Algorithms for Generating Fundamental
Cycles in a Graph

NARSINGH DEO and G. M. PRABHU
Washington State University

and

M. S. KRISHNAMOORTHY
Rensselaer Polytechnic Institute

The following problem is considered: Given an undirected, connected graph G, find a spanning tree
in G such that the sum of the lengths of the fundamental cycles (with respect to this tree) is minimum.
This problem, besides being interesting in 1ts own right, is useful in a variety of situations It is shown
that this problem is NP-complete. A number of polynomial-time, heunstic algorithms which yield
“good” suboptimal solutions are presented and their performances are discussed. Finally, it is shown
that for regular graphs of order n the expected value of the total length of a minimum fundamental-
cycle set does not exceed O(n?).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]
Nonnumerical Algonithms and Problems—computations on discrete structures; G 2.2 [Discrete
Mathematics]: Graph Theory

General Terms: Algorithms, Design

Additional Keywords and Phrases' fundamental-cycle set, spanning tree, NP-complete

1. INTRODUCTION

In graph analysis, it is often desirable to examine the cyclic structure of the given
graph. The most commonly used method is to generate a set of fundamental
cycles. A fundamental-cycle set is used by an organic chemist interested in the
coding of ring compounds [16, 20]. A fundamental-cycle set can also be used in
determining the isomorphism of graphs [2] and in the frequency analysis of
computer programs [14]. In the literature, a number of algorithms have been
proposed and implemented for generating a set of fundamental cycles [3, 7, 8, 11,
13, 15, 17, 18, 21, 22, 25].

If the data structure is chosen carefully, the computational time complexity of
the best of these algorithms turns out to be

0@1 z,)

This work was supported n part by National Science Foundation Grant MCS-78-25851.

Authors’ addresses' N. Deo and G. M. Prabhu, Computer Science Department, Washington State
University, Pullman, WA 99164, M. S Knishnamoorthy, Department of Mathematical Sciences,
Rensselaer Polytechnic Institute, Troy, NY 12181.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying 1s by permission of the Association
for Computing Machinery. To copy otherwise, or to repubhish, requires a fee and/or specific
permission.

© 1982 ACM 0098-3500/82/0300-0026 $00.75

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982, Pages 26-42

Algorithms for Generating Fundamental Cycles in a Graph . 27

[17, 18], where [, is the length of the ith fundamental cycle (in the generated set)
and p is the nullity of the given graph. (The nullity of a connected graph G with
n vertices and e edges is u = e — n + 1.) A set of fundamental cycles of a graph
with respect to a spanning tree is a set of those p cycles that contain exactly one
nontree edge each. The total length of the fundamental-cycle set with respect to
a spanning tree T in G, denoted as

L(T) = (z z,>,

is, in general, dependent on T. For example, in a complete graph K, of n vertices,
the total length of fundamental cycles with respect to a Hamiltonian tree Th is

" . 1

LTy =Y in-i+1) = 5 n? + 0(n?,

=1
because there is 1 cycle of length n, 2 cycles of length (n — 1), 3 cycles of length
(n—2),...,and (n — 2) cycles of length 3, in K... On the other hand, with respect
to a star tree T, in the same graph K,, the total length of fundamental cycles is

L(T)=3.p=3 ———————=—_.n

because each fundamental cycle is of length 3. Since the computation time for
generating a set of fundamental cycles is of the order of the total length L, which
in turn is dependent on 7, it is interesting and useful to explore the possibility of
obtaining an optimal spanning tree T\ in a given graph G such that L(T i) <
L(T,) for every spanning tree T in G. If an algorithm to obtain such an optimal
spanning tree is fast enough, it could be utilized in generating a set of fundamental
cycles.

This problem was first posed by Hubicka and Syslo [10]. (A related problem of
determining a minimum-length cycle basis of a graph was first posed by Stepanec
[19] and discussed further by Zykov [26]. It may be noted that every basis of the
cycle subspace need not correspond to a spanning tree. That is, every fundamen-
tal-cycle set forms a cycle basis, but not every cycle basis is a fundamental-cycle
set.)

