Notes for the Lectures on May 8th and May 11th

Kurt Mehlhorn

May 11, 2009

This is an extended version of pages 29, 30 and 31 of [KLM+09]

Require: G is a connected graph with n_0 nodes and m_0 edges;

$G_c = G$;

declare all nodes unlabeled;

initialize the basis to the empty set;

\{let $N_c = m_c - (n_c - 1)$\}

while G_c is not a tree do

\{ G_c is connected and not a tree \}

while G_c has a node of degree 1 do

remove it and the incident edge; declare the removed edge a tree edge;

\{ m_c and n_c are decreased by one and N_c does not change \}

end while

\{ G_c is connected, not a tree and every node has degree at least two \}

if every node of G_c has degree two, i.e., G_c is a circuit then

add this circuit to the basis, declare one of its edges non-tree and delete it from G_c;

\{ m_c and N_c went down by one; G_c is now a tree \}

else

\{ G_c is connected, not a tree, and there is a node of degree at least three \}

construct an auxiliary graph; its nodes correspond to the nodes in G_c of degree at least three and its edges correspond to the maximal paths in G_c with all internal edges having degree two;

let C_a be a circuit in the auxiliary graph consisting of at most $1 + 2\log n_0$ auxiliary edges;

add the underlying circuit in G_c to the basis, and delete all edges comprising the heaviest auxiliary edge on this circuit from G_c; declare one of these edges non-tree and all others tree;

\{ m_c and N_c went down by one and the weight of the circuit added to the basis is at most $(1 + 2\log n_0)$ times the weight of the edges deleted \}

end if

end while \{ G_c is a tree and hence $N_c = 0$ \}

declare all edges of G_c tree edges and delete them from the graph;

Lemma 1 The total weight of the circuits is at most $(1 + 2\log n_0)W$ where $W = \sum_e w(e)$ is the total weight of all edges.
Proof: For every circuit added to the basis, its weight is at most \((1 + 2 \log n_0)\) times the weight of the edges deleted. Observe that this is also true for the last circuit removed (one of its edges is removed in the while-loop and the others are deleted after the while-loop). Thus the total weight of all circuits added to the basis is at most \((1 + 2 \log n_0)W\).

Lemma 2 The number of circuits constructed and the number of edges declared non-tree is \(m_0 - (n_0 - 1)\).

Proof: Consider the quantity \(N_c = m_c - (n_c - 1)\), where \(n_c\) and \(m_c\) are the number of nodes and edges of the current graph, respectively. \(N_c\) starts at \(m_0 - (n_0 - 1)\) and ends at 0. Removal of a vertex of degree one, does not change \(N_c\), addition of a circuit to the basis decreases it by one. Thus we add exactly \(m_0 - (n_0 - 1)\) circuits to the basis. For each circuit constructed, we declare one edge non-tree.

Lemma 3 Let \(\Gamma\) be the cycle matrix corresponding to the basis constructed where we order the circuits in their order of construction and the non-tree edges in the order in which they are declared non-tree. Then the square submatrix \(\Gamma'\) of \(\Gamma\) selected by the non-tree edges is a lower triangular matrix. Each diagonal entry is either +1 or −1. The determinant of \(\Gamma'\) is ±1.

Proof: Let \(C_1, \ldots, C_N\) be the circuits in the order in which they are constructed and \(e_1, \ldots, e_N\) the edges declared non-tree in the order in which they are declared non-tree. Then \(C_i\) uses \(e_i\) and hence each diagonal entry is either +1 or −1. Also, \(e_i\) is deleted after the construction of \(C_i\) and hence \(C_j(e_i) = 0\) for \(j > i\). Thus the elements above the diagonal are zero.

Lemma 4 The edges designated as tree edges form a spanning tree.

Proof: Observe first that we designate \(m_0 - (n_0 - 1)\) edges as non-tree and hence \(n_0 - 1\) edges as tree. The edges designated non-tree select a non-singular submatrix of \(\Gamma\). Hence the edges designated tree form a spanning tree.

Theorem 1 The algorithm constructs an integral basis of weight \(O(W \log n)\).

Proof: We have already shown the weight bound.

Let \(C\) be any cycle. We need to show that \(C\) is a integer linear combination of our circuits, i.e., \(C = \Gamma x_C\) for an integral vector \(x_C\). Let \(C'\) and \(\Gamma'\) be the restrictions to the non-tree edges. Then \(C' = \Gamma' x_C\). Cramer’s rule implies that the entries of \(x_C\) are rational numbers whose entries have denominator \(\det \Gamma'\). Thus \(x_C\) is integral.

How good is the bound of Theorem 1? Can we do better? We approach this question from several directions.
In the case of uniform weights, i.e., \(w(e) = 1 \) for all \(e \), we can improve upon the bound for graphs with a non-linear number of edges. We will show that any graph has an integral basis of total cardinality \(O(m \log n / \max(1, \log(m/n))) \).

