1 A Master Theorem for Recurrences

Akra and Bazzi [AB98] recently gave a closed form solution for a large class of recurrences.
Theorem 1 Let

$$
f(x)= \begin{cases}h(x) & \text { for } 1 \leq x \leq x_{0} \tag{1}\\ a f\left(\frac{x}{b}\right)+g(x) & \text { for } x>x_{0}\end{cases}
$$

where

1. $a>0, b>1$, and $x_{0} \geq b$ are constants,
2. $x \geq 1$ is a real number,
3. $d_{1} \leq h(x) \leq d_{2}$ for some positive constants d_{1} and d_{2} and all x with $1 \leq x \leq x_{0}$, and
4. g is a nonnegative function satisfying the polynomial growth condition, i.e., there are positive constants c_{1} and c_{2} such that

$$
c_{1} g(x) \leq g(u) \leq c_{2} g(x) \quad \text { for all } x>x_{0} \text { and } u \in[x / b, x]
$$

5. (technical condition)

$$
I:=\int_{1}^{x_{0}} \frac{g(u)}{u^{p+1}} d u<\infty
$$

Let p be the unique real number for which $a / b^{p}=1$. Then

$$
f(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right) .
$$

Before we enter the proof, we give some examples.

- If $f(x)=2 f(x / 2)+x$, then $p=1$ and

$$
f(x)=\Theta\left(x\left(1+\int_{1}^{x} \frac{u}{u^{2}} d u\right)\right)=\Theta(x \log x) .
$$

- If $f(x)=3 f(x / 2)+x^{2}$, then $p=\log 3$ and

$$
f(x)=\Theta\left(x^{\log 3}\left(1+\int_{1}^{x} \frac{u^{2}}{u^{1+\log 3}} d u\right)\right)=\Theta\left(x^{\log 3}\left(1+x^{2-\log 3}\right)\right)=\Theta\left(x^{2}\right) .
$$

- If $f(x)=f(x / 2)+\log x$, then $p=0$ and

$$
f(x)=\Theta\left(x^{0}\left(1+\int_{1}^{x} \frac{\log u}{u^{1}} d u\right)\right)=\Theta\left(1+\log ^{2} x\right)=\Theta\left(\log ^{2} x\right) .
$$

Proof: For any $x>x_{0}$, we have $x / b<x$ and $x / b>x_{0} / b \geq 1$. Thus $f(x)$ is well-defined. We need to prove

$$
\begin{equation*}
C \cdot x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right) \leq f(x) \leq D \cdot x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right) \tag{2}
\end{equation*}
$$

for positive constants C and D. We prove the upper bound and leave the lower bound to exercise 1 . The proof of the upper bound is by induction on the index of x, the smallest integer k such that $x / b^{k} \leq x_{0}$.

Assume first that $1 \leq x \leq x_{0}$. Then

$$
f(x)=h(x) \leq d_{2} \leq d_{2} \frac{x^{p}}{\min \left(1, x_{0}^{p}\right)} \leq d_{2} \frac{x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)}{\min \left(1, x_{0}^{p}\right)},
$$

since x^{p} assumes its minimum in $\left[1, x_{0}\right]$ at either $x=1$ (if $p \geq 0$) or $x=x_{0}$ (if $p<0$) and since the value of the integral is nonnegative. Thus the upper bound in equation (2) holds for any D for which $D \geq d_{2} / \min \left(1, x_{0}^{p}\right)$.

