Selected Topics in Algorithms Unique Shortest Paths

Kurt Mehlhorn

May 19, 2009

We investigate techniques for making shortest paths unique. We studied two methods in class. A third method was suggested to me by Thomasz Jurkiewicz.

Perturbation by Infinitesimals Order *E* by $e_1 < e_2 < ... < e_m$. We set $w'(e_i) = w(e_i) + (\varepsilon - \varepsilon_i)$ where $\varepsilon \gg \varepsilon_1 \gg \varepsilon_2 \gg ... \gg \varepsilon_m > 0$ and the ε_i and ε are infinitesimals¹ With respect to w', the weight of a path *p* is

$$w'(p) = w(p) + |p| \varepsilon - \sum_{e} (e \in p) \varepsilon_i$$

where $(e \in p)$ is 1 if *e* occurs in *p* and is zero otherwise. Consider two distinct paths *p* and *q*. We have w'(p) < w'(q) if

- w(p) < w(q) or
- w(p) = w(q) and |p| < |q| or
- w(p) = w(q) and |p| = |q| and $\min(p \setminus q) < \min(q \setminus p)$.

Advantage: mathematically clean Disadvantage: costly to implement

The Method by Hartvigsen and Mardon A clever and efficient implementation of the above.

Advantage: efficient

Disadvantage: complex

Random Perturbation This was suggested to me by Thomasz. We set $w'(e_i) = w(e_i) + r_i \varepsilon$, where ε is a positive infinitesimal and r_i is a random integer in [0..M-1] for a still to be determined M.

¹Formally, distances are formal sums of the form $a + b\varepsilon + \sum_i c_i \varepsilon_i$, addition is as for polynomials with variables ε and ε_i , and comparison is lexicographic.

Lemma 1 Consider a fixed source s. The probability that all shortest paths with source s are unique is at least $e^{-2m/M}$.

Proof: Conceptually run Dijkstra's algorithm with weight function w'. Consider any fixed node v. The tentative distance d(v) is initialized to $+\infty$. Whenever a neighbor u of v is deleted from the queue, d(v) is updated to $\min(d(v), d(u) + w'(uv))$. Let e = uv. We call the choice of r_e good if $d(v) \neq d(u) + w'(e)$, and bad otherwise. There is at most one bad choice for r_e and hence at least M - 1 good choices.

We claim that if the choices for all edges are good, all shortest paths with source *s* are unique. Assume otherwise. Then there must be a node *v* with two shortest paths from *s* to *v* and such that these paths use different edges into *v*, say *xv* and *yv*. Also assume that *x* is removed from the queue before *y*. Since the choice for e_{yv} is good, we have $d(y) + w'(yv) \neq d(x) + w'(xv)$.

The probability that all choices are good is at least

$$\left(\frac{M-1}{M}\right)^m = \left(1 - \frac{1}{M}\right)^{M(m/M)} \ge e^{-2m/M}$$

since² $(1 - 1/M)^M \ge e^{-2}$ for M > 10.

Theorem 1 Let w' be as above. With M = 8nm, the probability that shortest paths are not unique is at most 1/2.

Proof: For a fixed source *s*, shortest paths are unique with probability at least $e^{-2m/M}$. We cannot argue that therefore all shortest paths are unique with probability at least $(e^{-2m/M})^n$ as these probabilities are not independent³. The correct reasoning is as follows and leads almost to the same result.

The probability that for a fixed source, shortest paths are not unique is at most $1 - e^{-2m/M}$. Hence the probability that for some source, shortest paths are not unique is at most $n(1 - e^{-2m/M})$. For⁴ M = 8nm, we have

$$n(1-e^{-2m/M}) \le n(4m/M) = 1/2$$
.

We run our favorite all-pairs algorithm for weight function w'. Let d be the distance function computed. We perform the following check. For any pair (u, v) with $v \neq u$, we check whether there are two neighbors v' and v'' of v with d(u, v) = d(u, v') + w'(v'v) = d(u, v'') + w'(v''v). If this is the case for some pair (u, v), we declare the perturbation a failure, choose new values r_i and repeat. The check takes time O(nm). We fail with probability at most 1/2 and hence the expected number of trials is at most 2.

Advantage: Easy to implement and conceptually simple.

²Recall $\lim_{n\to\infty} (1+x/n)^n = e^x$.

³Let us continue the incorrect reasoning. We have $(e^{-2m/M})^n = e^{-2nm/M} \ge 1 - 2nm/M$ since $e^x \ge 1 + x$. Thus the probability that shortest paths are not unique is at most 2nm/M.

⁴Recall $e^x \approx 1 + x$ for x small. More precisely, $1 + 2x \le e^x \le 1 + x$ for $|x| \le 1/2$.