Motivation

We fill in some details of de Pina’s algorithm for minimum cycle basis.

de Pina’s Algorithm

de Pina suggested the following algorithm.

\[B := \emptyset \]

\[\text{while } |B| < m - (n - 1) \text{ do} \]

\[\text{compute a non-zero } S \in k^E \text{ such that } \langle C, S \rangle = 0 \text{ for all } C \in B. \]

\[\text{compute a minimum weight (isometric) circuit } C \text{ with } \langle C, S \rangle \neq 0. \]

\[\text{add } C \text{ to } B. \]

end while

Correctness: Show that both versions of the algorithm (with and without the adjective isometric) computes a minimum weight \(k \)-basis.

Finding a Minimum Weight Circuit

For the field of two elements (undirected cycle basis), the following method computes a minimum weight circuit.

Set up an auxiliary graph \(G_A \). For each vertex \(v \) of \(G \), we have vertices \((v,0) \) and \((v,1) \) in \(G_A \). For each edge \(e = uv \in G \), we have the edges \(((u,i),(v,i+S_e)) \) for \(i = 0,1 \) in \(G_A \). Here, addition is modulo two.

- Illustrate this definition by a small example.

- Consider a path in \(G_A \) from \((v,0) \) to \((v,1) \). Argue that it corresponds to a circuit \(C \) in \(G \) with \(\langle C,S \rangle \neq 0 \).

- Derive an alg for computing a minimum weight circuit with \(\langle C,S \rangle \neq 0 \).

Have fun with the solution!