

Algorithms and Data Structures K. Mehlhorn and R. Seidel Exercise 1 Summer 2008 Mo. Sept 1st, morning

Motivation

In class we studied integer multiplication. Here, we study integer division and techniques for checking the correctness of a multiplication.

Exercises

- 1. KM was taught the following technique for checking multiplications in school. In order to check whether $a \cdot b = c$, compute the digit sums of *a*, *b*, and *c*, say d_a , d_b , and d_c , and check whether $d_a \cdot d_b = d_c$. If $d_a \cdot d_b \mod 9 = d_c$, accept the result of the multiplication.
 - Show that $10^i \mod 9 = 1$ for integer $i \ge 0$.
 - Show that the digit sum d_a of an integer *a* is equal to *a* mod 9.
 - Explain the mathematics behind the test.
- 2. Elferprobe, Casting out Elevens
 - Show that powers of 10 have simple reminders module 11, namely $10^i \mod 11 = (-1)^i$ for $i \ge 0$.
 - Describe a simple test for checking the correctness of a multiplication module 11.
- 3. Formulate an algorithm for dividing an *n*-digit integer by a *k*-digit integer.

Hint: Divide 10235 by 456 and formulate your actions as an algorithm.

What is the time complexity of the algorithm?

- 4. The Newton-Raphson technique for finding a zero of a function f(x) is as follows. Let x^* be such that $f(x^*) = 0$. We start with an approximation x_0 of x^* and then compute iteratively, $x_{i+1} = x_i f(x_i)/f'(x_i)$ for $i \ge 0$. For a large class of functions, the sequence x_i converges to x^* , if x_0 is sufficiently good approximation of x^* .
 - Consider the tangent of f at the point $(x_i, f(x_i))$. Where does it intersect the x-axis?
 - Let *D* be a real number. We want to compute the inverse 1/D of *D*.
 - Consider the function f(x) = 1/x D. What is the zero x^* of f?
 - Formulate the Newton-Raphson iteration for *f*. Show that $x_{i+1} = x_i(2 x_iD)$.

- Let $\delta_i = x^* x_i$. Express δ_{i+1} in terms of δ_i .
- Assume that $1 \le D \le 2$ and set $x_0 = 3/4$. Then $|\delta_0| \le 1/4$. Derive a bound on δ_i .
- Assume now that *D* is given as a binary fraction $D_0.D_{-1}...D_{-n}$ with $D_i \in \{0,1\}$, $D_0 = 1$ and $D = \sum_{-n \le i \le 0} D_i 2^i$. We want to compute a number *x* such that $|x - 1/D| \le 2^{-n}$.

We start with $x_0 = 3/4$. Estimate *k* such that $|x_k - 1/D| \le 2^{-n}$.

- Right or Wrong? We obtain x_{i+1} from x_i by two multiplications and one subtraction. Using Karatsuba multiplication, the time for an iteration is $O(n^{\log 3})$. Since only a logarithmic number of iterations are required, we can divide in time $O(n^{\log 3} \log n)$.
- (difficult): We modify the iteration formula as follows. We write our iterates as binary fractions, i.e., $x_i = 0.x_{i,-1}x_{i,-2}...x_{i,-n}...$ Then $x_0 = 0.11$. After each iteration we truncate the new iterate to n + 10 bits after the binary point. Will the iteration still converge to 1/D? How fast will it converge? Does the resulting method have running time $O(n^{\log 3} \log n)$?

Have fun with the solution!