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Motivation

We study variants of the maximum flow problem and applications of it. The book by Ahuja,
Magnanti, and Orlin is a rich source for material about flows.
In class, the maximum flow problem was defined as follows. We are given a directed graph
G = (V,E), a nonnegative capacity functioncap : E → IR≥0, and two special verticess andt. An
(s, t)-flow is a functionf : E → IR such that

0≤ f (e) ≤ cap(e) for all e ∈ E

and
excess(v) = 0 for all v ∈V \{s, t },

whereexcess(v) = flow into v− flow out of v = ∑e=(u,v) f (e)−∑e=(v,w) f (e). The valueval( f )
of the flow is the excess oft. A maximum flow is a flow of maximum value.
An (s, t)-cut is a setS of nodes withs ∈ S andt 6∈ S. The capacitycap(S) of the cut is defined as
cap(S) = ∑e=(u,v); u∈S, v6∈S cap(e). Thenval( f ) ≤ cap(S) for any flow f and any(s, t)-cutS. If f
is a maximum flow, then there is a cutS with val( f ) = cap(S).

1. (integral flows) Show: If the capacities are integral, i.e., in IN, there is an integral maximum
flow, i.e., f (e) ∈ IN0 for all e. Hint: show that all augmentations increase the flow by an
integral value.

2. (supplies and demands) Instead of the special verticess andt, we have a functionb :V → IR
with ∑v b(e) = 0. We call nodesv with b(v) > 0 supply nodes and nodesv with b(v) < 0,
demand nodes. Instead of the flow conservation condition, we now have the modified flow
conservation condition

excess(v)+b(v) = 0 for all v ∈V .

Show how to decide, whether a feasible flow exists? A flow is called feasible if it satisfies
the capacity constraints and the modified flow conservation conditions. Hint: Add two new
verticesa andt, an edge(s,v) of capacityb(v) for any supply node, . . .

Formulate a cut-theorem. It should read something like the following. For a setS of nodes,
let b(S) :=∑v∈S b(v) be the aggregated supply/demand ofS. A feasible flow exists iff there
is no setS of nodes withb(S) > cap(S).
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3. (lower and upper bounds) We now have in addition a lower capacity functionℓ : E → IR≥0.
We require that the flowf satisfiesℓ(e) ≤ f (e) ≤ u(e) for all e ∈ E. Show how to decide,
whether a feasible flow exists. Hint: Use supplies and demands and modify upper and
lower bounds.

Formulate a cut theorem.

Show: if all lower and upper bounds and all supply/demands are integral and there is a
feasible flow, then there is an integral feasible flow.

4. (matrix rounding) We are given an×m matrix M with nonnegative real entries. We want
to round each entry toMi j to either⌈Mi j⌉ or ⌊Mi j⌋ such that all row and column sums are
also rounded to an adjacent integer. For example,

1.3 2.4
2.9 1.7

could be rounded to
1 3
3 1

but not to
2 3
3 1

since in the latter array the sum of the first row 5. However, itshould be either⌈1.3+2.4⌉
or ⌊1.3+2.4⌋. For a given matrix, find such a rounding if it exists. Does such a rounding
always exist?

Hint: Set up a flow problem with two special verticess andt, one vertex for each row and
one vertex for each column.

Have fun with the solutions.
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