

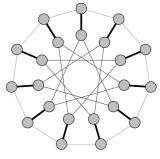
Selected Topics in Algorithms K. Mehlhorn Exercise 1 Summer 2009 week starting May 4th

Motivation

We want to deepen our understanding of cycle bases.

Undirected versus Integral Cycle Bases

In class, we exhibited a weighted graph for which the minimum directed cycle basis has smaller weight than the minimum undirected cycle basis. The goal of this exercise is to construct a graph and a weight function for which the minimum undirected cycle basis has smaller weight than the minimum integral cycle basis. Consider the Petersen graph $P_{11,4}$. It has vertices I_i (inner vertices) and O_i (outer vertices) for $0 \le i \le 10$ and edges I_iO_i (spokes), O_iO_{i+1} (outer edges), and I_iI_{i+4} (inner edges) for $0 \le i < 10$. All indices are modulo 11.



- 1. How many circuits are contained in a cycle basis of $P_{11,4}$?
- 2. Set the weight of the spokes to *a*, the weight of the outer edges to *b*, and the weight of the inner edges to *c*.
 - There are two circuits that use no spoke. What is their weight?
 - What is the minimum weight of a circuit containing at least four spokes.
 - Classify the circuits using exactly 2 spokes according to the number of outer edges used. How many inner edges do they use.
 - Choose the weights such that the outer circuit together with the 11 circuits using one outer and three inner edges form the unique minimum undirected cycle basis.
 - Argue that this basis is not integral.

Exchange Theorem

Let *k* be a field, let *B* be a *k*-basis, let $C \in B$, and let $C = C_1 + C_2$. Then either $B \setminus \{C\} \cup \{C_1\}$ or $B \setminus \{C\} \cup \{C_2\}$ is also a *k*-basis.

Simplification Rules

Let *k* be a field and G = (V, E) be a graph with weight function *w*.

- Let $e \in E$ and let *C* be a minimum weight circuit containing *e*. Then there is a minimum weight *k*-basis containing *e*.
- Let e_1 and e_2 be parallel edges with $w(e_1) \le w(e_2)$. Then the following constitutes a minimum weight k-basis of G: a minimum weight k-basis of $G \setminus e_2$ plus a minimum weight circuit containing e_2 .
- Let *e* be an edge with w(e) = 0 and no edge parallel to it. Relate minimum weight *k*-bases of *G* and *G'*, where *G'* is obtained from *G* by contracting *e*.

Short Circuits in Graphs

Let $k \in \mathbb{N}$ and G = (V, E) be an undirected graph with minimum degree $n^{1/k}$. Show that G contains a circuit of length O(k).

Have fun with the solution!