We investigate techniques for making shortest paths unique. We studied two methods in class. A third method was suggested to me by Tomasz Jurkiewicz.

Perturbation by Infinitesimals Order E by $e_1 < e_2 < \ldots < e_m$. We set $w'(e_i) = w(e_i) + (\varepsilon - \varepsilon_i)$ where $\varepsilon \gg \varepsilon_1 \gg \varepsilon_2 \gg \ldots \gg \varepsilon_m > 0$ and the ε_i and ε are infinitesimals\(^1\). With respect to w', the weight of a path p is

$$w'(p) = w(p) + |p|\varepsilon - \sum_{e \in p} (e \in p)\varepsilon_i,$$

where $(e \in p)$ is 1 if e occurs in p and is zero otherwise. Consider two distinct paths p and q. We have $w'(p) < w'(q)$ if

- $w(p) < w(q)$ or
- $w(p) = w(q)$ and $|p| < |q|$ or
- $w(p) = w(q)$ and $|p| = |q|$ and $\min(p \setminus q) < \min(q \setminus p)$.

Advantage: mathematically clean
Disadvantage: costly to implement

The Method by Hartvigsen and Mardon A clever and efficient implementation of the above.

Advantage: efficient
Disadvantage: complex

Random Perturbation This was suggested to me by Tomasz. We set $w'(e_i) = w(e_i) + r_i\varepsilon$, where ε is a positive infinitesimal and r_i is a random integer in $[0..M-1]$ for a still to be determined M.

\(^1\)Formally, distances are formal sums of the form $a + b\varepsilon + \sum_i c_i\varepsilon_i$, addition is as for polynomials with variables ε and ε_i, and comparison is lexicographic.
Lemma 1 Consider a fixed source s. The probability that all shortest paths with source s are unique is at least $e^{-2m/M}$.

Proof: Conceptually run Dijkstra’s algorithm with weight function w'. Consider any fixed node v. The tentative distance $d(v)$ is initialized to $+\infty$. Whenever a neighbor u of v is deleted from the queue, $d(v)$ is updated to $\min(d(v), d(u) + w'(uv))$. Let $e = uv$. We call the choice of r_e good if $d(v) = d(u) + w'(e)$, and bad otherwise. There is at most one bad choice for r_e and hence at least $M - 1$ good choices.

We claim that if the choices for all edges are good, all shortest paths with source s are unique. Assume otherwise. Then there must be a node v with two shortest paths from s to v and such that these paths use different edges into v, say xy and yv. Also assume that x is removed from the queue before y. Since the choice for e_{vy} is good, we have $d(y) + w'(yv) = d(x) + w'(xy)$.

The probability that all choices are good is at least

$$\left(1 - \frac{1}{M}\right)^m \geq e^{-2m/M}$$

since\(^2\) $(1 - 1/M)^M \geq e^{-2}$ for $M > 10$.

Theorem 1 Let w' be as above. With $M = 8nm$, the probability that shortest paths are not unique is at most $1/2$.

Proof: For a fixed source s, shortest paths are unique with probability at least $e^{-2m/M}$. We cannot argue that therefore all shortest paths are unique with probability at least $(e^{-2m/M})^m$ as these probabilities are not independent\(^3\). The correct reasoning is as follows and leads almost to the same result.

The probability that for a fixed source, shortest paths are not unique is at most $1 - e^{-2m/M}$. Hence the probability that for some source, shortest paths are not unique is at most $n(1 - e^{-2m/M})$. For\(^4\) $M = 8nm$, we have

$$n(1 - e^{-2m/M}) \leq n(4m/M) = 1/2.$$

We run our favorite all-pairs algorithm for weight function w'. Let d be the distance function computed. We perform the following check. For any pair (u, v) with $v \neq u$, we check whether there are two neighbors v' and v'' of v with $d(u, v) = d(u, v') + w'(v'v) = d(u, v'') + w'(v''v)$. If this is the case for some pair (u, v), we declare the perturbation a failure, choose new values r_i and repeat. The check takes time $O(nm)$. We fail with probability at most $1/2$ and hence the expected number of trials is at most 2.

Advantage: Easy to implement and conceptually simple.

\(^2\)Recall $\lim_{n \to \infty} (1 + x/n)^n = e^x$.

\(^3\)Let us continue the incorrect reasoning. We have $(e^{-2m/M})^m = e^{-2nm/M} \geq 1 - 2nm/M$ since $e^x \geq 1 + x$. Thus the probability that shortest paths are not unique is at most $2nm/M$.

\(^4\)Recall $e^x \approx 1 + x$ for x small. More precisely, $1 + 2x \leq e^x \leq 1 + x$ for $|x| \leq 1/2$.

2