Assume next that $x>x_{0}$. The index of x / b is one smaller than the index of x and hence we may use the upper bound in equation (2) for x / b. We obtain:

$$
\begin{array}{rlr}
f(x) & =a f\left(\frac{x}{b}\right)+g(x) & \text { definition of } f \\
& \leq a \cdot D \cdot\left(\left(\frac{x}{b}\right)^{p}\left(1+\int_{1}^{x / b} \frac{g(u)}{u^{p+1}} d u\right)\right)+g(x) & \text { induction hypothesis } \\
& =D \cdot x^{p}\left(1+\int_{1}^{x / b} \frac{g(u)}{u^{p+1}} d u\right)+g(x) & \text { since } a / b^{p}=1 \\
& \leq D \cdot x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right) &
\end{array}
$$

provided we can establish the inequality

$$
g(x) \leq D \cdot x^{p} \int_{x / b}^{x} \frac{g(u)}{u^{p+1}} d u .
$$

The inequality is a simple consequence of the polynomial-growth assumption. Observe that $g(u) \geq c_{1} g(x)$ for $x / b \leq u \leq x$ and $u^{p+1} \leq \max \left((x / b)^{p+1}, x^{p+1}\right)$ and hence

$$
\begin{aligned}
D \cdot x^{p} \int_{x / b}^{x} \frac{g(u)}{u^{p+1}} d u & \geq D \cdot x^{p}(x-x / b) \frac{c_{1} g(x)}{\max \left((x / b)^{p+1}, x^{p+1}\right)} \\
& =D \cdot \frac{c_{1}(1-1 / b)}{\max \left((1 / b)^{p+1}, 1\right)} g(x) \\
& \geq g(x)
\end{aligned}
$$

provided that $D \geq \max \left((1 / b)^{p+1}, 1\right) /\left(c_{1}(1-1 / b)\right)$. This completes the induction step.

We satisfy both constraints on D by setting $D=\max \left(d_{2}, d_{2} / x_{0}^{p}, b /\left(c_{1}(b-1)\right), 1 /\left(c_{1}(b-\right.\right.$ 1) $\left.b^{p}\right)$).

How does the value $I:=x^{p} \int_{1}^{x} g(u) / u^{p+1} d u$ depend on the relation of g and p ? Inspection of a table of integrals ${ }^{1}$ yields:

$$
\begin{aligned}
\int_{1}^{x} \frac{1}{u^{1+\varepsilon}} d u & =-\left[\frac{1}{\varepsilon u^{\varepsilon}}\right]^{x} & =\Theta(1) & \varepsilon>0 \\
\int_{1}^{x} \frac{\ln ^{k} u}{u} d u & =\left[\frac{\ln ^{k+1} u}{k+1}\right]_{1}^{x} & =\Theta\left(\ln ^{k+1} x\right) & k \geq 0 \\
\int_{1}^{x} \frac{u^{\delta} \ln ^{k}}{u} d u & =\Theta\left(\left[u^{\delta} \ln ^{k} u\right]_{1}^{x}\right) & =\Theta\left(x^{\delta} \ln ^{k} x\right) & \delta>0 \text { and } k \geq 0
\end{aligned}
$$

Thus

- $f(x)=\Theta\left(x^{p}\right)$, if $g(x)=O\left(x^{p-\varepsilon}\right)$ for some $\varepsilon>0$,
- $f(x)=\Theta\left(g(x) \log ^{k+1} x\right)$ if $g(x)=\Theta\left(x^{p} \log ^{k}\right)$ for some $k \geq 0$, and
- $f(x)=\Theta(g(x))$ if $g(x)=\Theta\left(x^{p+\delta} \log ^{k}\right)$ for some $\delta>0$ and $k \geq 0$.

It is instructive to inspect the value $I_{\Delta}:=x^{p} \int_{x / b^{i}}^{x / b^{i-1}} g(u) / u^{p+1} d u$. For $g(x)=x^{p}$, we have

$$
I_{\Delta}=x^{p} \int_{x / b^{i}}^{x / b^{i-1}} \frac{g(u)}{u^{p+1}} d u=x^{p} \int_{x / b^{i}}^{x / b^{i-1}} \frac{1}{u} d u=x^{p}[\ln u]_{x / b^{i}}^{x / b^{i-1}}=x^{p} \ln b,
$$

i.e., all levels of the recursion contribute essentially the same amount to $f(x)$. If $g(x)=\omega\left(x^{p}\right)$, the outermost level $(i=0)$ contributes most, and if $g(x)=o\left(x^{p}\right)$, the bottommost level $\left(i=\log _{b} x\right)$ contributes most.

