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This is an extended version of pages 29, 30 and 31 of [KLM+09]

Require: G is a connected graph withn0 nodes andm0 edges;
Gc = G;
declare all nodes unlabeled;
initialize the basis to the empty set;
{let Nc = mc− (nc−1)}
while Gc is not a treedo
{Gc is connected and not a tree}
while Gc has a node of degree 1do

remove it and the incident edge; declare the removed edge a tree edge;
{mc andnc are decreased by one andNc does not change}

end while
{Gc is connected, not a tree and every node has degree at least two}
if every node ofGc has degree two, i.e.,Gc is a circuitthen

add this circuit to the basis, declare one of its edges non-tree and delete it fromGc;
{mc andNc went down by one;Gc is now a tree}

else
{Gc is connected, not a tree, and there is a node of degree at leastthree}
construct an auxiliary graph; its nodes correspond to the nodes inGc of degree at least
three and its edges correspond to the maximal paths inGc with all internal edges having
degree two;
letCa be a circuit in the auxiliary graph consisting of at most 1+2logn0 auxiliary edges;
add the underlying circuit inGc to the basis, and delete all edges comprising the heaviest
auxiliary edge on this circuit fromGc; declare one of these edges non-tree and all others
tree;
{mc andNc went down by one and the weight of the circuit added to the basis is at most
(1+2logn0) times the weight of the edges deleted}

end if
end while {Gc is a tree and henceNc = 0}
declare all edges ofGc tree edges and delete them from the graph;

Lemma 1 The total weight of the circuits is at most(1+2logn0)W where W= ∑ew(e) is the
total weight of all edges.
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Proof: For every circuit added to the basis, its weight is at most(1+2logn0) times the weight
of the edges deleted. Observe that this is also true for the last circuit removed (one of its edges is
removed in the while-loop and the others are deleted after the while-loop). Thus the total weight
of all circuits added to the basis is at most(1+2logn0)W.

Lemma 2 The number of circuits constructed and the number of edges declared non-tree is
m0− (n0−1).

Proof: Consider the quantityNc = mc−(nc−1), wherenc andmc are the number of nodes and
edges of the current graph, respectively.Nc starts atm0− (n0−1) and ends at 0. Removal of a
vertex of degree one, does not changeNc, addition of a circuit to the basis decreases it by one.
Thus we add exactlym0− (n0−1) circuits to the basis. For each circuit constructed, we declare
one edge non-tree.

Lemma 3 Let Γ be the cycle matrix corresponding to the basis constructed where we order
the circuits in their order of construction and the non-treeedges in the order in which they are
declared non-tree. Then the square submatrixΓ′ of Γ selected by the non-tree edges is a lower
triangular matrix. Each diagonal entry is either+1 or −1. The determinant ofΓ′ is±1.

Proof: Let C1, . . . ,CN be the circuits in the order in which they are constructed ande1, . . . ,eN

the edges declared non-tree in the order in which they are declared non-tree. ThenCi usesei and
hence each diagonal entry is either+1 or−1. Also,ei is deleted after the construction ofCi and
henceCj(ei) = 0 for j > i. Thus the elements above the diagonal are zero.

Lemma 4 The edges designated as tree edges form a spanning tree.

Proof: Observe first that we designatem0− (n0−1) edges as non-tree and hencen0−1 edges
as tree. The edges designated non-tree select a non-singular submatrix ofΓ. Hence the edges
designated tree form a spanning tree.

Theorem 1 The algorithm constructs an integral basis of weight O(W logn).

Proof: We have already shown the weight bound.
Let C be any cycle. We need to show thatC is a integer linear combination of our circuits,

i.e., C = ΓxC for an integral vectorxC. Let C′ andΓ′ be the restrictions to the non-tree edges.
ThenC′ = Γ′xC. Cramer’s rule implies that the entries ofxC are rational numbers whose entries
have denominator detΓ′. ThusxC is integral.

How good is the bound of Theorem 1? Can we do better? We approach this question from
several directions.
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1. In the case of uniform weights, i.e.,w(e) = 1 for all e, we can improve upon the bound
for graphs with a non-linear number of edges. We will show that any graph has an integral
basis of total cardinalityO(m(logn)/max(1, log(m/n))).

