, and L. Getoor. Read-once Functions and Query
Evaluation in Probabilistic Databases. Proceedings of the VLDB En-
dowment, 3(1-2):1068–1079, Sept. 2010.

[130] A. N. Shiryaev. Probability. Springer, Berlin, Heidelberg, New York,
2nd edition, 1995.

[131] P. Singla and P. Domingos. Discriminative Training of Markov Logic
Networks. In Proceedings of the 20th National Conference on Artificial
Intelligence - Volume 2, AAAI’05, pages 868–873. AAAI Press, 2005.

[132] P. Singla and P. Domingos. Lifted First-order Belief Propagation. In
D. Fox and C. P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI, pages 1094–1099.
AAAI Press, 2008.

[133] R. M. Smullyan. First-order logic. Springer, Berlin, Heidelberg, New
York, 1st edition, 1968.

[134] R. T. Snodgrass, editor. The TSQL2 Temporal Query Language.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

[135] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k Query Process-
ing in Uncertain Databases. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE, pages 896–905, Washington,
DC, USA, 2007. IEEE Computer Society.

[136] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and M. Tagliasacchi. Rank-
ing with Uncertain Scoring Functions: Semantics and Sensitivity Mea-
sures. In Proceedings of the International Conference on Management
of Data, SIGMOD, pages 805–816, New York, NY, USA, 2011. ACM.

[137] J. Stoyanovich, S. Davidson, T. Milo, and V. Tannen. Deriving Proba-
bilistic Databases with Inference Ensembles. In Proceedings of the 27th
International Conference on Data Engineering, ICDE, pages 303–314,
Washington, DC, USA, 2011. IEEE Computer Society.

[138] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Seman-
tic Knowledge. In Proceedings of the 16th International Conference on
World Wide Web, WWW, pages 697–706, New York, NY, USA, 2007.
ACM.

[139] D. Suciu, D. Olteanu, R. Christopher, and C. Koch. Probabilistic Data-
bases. Morgan & Claypool, San Rafael, California, USA, 1st edition,
2011.

BIBLIOGRAPHY 168

[140] P. P. Talukdar, D. Wijaya, and T. Mitchell. Coupled Temporal Scoping
of Relational Facts. In Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM, pages 73–82,
New York, NY, USA, 2012. ACM.

[141] B. Taskar, P. Abbeel, and D. Koller. Discriminative Probabilistic Mod-
els for Relational Data. In Proceedings of the Eighteenth Conference on
Uncertainty in Artificial Intelligence, UAI, pages 485–492, San Rafael,
California, USA, 2002. Morgan Kaufmann Publishers.

[142] P. Terenziani. Coping with Events in Temporal Relational Databases.
IEEE Transactions on Knowledge and Data Engineering, 25(5):1181–
1185, 2013.

[143] M. Theobald, L. D. Raedt, M. Dylla, A. Kimmig, and I. Miliaraki.
10 Years of Probabilistic Querying - What Next? In B. Catania,
G. Guerrini, and J. Pokorný, editors, Advances in Databases and In-
formation Systems - 17th East European Conference, ADBIS 2013,
Genoa, Italy, September 1-4, 2013. Proceedings, volume 8133 of Lec-
ture Notes in Computer Science, pages 1–13. Springer, Berlin, Heidel-
berg, New York, 2013.

[144] D. Toman and J. Chomicki. Datalog with Integer Periodicity Con-
straints. Journal of Logic Programming, 35(3):263–290, 1998.

[145] A. Tuzhilin and J. Clifford. A Temporal Relational Algebra As Basis
for Temporal Relational Completeness. In Proceedings of the 16th
International Conference on Very Large Data Bases, VLDB, pages 13–
23, San Rafael, California, USA, 1990. Morgan Kaufmann Publishers.

[146] G. A. V. Sperschneider. Logic: A Foundation for Computer Science.
Addison-Wesley, Boston, MA, USA, 1st edition, 1991.

[147] L. G. Valiant. The Complexity of Computing the Permanent. Theo-
retical Computer Science, 8(2):189–201, 1979.

[148] J. van Benthem. The Logic of Time: A Model-Theoretic Investiga-
tion into the Varieties of Temporal Ontology and Temporal Discourse.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2nd edi-
tion, 1991.

[149] G. Van Den Broeck, N. Taghipour, W. Meert, J. Davis, and
L. De Raedt. Lifted Probabilistic Inference by First-order Knowledge
Compilation. In Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence, IJCAI, pages 2178–2185. AAAI Press,
2011.

169 BIBLIOGRAPHY

[150] M. van Keulen, A. de Keijzer, and W. Alink. A Probabilistic XML
Approach to Data Integration. In Proceedings of the 21st International
Conference on Data Engineering, ICDE, pages 459–470, Washington,
DC, USA, 2005. IEEE Computer Society.