Exercise 1 Prove the lower bound of Theorem 1.

Let us see a second proof. We first express $f(x)$ as a sum.
Lemma 1 Let k be the minimal integer with $x / b^{k} \leq x_{0}$. Then

$$
f(x)=a^{k} f\left(x / b^{k}\right)+\sum_{0 \leq i<k} a^{i} g\left(x / b^{i}\right)=a^{k} h\left(x / b^{k}\right)+\sum_{0 \leq i \leq k} a^{i} g\left(x / b^{i}\right) .
$$

Proof: Either by repeated substitution or by induction on k.
Let us next study the two terms in the expression for $f(x)$. Since $1 \leq x / b^{k} \leq x_{0}$, we have $d_{1} \leq h\left(x / b_{k}\right) \leq d_{2}$ and hence

$$
a^{k} h\left(x / b^{k}\right)=\boldsymbol{\Theta}\left(a^{k}\right)=\boldsymbol{\Theta}\left(x^{p}\right)
$$

[^0]where the last equality can be established by taking logarithms on both sides and observing that $k \log a=(\log x) /(\log b) \log a$ and $p \log x=(\log a) /(\log b) \log x$.

We turn to the sum $S:=\sum_{0 \leq i<k} a^{i} g\left(x / b^{i}\right)$ Define x^{*} as x / b^{k}. Then $x / b^{i}=x^{*} b^{k-i}$ and hence

$$
S=a^{k} \sum_{0 \leq i<k} \frac{g\left(x^{*} b^{k-i}\right)}{a^{k-i}}=x^{p} \sum_{1 \leq j \leq k} \frac{g\left(x^{*} b^{j}\right)}{a^{j}}=x^{p} \sum_{1 \leq j \leq k} \frac{g\left(x^{*} b^{j}\right)}{\left(b^{p}\right)^{j}}==: x^{p} S^{\prime}
$$

where the second equality uses the substitution $j=k-i$ and the third equality uses $a=b^{p}$. Since sums are harder to evaluate than integrals, we want to turn the sum into a integral. Consider a single term $g\left(x^{*} b^{j}\right) /\left(b^{j}\right)^{p}$. We want it to be the value of an integral from $x^{*} b^{j-1}$ to $x^{*} b^{j}$. The length of this integral is $x^{*}\left(b^{j}-b^{j-1}\right)=x^{*} b^{j}(1-1 / b)$. Thus

$$
\frac{g\left(x^{*} b^{j}\right)}{\left(b^{j}\right)^{p}}=\frac{\left(x^{*}\right)^{p} g\left(x^{*} b^{j}\right)}{\left(x^{*} b^{j}\right)^{p}}=\left(x^{*}\right)^{p} \frac{b}{b-1} \int_{x^{*} b^{j-1}}^{x^{*} b^{j}} \frac{g\left(x^{*} b^{j}\right)}{\left(x^{*} b^{j}\right)^{p} \cdot\left(x^{*} b^{j}\right)} d u=\left(x^{*}\right)^{p} \frac{b}{b-1} \int_{x^{*} b^{j-1}}^{x^{*} b^{j}} \frac{g\left(x^{*} b^{j}\right)}{\left(x^{*} b^{j}\right)^{p+1}} d u .
$$

With

$$
h(u):=\frac{g\left(x^{*} b^{j}\right)}{\left(x^{*} b^{j}\right)^{p+1}} \quad \text { for } x^{*} b^{j-1}<u \leq x^{*} b^{j}, \text { we have } \quad S^{\prime}=\left(x^{*}\right)^{p} \frac{b}{b-1} \int_{x^{*}}^{x} h(u) d u .
$$