2. We show that the bound in item 1 is optimal.

3. We show (exercise sheet 2) that a complete graph has a basisof weightO(W).

4. We pose an open problem.

Theorem 2 Any graph has an integral basis of total cardinality O(m logn
max(1,log(m/n))).

Proof: We need the following lemma. A beautiful proof can be found in[AHL02]. In exercise
sheet 2, we prove the result for regular graphs of degreed = m1/k.

Lemma 5 Let k≥ 2. Any graph with m≥ n1+1/k edges contains a circuit of length O(k).

If m≤ 2n, Theorem 1 does the job. It yields a basis of lengthO(mlogn). So assume that
m> 2n. Let k = 2logn/ log(m/n). We proceed in two phases.

• As long asm≥ n1+1/k, we find a circuit of lengthO(k), add it to the basis and delete one
of its edges from the graph. The total length of the circuits added in phase I isO(mk).

• If m≤ n1+1/k, we apply Theorem 1 and obtain a basis of total lengthO(n1+1/k logn) for
the remaining graph.

The total length of the basis isO(km+n1+1/k logn). Finally,

n1+1/k logn
km

=
n2logn log(m/n)

2logn lognlog(m/n)

m2logn
=

n2
log(m/n)

1/2 log(m/n)

2m

=
n
√m

n log(m/n)

2m
=

m
√ n

m log(m/n)

2m
= O(

log(m/n)
√

m/n
) = O(1) .

Discussion: why this choice ofk? give upper bounds for special values ofm, saym= Θ(n),
Θ(mlogn), andΘ(n1+1/k).

Exercise 1 Consider arbitrary non-negative edge weights? Why doesn’tthe proof above show
that any graph has a basis of weight O(W logn

log(m/n)
)?

We next prove a lower bound.

Theorem 3 Let k≥ 2. For sufficiently large n, there is a graph withΘ(n1+1/(2k)) edges (the
claim is actually true with2k replaced by k) and no circuit of length shorter than k. In such a
graph any cycle basis has total lengthΩ(m logn

log(m/n)).
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Proof: Assume first such a graph exists. In this graph any cycle basishas length at least(m−
n+1)k = Ω(mk). Also,m= Θ(nn1/(2k)) or log(m/n) = Θ((1/2k) logn) or 2k = Θ( logn

log(m/n)).
We next show the existence of the graph. We sketch a proof by Erdös from 1957; it is one

of the first examples of the so-called probabilistic method [ASE92]. We will NOT construct a
graph with the claimed properties, we will only show the existence.

Let ϕ = 1/(2k) and consider a random graphG(n, p) with p = nϕ−1. In such a graph, each
of then(n−1)/2 potential edges is present with probabilityp. For aG in G(n, p),

• the expected number of edges ispn(n−1)/2≈ 1/2n1+ϕ .

• for each node the expected degree isp(n−1) ≈ nϕ = n1/(2k).

For almost all graphs inG(n, p), all but a fractiono(1/n), the number of edges is at least 1/4n1+ϕ

and the degree of every node is at most 2nϕ .
Let X be the number of circuits of length less thank. Then

E[X] = ∑
3≤i<k

(n)i

2i
pi ≤ ∑

i<k

(np)i =
(np)k−1

np−1
≤ (np)k = nϕ =

√
n ,

where the last inequality uses the fact thatnp= nϕ ≥ 2 for n large enough.
Thus there is a graph inG(n, p) satisfying the two items above and having only

√
n circuits

of length less thank. We remove one node from each such circuit and obtain a graphG′ with

• n′ nodes, wheren′ ≤ n, and

• m′ edges, wherem′ ≥ m−√
n2n1/(2k) ≥ (1/4)n1+ϕ −2n1/2+ϕ ≥ 1/8n1+ϕ .

• no circuit of length less thank.

Problem 1 Do sufficiently dense graphs always have a cycle basis of weight o(W logn)? Ob-
serve that complete graphs have cycle basis of weight O(W) (exercise sheet 2).

KM conjectures that the answer is yes.
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