[151] C. Wang, L.-Y. Yuan, J.-H. You, O. R. Zäıane, and J. Pei. On Pruning
for Top-K Ranking in Uncertain Databases. Proceedings of the VLDB
Endowment, 4(10):598–609, 2011.

[152] Y. Wang, M. Dylla, Z. Ren, M. Spaniol, and G. Weikum. PRAVDA-
live: Interactive Knowledge Harvesting. In X. wen Chen, G. Lebanon,
H. Wang, and M. J. Zaki, editors, Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge Management,
CIKM, pages 2674–2676, New York, NY, USA, 2012. ACM.

[153] Y. Wang, M. Dylla, M. Spaniol, and G. Weikum. Coupling Label Prop-
agation and Constraints for Temporal Fact Extraction. In Proceedings
of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Short Papers - Volume 2, ACL, pages 233–237, Stroudsburg,
PA, USA, 2012. Association for Computational Linguistics.

[154] Y. Wang, M. Yahya, and M. Theobald. Time-aware Reasoning in
Uncertain Knowledge Bases. In A. de Keijzer and M. van Keulen,
editors, Proceedings of the Fourth International VLDB workshop on
Management of Uncertain Data (MUD), CTIT Workshop Proceedings
Series, pages 51–65. Centre for Telematics and Information Technology
(CTIT), University of Twente, The Netherlands, 2010.

[155] G. Weikum and M. Theobald. From Information to Knowledge: Har-
vesting Entities and Relationships from Web Sources. In Proceedings
of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS, pages 65–76, New York,
NY, USA, 2010. ACM.

[156] M. Weisfeld. The Object-Oriented Thought Process. Addison-Wesley,
Boston, MA, USA, 3rd edition, 2008.

	Introduction
	Motivation
	Contributions

	Background and Preliminaries
	Relational Databases
	Relations and Tuples
	Deduction Rules
	Grounding
	Queries and Answers

	Probabilistic Databases
	Possible Worlds Semantics
	Probabilistic Database
	Tuple-Independence
	Propositional Lineage
	Probability Computation
	Constraints

	Algorithms
	Query Answering
	Query Answering with Constraints

	Related Approaches
	Probabilistic Databases
	Probabilistic XML
	Statistical Relational Learning
	Probabilistic Programming

	Application: Information Extraction

	Temporal Probabilistic Data Model
	Introduction
	Related Work
	Contribution
	Temporal Data Model
	Time Domain
	Relations and Tuples
	Temporal Probabilistic Databases
	Arithmetic Predicates
	Deduction Rules
	Lineage and Deduplication
	Queries and Answers
	Constraints

	Theoretical Properties
	Grounding Complexity
	Probability Computations Complexity
	Closure and Completeness
	Relationship to Sequenced Semantics
	Temporal Coalescing

	Algorithms
	Lineage Decomposition
	Temporal Deduplication

	Experiments
	Temporal Information Extraction
	Querying
	Scalability
	Algorithm Analysis

	Summary and Outlook

	Top-k Query Processing
	Introduction
	Related Work
	Contribution
	First-Order Lineage
	Deduction Rules with Quantifiers
	Lineage Construction
	Probability Bounds

	Algorithms
	Benefit-Oriented Literal Scheduling
	Top-k with Dynamic Literal Scheduling

	Extensions
	Sorted Input Relations
	Recursion
	Temporal Data
	Constraints

	Experiments
	Query Classes
	Performance Factors
	Recursion
	Algorithm Analysis

	Summary and Outlook

	Learning Tuple Probabilities
	Introduction
	Related Work
	Contribution
	Preliminary
	Learning Problem
	Complexity
	Solutions
	Visual Interpretation

	Gradient Based Solutions
	Desired Properties
	Logical Objective
	Mean Squared Error Objective
	Discussion

	Extensions and Applications
	Priors
	Temporal Data
	Constraints
	Updating and Cleaning Probabilistic Databases
	Incomplete Databases

	Algorithm
	Experiments
	Quality
	Runtime
	Scalability
	Algorithm Analysis

	Summary and Outlook

	Implementation
	Database Layout
	Propositional Lineage
	First-Order Lineage
	Learning Tuple Probabilities

	Conclusion
	Supplementary Material
	System Setup
	Datasets
	YAGO
	IMDB
	UW-CSE
	PRAVDA

	Deduction Rules and Constraints
	Temporal Probabilistic Data Model Experiments
	Top-k Query Processing Experiments
	Learning Tuple Probabilities Experiments

	Table of Symbols