It has been recently conjectured [5] that generating such an optimal spanning
tree Trun may be NP-hard. In Section 2 we prove that generating T is indeed
NP-complete. In Section 3 we describe fast heuristic algorithms that generate
suboptimal spanning trees (i.e., spanning trees T' for which L(T) may not be
minimum). In Section 4 we discuss the implementation of these heuristic algori-
thms, and in Section 5 we compare their performances. In Section 6 we derive
upper bounds on the expected length of the minimum-length fundamental-cycle
set L(Twn), for certain “bad” classes of graphs. It is shown that this expected
length is bounded by O(n?) for regular graphs of order n. This bound is consistent
with the empirical observations made in Section 4 on a large number of randomly
generated graphs. Section 7 consists of the concluding discussions and mention of
further problems.

The graph terminology used here is fairly standard and can be found in most
textbooks on graph theory [3, 9). We denote an undirected graph G = (V, E),

ACM Transactions on Mathematical Software, Vol. 8, No. 1, March 1982,

28 . N. Deo, M. 8. Krishnamoorthy, and G. M. Prabhu

where Vis the set of vertices and E, the set of edges. The cardinalities of sets V
and E are denoted by n and e, respectively. For terminology related to NP-
completeness we refer the reader to [1, 6, or 18].

2. GENERATING T, IS NP-COMPLETE

The problem of finding a fundamental-cycle set with minimum total length may
be formally stated as

Instance: Graph G = (V, E), positive integer L.
Question: Is there a spanning tree T of G such that the sum over the lengths of
all fundamental cycles of G with respect to T is no more than L?

We transform in polynomial time an already known NP-complete problem,
namely, the shortest total-path-length spanning tree problem (STPLS), to the
minimum-length fundamental-cycle-set problem. The STPLS problem may be
formally stated following Garey and Johnson [6] as

Instance: Graph G = (V, E), positive integer K.
Question: Is there a spanning tree T of G such that the sum, over all pairs

of vertices u, v € V, of the path length in T from u to v is no more
than K?

The STPLS problem has been shown to be NP-complete by Johnson et al.
[12]. We use this result in proving that generating T, is NP-complete.
For this purpose, we introduce the following definitions.

Complete Chain. A complete chain between a pair of vertices u, v such that

edge (u, v) € E is defined as a set of vertices {(u, v, 1), (4, v, 2), ..., (u, v,n* — 1)}
and a set of edges {(u, (u, v, 1)), (u, v, 1), (u, v, 2), ..., (u, v, n* — 1), v)} (see
Figure 1).

1-off Chain. A 1-off chain is obtained by deleting exactly one edge from a
complete chain.

LemMA. The shortest total-path-length spanning tree problem is polynomially
transformable to the minimum-length fundamental-cycle-set problem.

Proor. Let G = (V, E) be a given undirected graph for which we wish to
find the shortest total-path-length spanning tree. Construct another graph H =
(V1, E1) as follows:

Vi=VU{(y,v,d)|(v,v) € E,i=12,...,n"' -1}
El = EU {(u, (ua U, 1))} U {((u> U, l)) (u) U) " + 1))'
i=12...,n" =2} U {((&, v, n* = 1), v)}

for pairs u, v, not in E. Let G have n vertices and e edges and let r = [n(n — 1)/
2] — e, denote the number of vertex pairs (unordered) in G that are not joined by
an edge. It is easy to see that the number of vertices in His n + r-(n* — 1) and
the number of edges in H is e + r-n*, since H is constructed from G by adding a
complete chain between every pair of vertices u, v not joined by an edge in G.
We will now consider two different ways of constructing a spanning tree in
graph H: one is to pick an arbitrary spanning tree T in G and add 1-off chains to

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982

Algorithms for Generating Fundamental Cycles in a Graph . 29

G

Fig 1. Complete chain added be-
tween u and v of G.

e’ {u, v, '\4' 1)

(u, v,2)

(u, v, 1)

all pairs of vertices u, v of G such that (¢, v) € E. Denote this spanning tree of H
by T:. The other way is to directly find a spanning tree of H, say T%.

