
Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

1. (15 points) Let G = (V,E) be a directed graph and let w : E −→ IR>0 be a function that
assigns to every edge of G a width. For a directed path p = 〈e1, . . . , ek〉 we define its width as
w(p) = min{w(ei) | 1 ≤ i ≤ k}.

For two nodes s, t ∈ V we define the accessibility of t from s as the maximum width of any
directed path from s to t. (If G models a road network and w(e) models the width of a road,
then the accessibility tells you the widest vehicle that you can send from s to t over the road
network.)

Design an efficient algorithm for computing the accessibility of t from s given s and t. Give
an argument why you algorithm is correct. Analyze its running time.

1



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

2. (10 points) In class you saw the following universal set of hash funtions: The key universe
was U = {0, . . . , t − 1}d for some d > 1. For a = (a1, . . . , ad) ∈ U we defined the function

ha(x) =
∑

1≤i≤d

ai · xi mod t

which maps any x = (x1 . . . , xd) ∈ U to some value in {0, . . . , t − 1}. Finally we proved that
the set of functions

H = {ha | a ∈ U}

was universal, provided that t is a prime number.

Is this last condition really necessary? Is the set H also universal if t is a power of 2?

2



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

3. (15 points) In class you saw an algorithm that given a set S of n points in the plane computes
the convex hull of S. To be more exact, the algorithm returns a circular list containing the
points of S that constitute corners of the convex hull in order as they appear counter-clockwise
around the convex hull.

The algorithm(s) that you saw have running time O(n log n). Is this best possible?

Consider the following argument why no improvement should be possible:

Here is an algorithm for sorting a set A of n real number:

Sort(A)
1. Compute the set of planar points S = {(a, a2) | a ∈ A}
2. Compute the convex hull of S

3. From the circular list returned in 2. recover the sorted order of A

(a) Show that step 3 of the above algorithm can indeed be correctly realized, and that this
is possible in time Θ(n).

(b) Step 1 of the above algorithm clearly takes time Θ(n). Thus if f(n) denotes the worst case
running time of step 2, the total running time of this sorting algorithm is f(n) + Θ(n).

In class we showed that any comparison-based sorting algorithm has worst case running
time Ω(n log n).

Is it now correct to conclude that computing that f(n) must be Ω(n log n), i.e. computing
convex hull of n points in the plane must take time Ω(n log n) in the worst case?

3



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

4. (10 points) We define the upper hull of a planar point set S to be the chain of those edges
of the convex hull of S that bound the convex hull from above. Let us denote this chain by
UH(S).

We are interested in maintaining UH(S) under insertions of points into S. In particular we
want to maintain the point set S so that

(i) the call S.Enumerate() lists the corners along UH(S) in time proportional to their
number, and

(ii) the call S.Insert(p : point) incorporates point p into S in logarithmic amortized time.

(a) Explain the representation that you will use.

(b) Explain how using your representation you will realize the two operations Enumerate
and Insert.

(c) Prove that a call to Insert only takes logarithmic amortized time.

You may assume non-degeneracy meaning no two points encountered have the same x-
ccordinate.

4



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

5. (10 points) Let S be a finite point set in the plane. In class, we showed how to compute
the convex hull of S by sweeping. A triangulation of S is a division of the convex hull of S

into triangles none of which contains a point of S in its interior. Show how to compute a
triangulation of S by sweeping.

5



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

6. (10 points) Consider an N ×M checker board from which some of the squares are missing.
We want to decide whether the remaining squares can be covered by dominos so that no two
dominos overlap (a domino covers two adjacent squares, one black and one white). Describe
an algorithm. What is its running time?

6



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

7. (20 points) Let G = (V,E) be a directed graph, let cap be a nonnegative capacity function
on the edges of G and let c be a nonnegative cost function on the edges of G. Let s and t be
two designated nodes.

(a) What is the definition of a flow from s to t and what is its cost? What is the value of
the flow?

(b) Given a flow f from s to t. How can you check whether the flow is maximum?

(c) Given a flow f from s to t. How can you check whether f is a minimum cost flow of
value val(f).

(d) Assume the capacity of some edge is increased by one. Show that the value of the
maximum flow can grow by at most one. Given a maximum flow for the old network,
show how to compute a maximum flow for the modified network. What is the running
time of your solution?

(e) Given a maximum flow of minimum cost for the old network, show how to compute a
maximum flow of minimum cost for the modified network. What is the running time of
your solution.

For questions (d) and (e) you may assume that capacities and costs are integral and that the
old flow is integral.

7



Algorithms and Data Structures Summer 2008

Repeat Exam Tue. Jan. 13th

K. Mehlhorn and R. Seidel

8. (15 points ) A truck is on a trip through cities 1, 2, to n. There is a request for transporting
rij units from city i to city j. For each unit transported, the truck driver will receive a fare of
fij Euros. The truck has a capacity of L and therefore the driver will not be able to satisfy all
requests. Design an algorithm that computes an optimal schedule, i.e., a schedule maximizing
revenues.

8


