Motivation

We practise adversary arguments for comparison-based algorithms, probabilistic arguments, and applications of sorting.

I hope that all of you can do items 1 to 4 and the first part of item 5. The second part of item 5 (the lower bound) and item 6 are more demanding.

1. We have \(n \) items drawn from a linearly ordered set. Give an algorithm for finding the maximum. How many comparisons does it take? Prove that any comparison-based algorithm requires at least \(n - 1 \) comparisons.

2. There are three boxes. One of them contains a bar of gold. If you identify the correct box, the bar is yours. The protocol is as follows: You choose a box at random. Then one of the two other boxes is opened; it is guaranteed not to contain the bar. Now, you may or may not switch.

Should you switch?

3. Let \(A \) be an array of \(n \) elements. Design an algorithm that reorders the elements of \(A \) such that after execution of the algorithms all \(n! \) arrangements are equally likely. Your algorithm should use only \(O(1) \) extra space. You may use a function \(\text{random}(k) \) that returns a random integer in \([1..k]\). Argue the correctness of your algorithm.

The following program does not solve the problem as it does not generate all arrangements with equal probability. Prove this.

\[
\text{for } i := 1 \text{ to } n \text{ do}
\]
\[
j := \text{random}(n);
\]
\[
\text{swap}(A[j], A[i]);
\]

4. (A Scheduling Problem) A hotel manager has to process \(n \) advance bookings of rooms for the next season. His hotel has \(k \) identical rooms. Bookings contain an arrival date and a departure date. He wants to decide whether his rooms suffice to satisfy all bookings. Design an \(O(n \log n) \) algorithm for the problem.

5. (Finding Duplicates, Element Uniqueness): We work in the comparison model. You are given \(n \) items from a linearly ordered set. Decide whether the items are pairwise distinct or not. How many comparisons do you need? Can you prove a corresponding lower bound?
6. (Checking Equality of Multi-Sets): It is easy to check whether a sorting routine produces a sorted output. It is less easy to check whether the output is also a permutation of the input. But here is a fast and simple Monte Carlo algorithm for integers: (a) Show that \((e_1, \ldots, e_n)\) is a permutation of \((e'_1, \ldots, e'_n)\) iff the polynomial

\[
q(z) := \prod_{i=1}^{n}(z - e_i) - \prod_{i=1}^{n}(z - e'_i)
\]

is identically zero. Here, \(z\) is a variable. (b) For any \(\varepsilon > 0\), let \(p\) be a prime with \(p > \max\{n/\varepsilon, e_1, \ldots, e_n, e'_1, \ldots, e'_n\}\). Now the idea is to evaluate the above polynomial mod \(p\) for a random value \(z \in [0..p-1]\). Show that if \((e_1, \ldots, e_n)\) is not a permutation of \((e'_1, \ldots, e'_n)\), then the result of the evaluation is zero with probability at most \(\varepsilon\). Hint: a nonzero polynomial of degree \(n\) has at most \(n\) zeros.

Have fun with the solutions.