For $x^{*} b^{j-1}<u \leq x^{*} b^{j}$, we have

$$
\frac{h(u)}{g(u) / u^{p+1}}=\frac{g\left(x^{*} b^{j}\right)}{g(u)} \cdot \frac{\left(x^{*} b^{j}\right)^{p+1}}{u^{p+1}}=\Theta(1) \cdot \Theta(1)=\Theta(1) .
$$

For the first fraction, this follows from the polynomial growth property of g, and for the second fraction, this follows from the polynomial growth property of x^{1+p}. Thus

$$
S^{\prime}=\left(x^{*}\right)^{p} \frac{b}{b-1} \int_{x^{*}}^{x} h(u) d u=\Theta\left(\int_{x^{*}}^{x} \frac{g(u)}{u^{p+1}} d u\right) .
$$

and we completed the alternative proof of the AB-theorem. We should remark that the alternative proof does not generalize.

We come to extensions. In Theorem 1, $f(x)$ is defined as a times the value of f at x / b. More generally, we can define $f(x)$ as a linear combination of smaller values.

$$
f(x)= \begin{cases}h(x) & \text { for } 1 \leq x \leq x_{0} \tag{3}\\ \sum_{i=1}^{k} a_{i} f\left(\frac{x}{b_{i}}\right)+g(x) & \text { for } x>x_{0}\end{cases}
$$

where k is an integer constant and $a_{i}>0$ and $b_{i}>1$ are real constants. In order to make f well defined, we require $x_{0} \geq \max _{i} b_{i}$. Then $1 \leq x / b_{i}<x$ for all $x \geq x_{0}$ and all i. We define p as the unique real number for which $\sum_{i} a_{i}\left(1 / b_{i}\right)^{p}=1$.

Theorem 2 (Akra-Bazzi) Under the assumptions stated above,

$$
f(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right) .
$$

Proof: The proof is analogous to the proof of Theorem 1 and delegated to the exercises. It again uses induction on the index of x, the smallest integer k such that $x /\left(\min _{i} b_{i}\right)^{k} \leq x_{0}$.

Exercise 2 Prove Theorem 2

Although Theorem 2 handles a broad class of recurrences, it does not cover a common form of recurrence arising in the analysis of algorithms. For example, in the recurrence for the running time of Karatsuba's algorithm, we reduced $T_{K}(n)$ to $T_{K}(\lceil n / 2\rceil+1)$. The following extension of Theorem 2 deals with these variations. Consider

$$
f(x)= \begin{cases}h(x) & \text { for } 1 \leq x \leq x_{0} \tag{4}\\ \sum_{i=1}^{k} a_{i} f\left(\frac{x}{b_{i}}+h_{i}(x)\right)+g(x) & \text { for } x>x_{0}\end{cases}
$$

where k is an integer constant and $a_{i}>0$ and $b_{i}>1$ are real constants. The h_{i} are functions with $\left|h_{i}(x)\right| \leq x /\left(\log ^{1+\varepsilon} x\right)$ for some $\varepsilon>0$ and all $x>x_{0}$. In order to make f well defined, we require $1 \leq x / b_{i}+h_{i}(x)<x / b$ for all i and $x>x_{0}$ and some $b>1$. As before, we define p as the unique real number for which $\sum_{i} a_{i}\left(1 / b_{i}\right)^{p}=1$.

Theorem 3 (Leighton) Under the assumptions stated above and some more technical conditions on x_{0} (see [Lei])

$$
f(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u^{p+1}} d u\right)\right) .
$$

Proof: See [Lei]
For the Karatsuba recurrence we would use $k=3, a_{i}=1, b_{i}=2$ and $h_{i}(x)=\lceil x / 2\rceil+1-x / 2$ for $1 \leq i \leq k$.

References

[AB98] M. Akra and L. Bazzi. On the solution of linear recurrence equations. Computational Optimization and Applications, 10(2):195-210, 1998.
[Lei] T. Leighton. Notes on better master theorems for divide and conquer recurrences. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10. 1.1.39.1636.

[^0]: ${ }^{1}$ See for example, the Wikipedia entry on lists of integrals.

