1 A Master Theorem for Recurrences
Akra and Bazzi [AB98] recently gave a closed form solutionddarge class of recurrences.

Theorem 1 Let

) h(x) for 1 <x<Xg
f(X)_{af(%)qtg(x) for x > xo @

where
1. a>0,b> 1, and Xp > b are constants,
X > 1isareal number,

d; < h(x) < d, for some positive constantsd; and d, and all x with 1 < x < xp, and

> w DN

g is a nonnegative function satisfying the polynomial growth conditioni.e., there are pos-
itive constants ¢; and ¢, such that

c19(X) < g(u) <cpg(x) forall x>xgandu e [x/b,x] .

[ 9(u)
I._/1 Wdu<oo

Let p be the unique real number for which a/bP = 1. Then

f(x) :O(xp <1+/1X% du)) .

Before we enter the proof, we give some examples.

5. (technical condition)

o If f(x)=2f(x/2)+x thenp=1and
f(x ( 1+/ ) O(xlogx) .
e If f(x) =3f(x/2)+x2, thenp = log3 and
f(x) =0 (x'°93(1+ /1 Xul-il-jiligiB du)) — O(x993(14+x21093)) — ©(x2) .
o If f(x) = f(x/2)+logx, thenp=0and

f(X) ( 1+/ logu ) O(1+log?x) = O(log?X) .
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Proof: For anyx > X, we havex/b < x andx/b > xo/b > 1. Thusf(x) is well-defined. We

need to prove
C-xP (1+/ gpﬂ du) <f(X)<D-xP <1+/ gpﬂ du) 2)

for positive constant€ andD. We prove the upper bound and leave the lower bound to exer-
cise 1. The proof of the upper bound is by induction on thexrafe, the smallest integdrsuch
thatx/bK < xo.

Assume first that K x < xg. Then

xP <1+f1 uptI )
h— o <
min(1,g) min(1,g)

sincexP assumes its minimum ifi,Xo] at eitherx = 1 (if p > 0) orx = xg (if p < 0) and since
the value of the integral is nonnegative. Thus the upper daniequation (2) holds for an
for whichD > dp/ min(1,X5).

Assume next that > Xp. The index ofx/b is one smaller than the index ®fand hence we
may use the upper bound in equation (2)xgb. We obtain:

)

f(x) = af (E) +g(x) definition of f
x/b
<a-D- ((E) P <1+/ g£+)l du)) +9(X) induction hypothesis
1
X/b g(u) -
=D-xP (1+/1 Pl du) +9(X) sincea/bP =1

Xg(u>
.xP 2
<D-Xx (14—/1 0P 1dU

provided we can establish the inequality

deu

<D-xP
900 <D | o

The inequality is a simple consequence of the polynomiaWtin assumption. Observe that
g(u) > c1g(x) for x/b < u < x anduP*! < max((x/b)P*1,xP+1) and hence

0 [ Sr()+)1 du> D xP(x—x/b) (xt;lbigi)l,xp =
c1(1-1/b)
“max(1/b)prL 1) 9%

>9(X)
provided thaD > max((1/b)P*1,1)/(cy(1—1/b)). This completes the induction step.
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We satisfy both constraints ob by settingD = max(dy,da/x5,b/(c1(b—1)),1/(ca(b—
1)bP)). 1

How does the value:=xP [‘g(u)/uP*1 du depend on the relation gfand p? Inspection of
a table of integrafsyields:

figedu = —[gl, = @ £>0

gy = ['“kilu]l = O(In* 1) k>0
X

1XU6Jnk du = O [U6|nku]1> = 0(CIn*x) 5>0andk>0

o f(X) =0O(xP), if g(x) = O(xP~¢) for somee > 0,
o f(x) =0O(g(x)log“x) if g(x) = O(xPlog®) for somek > 0, and
o f(x) =0O(g(x))if g(x) = O(xP+910g") for somed > 0 andk > 0.

It is instructive to inspect the valug := xP f;‘//g*l g(u) /uP*1 du. Forg(x) = x, we have
>(/bifl g(U) X/bi71 1 i1
—xP — P — P X/B75 _p
lp =X /x/bi Wdu_x /x/bi adu_x [Inu]x/bi =X"Inb,

i.e., all levels of the recursion contribute essentially #ame amount to(x). If g(x) = w(xP),
the outermost level & 0) contributes most, anddf{x) = o(xP), the bottommost levei = log, X)
contributes most.