2. We show that the bound in item 1 is optimal.

3. We show (exercise sheet 2) that a complete graph has a basis of weight \(O(W) \).

4. We pose an open problem.

Theorem 2 Any graph has an integral basis of total cardinality \(O(m \frac{\log n}{\max(1, \log(m/n))}) \).

Proof: We need the following lemma. A beautiful proof can be found in [AHL02]. In exercise sheet 2, we prove the result for regular graphs of degree \(d = \frac{m}{k} \).

Lemma 5 Let \(k \geq 2 \). Any graph with \(m \geq n^{1+1/k} \) edges contains a circuit of length \(O(k) \).

If \(m \leq 2n \), Theorem 1 does the job. It yields a basis of length \(O(m \log n) \). So assume that \(m > 2n \). Let \(k = 2 \log n / \log(m/n) \). We proceed in two phases.

- As long as \(m \geq n^{1+1/k} \), we find a circuit of length \(O(k) \), add it to the basis and delete one of its edges from the graph. The total length of the circuits added in phase I is \(O(mk) \).
- If \(m \leq n^{1+1/k} \), we apply Theorem 1 and obtain a basis of total length \(O(n^{1+1/k} \log n) \) for the remaining graph.

The total length of the basis is \(O(km + n^{1+1/k} \log n) \). Finally,

\[
\frac{n^{1+1/k} \log n}{km} = \frac{n^{1+1/k}}{2m} \frac{\log(m/n)}{\log n} = n^{2^{-1/2}} \frac{\log m}{2m} = \frac{\sqrt{m} \log(m/n)}{2m} = O(\frac{\log(m/n)}{\sqrt{m/n}}) = O(1).
\]

Discussion: why this choice of \(k \)? give upper bounds for special values of \(m \), say \(m = \Theta(n) \), \(\Theta(m \log n) \), and \(\Theta(n^{1+1/k}) \).

Exercise 1 Consider arbitrary non-negative edge weights? Why doesn’t the proof above show that any graph has a basis of weight \(O(W \frac{\log n}{\log(m/n)}) \)?

We next prove a lower bound.

Theorem 3 Let \(k \geq 2 \). For sufficiently large \(n \), there is a graph with \(\Theta(n^{1+1/(2k)}) \) edges (the claim is actually true with \(2k \) replaced by \(k \)) and no circuit of length shorter than \(k \). In such a graph any cycle basis has total length \(\Omega(m \frac{\log n}{\log(m/n)}) \).
Proof: Assume first such a graph exists. In this graph any cycle basis has length at least \((m - n + 1)k = \Omega(mk)\). Also, \(m = \Theta((kn)^{1/(2k)})\) or \(\log(m/n) = \Theta((1/2k)\log n)\) or \(2k = \Theta(\log n / \log(m/n))\).

We next show the existence of the graph. We sketch a proof by Erdös from 1957; it is one of the first examples of the so-called probabilistic method [ASE92]. We will NOT construct a graph with the claimed properties, we will only show the existence.

Let \(\varphi = 1/(2k)\) and consider a random graph \(G(n,p)\) with \(p = n^{-\varphi - 1}\). In such a graph, each of the \(n(n-1)/2\) potential edges is present with probability \(p\). For a \(G\) in \(G(n,p)\),

- the expected number of edges is \(pn(n-1)/2 \approx 1/2n^{1+\varphi}\).
- for each node the expected degree is \(np \approx n^{\varphi} = n^{1/(2k)}\).

For almost all graphs in \(G(n,p)\), all but a fraction \(o(1/n)\), the number of edges is at least \(1/4n^{1+\varphi}\) and the degree of every node is at most \(2n^{\varphi}\).

Let \(X\) be the number of circuits of length less than \(k\). Then

\[
E[X] = \sum_{3 \leq i < k} \frac{(n)}{2i} p^i \leq \sum_{i \leq k} (np)^i = \frac{(np)^k - 1}{np - 1} \leq (np)^k = n^{\varphi} = \sqrt{n},
\]

where the last inequality uses the fact that \(np = n^{\varphi} \geq 2\) for \(n\) large enough.

Thus there is a graph in \(G(n,p)\) satisfying the two items above and having only \(\sqrt{n}\) circuits of length less than \(k\). We remove one node from each such circuit and obtain a graph \(G'\) with

- \(n'\) nodes, where \(n' \leq n\), and
- \(m'\) edges, where \(m' \geq m - \sqrt{n}2^{1/(2k)} \geq (1/4)n^{1+\varphi} - 2n^{1/2+\varphi} \geq 1/8n^{1+\varphi}\).

- no circuit of length less than \(k\).

Problem 1. Do sufficiently dense graphs always have a cycle basis of weight \(o(W\log n)\)? Observe that complete graphs have cycle basis of weight \(O(W)\) (exercise sheet 2).

KM conjectures that the answer is yes.

References

