
1 A Master Theorem for Recurrences

Akra and Bazzi [AB98] recently gave a closed form solution for a large class of recurrences.

Theorem 1 Let

f (x) =

{

h(x) for 1≤ x ≤ x0

a f ( x
b)+g(x) for x > x0

(1)

where

1. a > 0, b > 1, and x0 ≥ b are constants,

2. x ≥ 1 is a real number,

3. d1 ≤ h(x) ≤ d2 for some positive constants d1 and d2 and all x with 1≤ x ≤ x0, and

4. g is a nonnegative function satisfying the polynomial growth condition, i.e., there are pos-
itive constants c1 and c2 such that

c1g(x) ≤ g(u) ≤ c2g(x) for all x > x0 and u ∈ [x/b,x] .

5. (technical condition)

I :=
∫ x0

1

g(u)

up+1 du < ∞

Let p be the unique real number for which a/bp = 1. Then

f (x) = Θ
(

xp
(

1+

∫ x

1

g(u)

up+1 du

))

.

Before we enter the proof, we give some examples.

• If f (x) = 2 f (x/2)+ x, thenp = 1 and

f (x) = Θ
(

x(1+
∫ x

1

u
u2 du)

)

= Θ(x logx) .

• If f (x) = 3 f (x/2)+ x2, thenp = log3 and

f (x) = Θ
(

xlog3(1+
∫ x

1

u2

u1+log3 du)

)

= Θ(xlog3(1+ x2−log3)) = Θ(x2) .

• If f (x) = f (x/2)+ logx, thenp = 0 and

f (x) = Θ
(

x0(1+
∫ x

1

logu
u1 du)

)

= Θ(1+ log2x) = Θ(log2 x) .
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Proof: For anyx > x0, we havex/b < x andx/b > x0/b ≥ 1. Thus f (x) is well-defined. We
need to prove

C · xp
(

1+

∫ x

1

g(u)

up+1 du

)

≤ f (x) ≤ D · xp
(

1+

∫ x

1

g(u)

up+1 du

)

(2)

for positive constantsC andD. We prove the upper bound and leave the lower bound to exer-
cise 1. The proof of the upper bound is by induction on the index of x, the smallest integerk such
thatx/bk ≤ x0.

Assume first that 1≤ x ≤ x0. Then

f (x) = h(x) ≤ d2 ≤ d2
xp

min(1,xp
0)

≤ d2

xp
(

1+
∫ x

1
g(u)
up+1 du

)

min(1,xp
0)

,

sincexp assumes its minimum in[1,x0] at eitherx = 1 (if p ≥ 0) or x = x0 (if p < 0) and since
the value of the integral is nonnegative. Thus the upper bound in equation (2) holds for anyD
for whichD ≥ d2/min(1,xp

0).
Assume next thatx > x0. The index ofx/b is one smaller than the index ofx and hence we

may use the upper bound in equation (2) forx/b. We obtain:

f (x) = a f (
x
b
)+g(x) definition of f

≤ a ·D ·

(

(x
b

)p
(

1+
∫ x/b

1

g(u)

up+1 du

))

+g(x) induction hypothesis

= D · xp
(

1+
∫ x/b

1

g(u)

up+1 du

)

+g(x) sincea/bp = 1

≤ D · xp
(

1+

∫ x

1

g(u)

up+1 du

)

provided we can establish the inequality

g(x) ≤ D · xp
∫ x

x/b

g(u)

up+1 du .

The inequality is a simple consequence of the polynomial-growth assumption. Observe that
g(u) ≥ c1g(x) for x/b ≤ u ≤ x andup+1 ≤ max((x/b)p+1,xp+1) and hence

D · xp
∫ x

x/b

g(u)

up+1 du ≥ D · xp(x− x/b)
c1g(x)

max((x/b)p+1,xp+1)

= D ·
c1(1−1/b)

max((1/b)p+1,1)
g(x)

≥ g(x)

provided thatD ≥ max((1/b)p+1,1)/(c1(1−1/b)). This completes the induction step.
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We satisfy both constraints onD by settingD = max(d2,d2/xp
0,b/(c1(b− 1)),1/(c1(b −

1)bp)).

How does the valueI := xp ∫ x
1 g(u)/up+1 du depend on the relation ofg andp? Inspection of

a table of integrals1 yields:

∫ x
1

1
u1+ε du = −

[

1
εuε

]x
1 = Θ(1) ε > 0

∫ x
1

lnk u
u du =

[

lnk+1 u
k+1

]x

1
= Θ(lnk+1 x) k ≥ 0

∫ x
1

uδ lnk

u du = Θ
([

uδ lnk u
]x

1

)

= Θ(xδ lnk x) δ > 0 andk ≥ 0

Thus

• f (x) = Θ(xp), if g(x) = O(xp−ε) for someε > 0,

• f (x) = Θ(g(x) logk+1 x) if g(x) = Θ(xp logk) for somek ≥ 0, and

• f (x) = Θ(g(x)) if g(x) = Θ(xp+δ logk) for someδ > 0 andk ≥ 0.

It is instructive to inspect the valueI∆ := xp ∫ x/bi−1

x/bi g(u)/up+1 du. Forg(x) = xp, we have

I∆ = xp
∫ x/bi−1

x/bi

g(u)

up+1 du = xp
∫ x/bi−1

x/bi

1
u

du = xp [lnu]
x/bi−1

x/bi = xp lnb ,

i.e., all levels of the recursion contribute essentially the same amount tof (x). If g(x) = ω(xp),
the outermost level (i = 0) contributes most, and ifg(x) = o(xp), the bottommost level(i = logb x)
contributes most.