Exercise 1 Provethelower bound of Theorem 1.
Let us see a second proof. We first expré6s as a sum.
Lemmal Let k be the minimal integer with x/bX < xo. Then

() =af(x/b) + 5 ag(x/b) =ah(x/b)+ 5 agx/b).

0<i<k 0<i<k

Proof: Either by repeated substitution or by inductionkon |

Let us next study the two terms in the expressionffor). Since 1< x/bX < xg, we have
d; < h(x/bg) < dz and hence

ah(x/b¥) = ©(a¥) = O(xP)

1See for example, the Wikipedia entry on lists of integrals.
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where the last equality can be established by taking Idgaston both sides and observing that
kloga = (logx)/(logb)loga andplogx = (loga)/(logb)logx. . .
We turn to the sun$:= ¥ o-ia'g(x/b') Definex* asx/b¥. Thenx/b' = x*b*~" and hence

* |aK—i *hi *hi
S— gk Z %:Xp Z M:Xp Z g(Xb_):::ng
0<i<k a <)<k al 1<7<k (bp)]

where the second equality uses the substitutierk — i and the third equality uses= bP. Since
sums are harder to evaluate than integrals, we want to tersum into a integral. Consider a
single termg(x*bl) /(b1)P. We want it to be the value of an integral fraxtbi— to x*bl. The
length of this integral is* (bl —bl—1) = x*bl(1—1/b). Thus

90b) _ ()P0xD) o b G0D) e B Y goch)
(bh)P (x*bl)P b—1 Jxni-1 (x*bl)P- (x*bl) b—1/xbi-1 (x*bi)P
With

(W= o

. . X
for x'bl ™! < u<x*b!, we have S = (x*)p% h(u) du .
1/

Forx*bi—1 < u< x*bl, we have

h(u) _ g(x'bl) (xpl)PHt _
TR
For the first fraction, this follows from the polynomial griwproperty ofg, and for the second
fraction, this follows from the polynomial growth propex§x*P. Thus

b X g(u)
= (x*)P—— = 27
S = (x") - X*h(u)du @(X* up+1du> :
and we completed the alternative proof of the AB-theorem si\auld remark that the alternative
proof does not generalize.

We come to extensions. In Theoremf1x) is defined as times the value of atx/b. More
generally, we can defing(x) as a linear combination of smaller values.

F(x) = {h(x) for 1 <x<Xp 3)

SEaaf(X)+g(x) forx>x

wherek is an integer constant argl > 0 andb; > 1 are real constants. In order to makevell
defined, we requirgy > maxb;. Then 1< x/b; < x for all x > xp and alli. We definep as the
unique real number for whicf; a;(1/b;)P = 1.

Theorem 2 (Akra-Bazzi) Under the assumptions stated above,
X
_ofr g(u)
f(x)_9<x (l-l—/l P du)) .

4



Proof: The proof is analogous to the proof of Theorem 1 and deledatdide exercises. It
again uses induction on the indexxothe smallest integdrsuch that/(min; bj)k < xo. 1

Exercise 2 Prove Theorem 2

Although Theorem 2 handles a broad class of recurrencese# dot cover a common form
of recurrence arising in the analysis of algorithms. Fonaiz, in the recurrence for the running
time of Karatsuba’s algorithm, we reduc@&d(n) to Tx([n/2]| 4+ 1). The following extension of
Theorem 2 deals with these variations. Consider

() = {mx) forl <x<x (4)

SEqaf(E+hi(x)+9(x) forx>x

wherek is an integer constant argl > 0 andb; > 1 are real constants. Tieare functions with
Ihi(x)| < x/(log**€x) for somes > 0 and allx > Xo. In order to makef well defined, we require
1 <x/bi +hj(x) < x/bfor all i andx > xp and somd > 1. As before, we defing as the unique
real number for whicty;a(1/b;)P = 1.

Theorem 3 (Leighton) Under the assumptions stated above and some more technical condi-
tionson Xg (see[Lei])
f=0(x(1+ [ 24
X)=0(x"({1+ /1 gprrdu) )

Proof: See [Lei] |

For the Karatsuba recurrence we would kse3,a = 1, b; = 2 andh;(X) = [x/2] +1—X/2
for1<i<k.
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