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We investigate techniques for making shortest paths unique. We studied two methods in
class. A third method was suggested to me by Thomasz Jurkiewicz.

Perturbation by Infinitesimals OrderE bye1 < e2 < .. .< em. We setw′(ei) = w(ei)+(ε−εi)
whereε ≫ ε1 ≫ ε2 ≫ . . . ≫ εm > 0 and theεi andε are infinitesimals1 With respect tow′, the
weight of a pathp is

w′(p) = w(p)+ |p|ε −∑
e

(e∈ p)εi ,

where(e∈ p) is 1 if e occurs inp and is zero otherwise. Consider two distinct pathsp andq.
We havew′(p) < w′(q) if

• w(p) < w(q) or

• w(p) = w(q) and|p| < |q| or

• w(p) = w(q) and|p| = |q| and min(p\q) < min(q\ p).

Advantage: mathematically clean
Disadvantage: costly to implement

The Method by Hartvigsen and Mardon A clever and efficient implementation of the above.
Advantage: efficient
Disadvantage: complex

Random Perturbation This was suggested to me by Thomasz. We setw′(ei) = w(ei)+ r iε,
whereε is a positive infinitesimal andr i is a random integer in[0..M−1] for a still to be deter-
minedM.

1Formally, distances are formal sums of the forma+bε + ∑i ciεi , addition is as for polynomials with variables
ε andεi , and comparison is lexicographic.
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Lemma 1 Consider a fixed source s. The probability that all shortest paths with source s are
unique is at least e−2m/M.

Proof: Conceptually run Dijkstra’s algorithm with weight function w′. Consider any fixed node
v. The tentative distanced(v) is initialized to+∞. Whenever a neighboru of v is deleted from
the queue,d(v) is updated to min(d(v),d(u)+w′(uv)). Lete= uv. We call the choice ofre good
if d(v) 6= d(u)+w′(e), and bad otherwise. There is at most one bad choice forre and hence at
leastM−1 good choices.

We claim that if the choices for all edges are good, all shortest paths with sourcesare unique.
Assume otherwise. Then there must be a nodev with two shortest paths froms to v and such
that these paths use different edges intov, sayxvandyv. Also assume thatx is removed from the
queue beforey. Since the choice foreyv is good, we haved(y)+w′(yv) 6= d(x)+w′(xv).

The probability that all choices are good is at least
(

M−1
M

)m

=

(

1−
1
M

)M(m/M)

≥ e−2m/M

since2 (1−1/M)M ≥ e−2 for M > 10.

Theorem 1 Let w′ be as above. With M= 8nm, the probability that shortest paths are not unique
is at most1/2.

Proof: For a fixed sources, shortest paths are unique with probability at leaste−2m/M. We
cannot argue that therefore all shortest paths are unique with probability at least(e−2m/M)n as
these probabilities are not independent3. The correct reasoning is as follows and leads almost to
the same result.

The probability that for a fixed source, shortest paths are not unique is at most 1−e−2m/M .
Hence the probability that for some source, shortest paths are not unique is at mostn(1−
e−2m/M). For4 M = 8nm, we have

n(1−e−2m/M) ≤ n(4m/M) = 1/2 .

We run our favorite all-pairs algorithm for weight functionw′. Let d be the distance function
computed. We perform the following check. For any pair(u,v) with v 6= u, we check whether
there are two neighborsv′ andv′′ of v with d(u,v) = d(u,v′)+ w′(v′v) = d(u,v′′)+ w′(v′′v). If
this is the case for some pair(u,v), we declare the perturbation a failure, choose new valuesr i

and repeat. The check takes timeO(nm). We fail with probability at most 1/2 and hence the
expected number of trials is at most 2.

Advantage: Easy to implement and conceptually simple.

2Recall limn→∞(1+x/n)n = ex.
3Let us continue the incorrect reasoning. We have(e−2m/M)n = e−2nm/M ≥ 1−2nm/M sinceex ≥ 1+ x. Thus

the probability that shortest paths are not unique is at most2nm/M.
4Recallex ≈ 1+x for x small. More precisely, 1+2x≤ ex ≤ 1+x for |x| ≤ 1/2.
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