
Algorithms and Data Structures
K. Mehlhorn and R. Seidel
Exercise 5

Summer 2008
We. Sept 3rd, morning

Motivation

We study an optimized version of quicksort (Section 5.4.2 inMehlhorn/Sanders). It works in-
place, and is fast and space-efficient. Figure 1 shows the pseudocode, and Figure 2 shows a
sample execution. The refinements are nontrivial and we needto discuss them carefully.

Procedure qSort(a : Array of Element; ℓ,r : N) // Sort the subarraya[ℓ..r]
while r− ℓ+1 > n0 do // Use divide-and-conquer.

j :=pickPivotPos(a, ℓ,r) // Pick a pivot element and
swap(a[ℓ],a[j]) // bring it to the first position.
p :=a[ℓ] // p is the pivot now.
i := ℓ; j := r
repeat // a: ℓ i→ j← r

while a[i] < p do i++ // Skip over elements
while a[j] > p do j-- // already in the correct subarray.
if i≤ j then // If partitioning is not yet complete,

swap(a[i],a[j]); i++; j-- // (*) swap misplaced elements and go on.
until i > j // Partitioning is complete.
if i < (ℓ+ r)/2 then qSort(a, ℓ, j); ℓ := i // Recurse on
else qSort(a, i,r); r := j // smaller subproblem.

endwhile
insertionSort(a[ℓ..r]) // faster for smallr− ℓ

Figure 1: Refined quicksort for arrays

The functionqsort operates on an arraya. The argumentsℓ and r specify the subarray to be
sorted. The outermost call isqsort(a,1,n). If the size of the subproblem is smaller than some
constantn0, we resort to a simple algorithm1 such as insertion sort. The best choice forn0 de-
pends on many details of the machine and compiler and needs tobe determined experimentally;
a value somewhere between 10 and 40 should work fine under a variety of conditions.

1Some authors propose leaving small pieces unsorted and cleaning up at the end using a single insertion sort.
Although this trick reduces the number of instructions executed, the solution shown is faster on modern machines
because the subarray to be sorted will already be in cache.

1

i → ← j
3 6 8 1 0 7 2 4 5 9
2 6 8 1 0 7 3 4 5 9
2 0 8 1 6 7 3 4 5 9
2 0 1 8 6 7 3 4 5 9

j i

3 6 8 1 0 7 2 4 5 9
2 0 1|8 6 7 3 4 5 9

|
1 0|2|5 6 7 3 4|8 9

| | |
0 1| |4 3|7 6 5|8 9

	3 4	5 6	7
		5 6	

Figure 2: Execution ofqSort (Fig. 1) on(3,6,8,1,0,7,2,4,5,9) using the first element as the
pivot andn0 = 1. The left-hand side illustrates the first partitioning step, showing elements
in bold that have just been swapped. Theright-hand side shows the result of the recursive
partitioning operations

The pivot element is chosen by a functionpickPivotPos that we shall not specify further. The
correctness does not depend on the choice of the pivot, but the efficiency does. Possible choices
are the first element; a random element; the median (“middle”) element of the first, middle,
and last elements; and the median of a random sample consisting of k elements, wherek is
either a small constant, say three, or a number depending on the problem size, say⌈

√
r− ℓ+1 ⌉.

The first choice requires the least amount of work, but gives little control over the size of the
subproblems; the last choice requires a nontrivial but still sublinear amount of work, but yields
balanced subproblems with high probability. After selecting the pivotp, we swap it into the first
position of the subarray (= positionℓ of the full array).
The repeat–until loop partitions the subarray into two proper (smaller) subarrays. It maintains
two indicesi and j. Initially, i is at the left end of the subarray andj is at the right end;i scans
to the right, andj scans to the left. After termination of the loop, we havei = j +1 or i = j +2,
all elements in the subarraya[ℓ.. j] are no larger thanp, all elements in the subarraya[i..r] are no
smaller thanp, each subarray is a proper subarray, and, ifi = j + 2, a[i + 1] is equal top. So,
recursive callsqSort(a, ℓ, j) andqsort(a, i,r) will complete the sort. We make these recursive
calls in a nonstandard fashion; this is discussed below.

1. Is it OK to change the scan loops into

while a[i]≤ p do i++
while a[j]≥ p do j--

Be aware that array elements are allowed to be equal.

2. Argue correctness of the partitioning step.

3. Is the change in the scan loops OK if array elements are known to be distinct.

The refined quicksort handles recursion in a seemingly strange way. Recall that we need to
make the recursive callsqSort(a, ℓ, j) andqSort(a, i,r). We may make these calls in either order.
We exploit this flexibility by making the call for the smallersubproblem first. The call for the
larger subproblem would then be the last thing done inqSort. This situation is known astail

2

recursion in the programming-language literature. Tail recursion can be eliminated by setting
the parameters (ℓ andr) to the right values and jumping to the first line of the procedure. This
is precisely what the while loop does. Why is this manipulation useful? Because it guarantees
that the recursion stack stays logarithmically bounded; the precise bound is⌈log(n/n0)⌉. This
follows from the fact that we make a single recursive call fora subproblem which is at most half
the size.

1. What is the maximal depth of the recursion stack without the “smaller subproblem first”
strategy? Give a worst-case example.

Have fun with the solution!

3