Consider spanning tree T,. Considering the chords (i.e., nontree edges) of G
with respect to T) and the one missing edge of each 1-off chain that forms
fundamental cycles with respect to T} in the newly constructed graph H, the total
length of the fundamental-cycle set in H with respect to T} is

L(T)) = Z (dy + 1) + 2 (n“ + duv),
(u,v)EE w,v)¢E
(u,u)¢T
where d,, is the distance in 7" between « and v.

Since the number of chords in the original graph G is ¢ — n + 1 and the number

of 1-off chains added to it is r, the above expression can be rewritten as

LTy= Y dw+(e—n+D+rn'+ Y du. 1)
(u,u)zf; (WwVEE
(,v)

Now, the total path length P in T' (from which T is derived) between all pairs
of vertices of G is

pP= 2[Y duw+ Y deut I d,w]. (2)
(u,V)¢E (wv)eE (wvET
(w,)gT

Noting that Y w.ner duw = n ~— 1 and substituting eq. (2) in eq. (1), we get
P
L(Ty) =E+r-n“+ (e=n+1) —(n-1).

Now, in graph H let T be a spanning tree that yields a set of fundamental
cycles with minimum total length. Let us assume that 7 has ¢ complete chains.
We will show presently that ¢ must be equal to zero. Let S be the total path
length in 7% between all pairs of vertices of G. Proceeding in the same manner
that was used to compute L(7}), we obtain L(T%), the length of the fundamental-
cycle set with respect to 7%.

L(Tz)=§+r’-n4+(e—(n—l—q))—(n—l—q)—q-n4

ACM Transactions on Mathematical Software, Vol. 8, No. 1, March 1982

30 . N. Deo, M. S. Krishnamoorthy, and G. M. Prabhu

where
oo nn—1)
2

Since by definition L(T:) < L(T:), we have

—-e~—gq.

§+r’-n“+(e—(n—1—-q))—(n-—l—q)—q—n4

51—2)+r-n4+(e—n+1)—-(n-1).

On simplifying we obtain
S=P+4.qg-n*—4.q. 3)

It can be verified—by computing a lower bound for S and by observing that P is
O(n®)—that the inequality (3) holds only if ¢ = 0. (The lower bound for S is
computed by assuming that the spanning tree giving rise to the lower bound has
the ¢ complete chains connected in star fashion in H. With this assumption it
follows that S is at least 2-q*-n*. For the case where g = 1, S is in fact at least
2.n* + 2.(n — 2)(n* + 1), and for the case where g = 2

S=8.n*+2-(n-3)(n*+1).

For g > 2, S = 2-¢2-n*, thereby proving our contention about inequality (3).)

Thus T cannot have any complete chains, that is, ¢ = 0. Hence eq. (3) yields
S = P. From the construction of H it is easily seen that this transformation can
be done in polynomial time. Thus the STPLS problem is polynomially transform-
able to the minimum-length fundamental-cycle-set problem. [

This implies that if we can find in polynomial time a spanning tree that yields
a set of fundamental cycles in H with minimum total length L(T%), then we can
find a shortest total-path-length spanning tree in G in polynomial time as well.
Moreover, it is easy to see that the minimum-length fundamental-cycle-set
problem is indeed in NP. Since the STPLS problem is known to be NP-complete
[12}, we have the following result.

THEOREM. Finding a spanning tree T, in a graph G that yields a funda-
mental-cycle set with minimum total length is NP-complete.

3. ALGORITHMS FOR GENERATING A SET OF FUNDAMENTAL CYCLES

Since the computational time complexity of the best algorithms for generating a
set of fundamental cycles of a graph is of the order of the total length L of the
fundamental-cycle set [17, 18], an algorithm for a spanning tree corresponding to
a minimum value for L could be used to generate a set of fundamental cycles
(provided, of course, the cost of generating such a spanning tree itself is not too
high). But we have just proved that generating T, is an NP-complete problem.
Therefore, we must look for fast heuristic algorithms for generating a suboptimal
spanning tree T, for which L(T) — L(T.) will hopefully be small. None of the
algorithms proposed in the literature has dealt with the problem of generating a
spanning tree 7T with a reasonably small value for L(7") = L(Ttn)-

