
Algorithms and Data Structures
K. Mehlhorn and R. Seidel
Exercises 6 and 7

Summer 2008
Th. Sept 4th

Motivation

We practise adversary arguments for comparison-based algorithms, probabilistic arguments, and
applications of sorting.
I hope that all of you can do items 1 to 4 and the first part of item5. The second part of item 5
(the lower bound) and item 6 are more demanding.

1. We haven items drawn from a linearly ordered set. Give an algorithm for finding the max-
imum. How many comparisons does it take? Prove that any comparison-based algorithm
requires at leastn−1 comparisons.

2. There are three boxes. One of them contains a bar of gold. Ifyou identify the correct box,
the bar is yours. The protocol is as follows: You choose a box at random. Then one of the
two other boxes is opened; it is guaranteed not to contain thebar. Now, you may or may
not switch.

Should you switch?

3. LetA be an array ofn elements. Design an algorithm that reorders the elements ofA such
that after execution of the algorithms alln! arrangements are equally likely. Your algorithm
should use onlyO(1) extra space. You may use a functionrandom(k) that return a random
integer in[1..k]. Argue the correctness of your algorithm.

The following program does not solve the problem as it does not generate all arrangements
with equal probability. Prove this.

for i:=1 to n do
j := random(n);
swap(A[j],A[i]);

4. (A Scheduling Problem) A hotel manager has to processn advance bookings of rooms for
the next season. His hotel hask identical rooms. Bookings contain an arrival date and a
departure date. He want to decide whether his rooms suffice tosatisfy all bookings. Design
anO(n logn) algorithm for the problem.

5. (Finding Duplicates, Element Uniqueness): We work in thecomparison model. You are
givenn items from a linearly ordered set. Decide whether the items are pairwise distinct or
not. How many comparisons do you need? Can you prove a corresponding lower bound?

1

6. (Checking Equality of Multi-Sets): It is easy to check whether a sorting routine produces a
sorted output. It is less easy to check whether the output is also a permutation of the input.
But here is a fast and simple Monte Carlo algorithm for integers: (a) Show that(e1, . . . ,en)
is a permutation of(e′1, . . . ,e

′
n) iff the polynomial

q(z) :=
n

∏
i=1

(z− ei)−
n

∏
i=1

(z− e′i)

is identically zero. Here,z is a variable. (b) For anyε > 0, let p be a prime withp >
max{n/ε,e1, . . . ,en,e′1, . . . ,e

′
n }. Now the idea is to evaluate the above polynomial mod

p for a random valuez ∈ [0..p− 1]. Show that if(e1, . . . ,en) is not a permutation of
(e′1, . . . ,e

′
n), then the result of the evaluation is zero with probability at mostε. Hint: a

nonzero polynomial of degreen has at mostn zeros.

Have fun with the solutions.

2

