

Algorithms and Data Structures K. Mehlhorn and R. Seidel Exercise 2 Summer 2008 Mo. Sept 1st, afternoon

Motivation

The first part of these exercises are to remind you about asymptotic notation and some of its intricacies.

The second part is to reinforce the results about divide-and-conquer recursive relations that you saw in class.

1. Order the following functions by their asymptotic growth rate. How would you prove that your ordering is indeed correct?

 $3^{n/logn}$ $n\log n$ $n^{3/2}$ $n \cdot 2^{\sqrt{\log n}}$ $n^{1-\varepsilon}$ $n/\log \log n$ $n^{3/2}\log n$ $2^{n/2^{\log^{1+\varepsilon_n}}}$

Here all logarithms are with respect to base 2, and ε stands for arbitrary small positive real number, say $0 \le \varepsilon \le 0.1$.

2. Prove that the following equivalences hold for all functions f and g in AEP (almost everywhere positive):

$$g \in \Theta(f) \iff f \in \Theta(g) \iff O(f) = O(g) \iff o(f) = o(g)$$

3. Give good asymptotic upper bounds for the following functions defined by divide-and-conquer type inequalities. (Base cases are omitted.)

$$f(n) \le 3 \cdot f(n/5) + c \cdot n$$
$$g(n) \le 5 \cdot g(n/3) + c \cdot n$$
$$h(n) \le 4 \cdot h(n/2) + n^2$$
$$k(n) \le 4 \cdot k(n/2) + n^2/\log n$$

Have fun with the solution!