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982

Algorithms for Generating Fundamental Cycles in a Graph . 31

As is the case with many of the polynomially bounded graph-theoretic algori-
thms, existing procedures for generating fundamental cycles can be classified into
three groups, those utilizing (1) depth first search (DFS), (2) breadth first search
(BFS), or (3) mixed search (MS) [4]. Tarjan’s DFS method [23] inherently
generates very long fundamental cycles. It is easy to verify that when applied to
complete graph K, the total length of the fundamental-cycle set will be O(n’)
[18]. Paton’s mixed search method [7, 17] does better than the DFS method on
the average, but for a worst case input it would also produce total length of O(n?).
An example of such a graph is given by Paton [17]. Since, in general, a BFS
through a graph produces spanning trees of short diameters, the BFS method on
the average generates fundamental cycles of shorter total length than either of
the other two methods [5, 11]. Hence, all the heuristic algorithms considered in
this paper employ a breadth first search through the given graph. These heuristic
algorithms deviate from general breadth first search—the deviation lies in the
criteria used to select a new vertex to explore from. Whenever the partial tree is
to be extended, the new vertex to be explored from is not the “oldest” unexplored
vertex as in a straightforward BFS but is selected according to some function of
the degrees of the vertices. To the best of our knowledge, none of the heuristic
algorithms proposed here have been implemented or tested earlier. The central
idea of each of our heuristic algorithms now follows.

3.1 Static Degree Sort (SDS)

The given graph G is represented as an adjacency matrix. First the rows and
columns of the adjacency matrix are reordered in descending order of the degrees
of the corresponding vertices. Then the spanning tree is generated in a straight-
forward breadth first fashion. The first vertex explored from is vertex 1, which is
the vertex with highest degree. Whenever a new vertex is considered, it is the one
with the highest degree among the successors of the oldest vertex explored from
(and not necessarily the vertex with the highest degree among those that are
already present in the partial tree).

3.2 Dynamic Degree Selection (DDS)

The difference between DDS and SDS lies in the criteria used for selecting a new
vertex to explore from. Whenever a new vertex is considered, it is a vertex of
highest degree among all the vertices that are already present in the partial tree.

3.3 “‘Unexplored’’ Edges (UE)

As vertices are explored from, their degrees are thought of as getting depleted;
therefore every vertex in the partial tree has a degree with respect to “unexplored”
edges that is smaller than its degree in the original graph. In this heuristic, a new
vertex considered is a vertex of highest degree in the partial tree, the degree being
measured with respect to “unexplored” edges.

3.4 Multipoint Breadth First Search (MBFS)

Unlike the preceding three heuristic algorithms, where the new vertex is selected
from vertices already in the partial tree, here we always explore from the vertex
of highest degree, building a forest as we go along. We maintain the vertices

ACM Transactions on Mathematical Software, Vol. 8, No. 1, March 1982

32 . N. Deo, M. S. Krishnamoorthy, and G. M. Prabhu

belonging to different subtrees of the forest as sets. As in any spanning tree
generation algorithm, if both end vertices of a new edge belong to the same set,
we treat that edge as a chord; otherwise we treat that edge as a tree edge and
merge two subtrees. Edges of G are chosen in descending order of degrees of their
end vertices.

4. IMPLEMENTATION OF THE ALGORITHMS

The four heuristic algorithms, namely, SDS, DDS, UE, and MBFS, were imple-
mented in PASCAL, and a performance study was conducted on a PDP-11/60.
For comparison we also implemented an algorithm (BF) which generates a
spanning tree by doing a straightforward breadth first search of the graph and
uses this BFS spanning tree to generate a set of fundamental cycles. Results of
the performance of all five of these algorithms are summarized in Tables I-V.
The data in these tables are also shown in graphical form in Figures 2 and 3. An
entry in a table produced for an algorithm was generated as follows: for each
specified n (number of vertices) and edge density p, 20 random graphs were
generated. The values of L and ¢ shown are the total length of the fundamental-
cycle set, and the running time (in seconds), respectively, averaged over the 20
graphs for each case.