Exercise 1 Prove the lower bound of Theorem 1.

Let us see a second proof. We first expressf (x) as a sum.

Lemma 1 Let k be the minimal integer with x/bk ≤ x0. Then

f (x) = ak f (x/bk)+ ∑
0≤i<k

aig(x/bi) = akh(x/bk)+ ∑
0≤i≤k

aig(x/bi) .

Proof: Either by repeated substitution or by induction onk.

Let us next study the two terms in the expression forf (x). Since 1≤ x/bk ≤ x0, we have
d1 ≤ h(x/bk) ≤ d2 and hence

akh(x/bk) = Θ(ak) = Θ(xp)

1See for example, the Wikipedia entry on lists of integrals.
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where the last equality can be established by taking logarithms on both sides and observing that
k loga = (logx)/(logb) loga andp logx = (loga)/(logb) logx.

We turn to the sumS :=∑0≤i<k aig(x/bi) Definex∗ asx/bk. Thenx/bi = x∗bk−i and hence

S = ak ∑
0≤i<k

g(x∗bk−i)

ak−i = xp ∑
1≤ j≤k

g(x∗b j)

a j = xp ∑
1≤ j≤k

g(x∗b j)

(bp) j ==: xpS′

where the second equality uses the substitutionj = k− i and the third equality usesa = bp. Since
sums are harder to evaluate than integrals, we want to turn the sum into a integral. Consider a
single termg(x∗b j)/(b j)p. We want it to be the value of an integral fromx∗b j−1 to x∗b j. The
length of this integral isx∗(b j −b j−1) = x∗b j(1−1/b). Thus

g(x∗b j)

(b j)p =
(x∗)pg(x∗b j)

(x∗b j)p =(x∗)p b
b−1

∫ x∗b j

x∗b j−1

g(x∗b j)

(x∗b j)p · (x∗b j)
du =(x∗)p b

b−1

∫ x∗b j

x∗b j−1

g(x∗b j)

(x∗b j)p+1 du .

With

h(u) :=
g(x∗b j)

(x∗b j)p+1 for x∗b j−1 < u ≤ x∗b j, we have S′ = (x∗)p b
b−1

∫ x

x∗
h(u) du .

For x∗b j−1 < u ≤ x∗b j, we have

h(u)

g(u)/up+1 =
g(x∗b j)

g(u)
·
(x∗b j)p+1

up+1 = Θ(1) ·Θ(1) = Θ(1) .

For the first fraction, this follows from the polynomial growth property ofg, and for the second
fraction, this follows from the polynomial growth propertyof x1+p. Thus

S′ = (x∗)p b
b−1

∫ x

x∗
h(u) du = Θ

(

∫ x

x∗

g(u)

up+1 du

)

.

and we completed the alternative proof of the AB-theorem. Weshould remark that the alternative
proof does not generalize.

We come to extensions. In Theorem 1,f (x) is defined asa times the value off atx/b. More
generally, we can definef (x) as a linear combination of smaller values.

f (x) =

{

h(x) for 1≤ x ≤ x0

∑k
i=1ai f ( x

bi
)+g(x) for x > x0

(3)

wherek is an integer constant andai > 0 andbi > 1 are real constants. In order to makef well
defined, we requirex0 ≥ maxi bi. Then 1≤ x/bi < x for all x ≥ x0 and alli. We definep as the
unique real number for which∑i ai(1/bi)

p = 1.

Theorem 2 (Akra-Bazzi) Under the assumptions stated above,

f (x) = Θ
(

xp
(

1+
∫ x

1

g(u)

up+1 du

))

.
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Proof: The proof is analogous to the proof of Theorem 1 and delegatedto the exercises. It
again uses induction on the index ofx, the smallest integerk such thatx/(mini bi)

k ≤ x0.

Exercise 2 Prove Theorem 2

Although Theorem 2 handles a broad class of recurrences, it does not cover a common form
of recurrence arising in the analysis of algorithms. For example, in the recurrence for the running
time of Karatsuba’s algorithm, we reducedTK(n) to TK(⌈n/2⌉+1). The following extension of
Theorem 2 deals with these variations. Consider

f (x) =

{

h(x) for 1≤ x ≤ x0

∑k
i=1 ai f ( x

bi
+hi(x))+g(x) for x > x0

(4)

wherek is an integer constant andai > 0 andbi > 1 are real constants. Thehi are functions with
|hi(x)| ≤ x/(log1+ε x) for someε > 0 and allx > x0. In order to makef well defined, we require
1≤ x/bi +hi(x) < x/b for all i andx > x0 and someb > 1. As before, we definep as the unique
real number for which∑i ai(1/bi)

p = 1.

Theorem 3 (Leighton) Under the assumptions stated above and some more technical condi-
tions on x0 (see [Lei])

f (x) = Θ
(

xp
(

1+
∫ x

1

g(u)

up+1 du

))

.

Proof: See [Lei]

For the Karatsuba recurrence we would usek = 3, ai = 1, bi = 2 andhi(x) = ⌈x/2⌉+1−x/2
for 1≤ i ≤ k.
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