
Algorithms and Data Structures
K. Mehlhorn and R. Seidel
Exercises 8 and 9

Summer 2008
Fr. Sept 5th

Motivation

We learn more about counters and unbounded arrays and practice amortized analysis. The exer-
cises refer to Sections 3.2 and 3.3 of the book by Mehlhorn and Sanders.
I hope that all of you can do items 1, 2, 3, and 4. For item 5 you should take the argument given
in class and edit the text of the proof. Some words need to be changed, but the general format of
the proof stays the same. Item 6 requires some thought. Item 7 is tricky.

1. Your manager asks you to change the initialization of α to α = 2. He argues that it is
wasteful to shrink an array only when three-fourths of it are unused. He proposes to shrink
it to an array of size n when n ≤ w/2, i.e., in popBack, the call of reallocate is changed to
reallocate(n). Convince him that this is a bad idea by giving a sequence of m pushBack
and popBack operations that would need time Θ

(

m2
)

if his proposal was implemented.

2. (Popping many elements) Implement an operation popBack(k) that removes the last k ele-
ments in amortized constant time independent of k.

3. (Sparse bounded arrays) Implement bounded arrays with constant time for allocating ar-
rays and constant time for the operation [·]. All array elements should be (implicitly)
initialized to ⊥. You are not allowed to make any assumptions about the contents of a
freshly allocated array. Hint: use an extra array of the same size, and store the number t of
array elements to which a value has already been assigned. Therefore t = 0 initially. An
array entry i to which a value has been assigned stores that value and an index j, 1 ≤ j ≤ t,
of the extra array, and i is stored in that index of the extra array.

4. (Alternative Global Argument) In class we charged two tokens for each pushBack and one
token for each popBack. Argue that one can alternatively charge three tokens for each
pushBack and not charge popBack at all.

5. (Alternative Local Argument) Charge three tokens for a pushBack and no tokens for a
popBack. Argue that the account contains always at least n+max(2(n−w/2),w/2−n) =
max(3n−w,w/2) tokens.

6. (Counters) Consider a nonnegative integer c represented by an array of binary digits, and
a sequence of m increment and decrement operations. Initially, c = 0.

1



(a) What is the worst-case execution time of an increment or a decrement as a function
of m? Assume that you can work with only one bit per step.

(b) In class, we proved that the amortized cost of the increments is constant if there are
no decrements. Give a sequence of m increment and decrement operations with cost
Θ(m logm).

(c) Give a representation of counters such that you can achieve worst-case constant time
for increments and decrements. This item has a one line solution. What is the space
requirement of your solution?

(d) Allow each digit di to take values from {−1,0,1}. The value of the counter is
c = ∑i di2i. Show that in this redundant ternary number system, increments and
decrements have constant amortized cost. Is there an easy way to tell whether the
value of the counter is zero?

7. (Worst-case constant access time) Suppose, for a real-time application, you need an un-
bounded array data structure with a worst-case constant execution time for all operations.
Design such a data structure. Hint: store the elements in up to two arrays. Start moving
elements to a larger array well before a small array is completely exhausted.

Have fun with the solutions.

2