A plot of log L versus log n is shown in Figure 2. To avoid cluttering the plot,
we have shown the plot for UE and MBFS for edge densities of 0.5 and 1.0 only.
This plot suggests that L increases monotonically with edge density. The variation
of log L against log n is found to be a straight line with a slope that is slightly
larger than 2, and this leads us to suspect that L is O(n®). Since our algorithms
are suboptimal (as discussed in Section 5), we have reason to believe that L(T)
is no larger than O(n?). Our suspicion is strengthened by the fact that in each
case the value of L reported for a complete graph (i.e., a graph with edge density
= 1.0) turns out to be exactly 2(n — 1)(n — 2), which is O(n?) and corresponds to
a star spanning tree. The reason the slopes of the straight lines for log L against
log n are slightly larger than 2 and not exactly 2 could be due to a multiplicative
constant. It might turn out that L = O(k - n®) for some k&, and this factor would
explain why the slopes are larger than 2.

Our empirical results seem to indicate that for randomly generated graphs UE
yields the lowest value for L and BF yields the highest value for L. Hence one
might want to conclude that UE will always yield a lower value for L than the
other algorithms. However, an example in Section 5 illustrates that UE cannot
be considered “best” (for computing the lowest value for L) for all graphs.

A plot of log ¢ versus log n (with ¢ expressed in milliseconds) is given in Figure
3. Here again to avoid cluttering we only consider algorithms UE and MBFS for
an edge density of 0.5. In this plot also the variation of log ¢ against log n is a
straight line with a slope slightly larger than 2 (for the same reason as given
above) implying that the time complexity of our algorithms is O(n?).

5. PERFORMANCE OF THE ALGORITHMS

From the empirical results obtained in Section 4 for the mean value of the
fundamental-cycle-set length L, one might conclude that UE always yields a
lower value for L than the other four. This is not always the case, however. There

ACM Transactions on Mathematical Software, Vol 8, No. 1, March 1982

LS oLe 0r'g §6'0 9’0 00'8%5€ 00'862¢2 008121 00°€1S 00'80T 01
[¥A4 89°¢ 80°¢ 60 920 SP'861¢ 0¥'2L008 ST'£601 0095y 00'€6 60
86§ 86'¢ 802 €60 920 $8'266% S¥'8€81 GL'666 (VX414 0828 80
s L4 96’1 060 S50 0€'699% G¥'9691 SL'G68 0L'69¢ SL'OL Lo
€6'S ae'e 06°T 80 (244 0evree 06°9GF1 G5°68L ST'gle 09°6% 90
106 §6¢ 881 80 €20 SL'9008 01 1621 G8'099 ST'v9% (U544 g0
08V 90¢ (728 080 44\ 03'€991 G€'6101 a8'LES G&'903 0g'¢e Vo
0 4 €6C 991 Lo 1o Gv°e9gt 09°99L or°L68 05°L¥T 09'91 €0
Ly SL'e 96T Lo 02’0 09°0¢8 SL'66v Ge'LYe GL'E8 0 c0
86°¢ €9 ¥l ¥9'0 0z'0 GL'G9E GE€ 961 G9'1L 0 0 10
0¢ or 0g 02 o1 09 or 08 02 01 d Lyisuap
= U SAOIPIBA JO IOQUINU USYM = U SOOIIRA JO JOQqUUINU USYM adpy
(Spuodes ur) 7 suu) SUIUUNI UBIJA T Y13ua] 9[o£o-Tejusurepun] ueoy
Sds jo souswiIopisg CII 9qeL
01’9 56¢ (x4 101 8¢°0 00'825¢ 00 €623 008121 00°€1S 00'801 01
01’9 6°¢ (e4d 101 860 qLreege $6°660C GG8PI1 0z'6LY 06°L6 60
66°G G8'g 1%¢ 001 Lg0 08'6L0€ §6°Go61 05'8901 0G°0vy S1°'88 80
98°G sLe 11'e L6'0 920 89'6LLG S8°GLLY 0L'0v6 05'¥6¢ G9'GL Lo
89°G £€9°¢ 90°C £€6°0 92°0 GG G8YC 06°96G1 G0°LES S9'86¢ §0'€9 90
v £9¢ 86’1 060 g0 S¥'e11e 0g Lg81 0g'v0L G8'€8¢% S0°'8¥ g0
0%°s gee 681 980 i441] G0'65L1 09°1601 0¥'69¢ 08 1L% 05°6¢ Vo
g6F 61'¢ 81 £8°0 €50 9e'91EeT o¥'L18 08'8¢¥ 09 991 0591 €0
89% w'e wi LLo G0 0v'9L8 00819 08'99% 06 L8 0 4y
ee'y 08°G 861 aLo 120 0L°G8¢ 0g°L02 09°CL 0 0 10
08 oy 0g 03 o1 0g oy 0 02 ot d Aysuap
= U S921}IBA JO Jaquunu Uaym = U SIOVHIDA JO I2quInu uaym wmﬁm—

(SPUO93S UT) 7 oY) SUTUUNT GBI

7 Yiduei spofo-ferusurepuny ueap

A9 jo aduemioyeg

1°M98L

kA 4] 858 oy VA 6€°0 00'859¢ 00'8%2¢ 008121 00°€1S 00801 01
a8'sl ars aTY 69'1 6€°0 02°061€ $6'600% $9'1601 00'95¥ 00'€6 60
(441 6L o'y 91 LEo G%'6068 G0'6181 00'886 GC'80¥ G618 80
68°¥1 08’ 268 £€9'1 6e'0 §9°029g 01°L291 00'LL8 6TLSe SLL9 Lo
9071 oL I8¢ 86T €60 G¥'863¢C S9'LIVI 09'%9L 09'90¢ G6'99 90
86°¢1T ae'L £9'¢ 6Vl 1€0 0L°8€61 06’1031 0L'389 S8°6V6 o'ty g0
86'C1 arL 65’ Wi 650 0L’L8ST §9'896 01°909 ST Y6l GL'68 ¥o
1A) €89 (444 Vel 9%°0 GE'861T 06°61L 69’698 98'eel 08°€L €0
a0l 91’9 L6C 901 950 0€'99L S0'8Y §0°02% 6969 0 4y
98’6 < 4 866 ¥6'0 S0 or°20¢ G6°¢91 09°L8 0 0 T0
0§ o 0 02 o1 0 ov 0¢ 03 o1 d Aysuep
= U SOIIAPA JO JOQUINU UdYm = U SOILI9A JO ISQUINU USYM a3pH
(Spuod9s) 2 Surl) JurUUNL Wed A T Yr3ua] opAr-Tejustrepuny weajy
H[) Jo sousuLiopdd A 9[qEl,
80'%1 S6'L 98'¢ IAa €60 00'865¢ 006353 008121 00°€1S 00801 01
90¥1 L 98¢ W1l Ge0 0z'vé1e S1°600% 0¥°2601 00'9S¥ 00°€6 60
$S6'e1 ¥eL 08¢ (44" €0 01'9162 0L°9281 63566 08'01¥ 69'28 80
8G°€t LyL oL'e Wi 0g0 §6°2€9% 08°9€91 G8'188 08°09¢ 01'69 Lo
8C°€1 S¥'L 86'¢ 9€'1 650 Svyiee OF0E¥T OV'ELL G€'80€ 09°LS 90
¥6°Cl oL e 0e'T 860 $8'6961 SL8ICT 0¥'0¥9 §3'598 or'ey g0
8¥'G1L 869 ee V21 Lo 00°€T91 §LL86 08'619 06'861 <Qo'1e [4Y
1811 99 ST'e 'l §%0 0L LTcE §30EL 0¥'08¢ G6°LET SO¥I1 €0
86°01 80°9 €8¢ a1 %co S9'V8L S8'0LY 00822 oVeL 0 (4
LO'6 68'% 92°c 680 €50 0e'61¢ (UNAAS 09'69 0 0 10
09 oy 0¢ (174 01 0s oy 0¢ 0z 01 d Ayisusp
= U S3011I9A JO ISQUUNU UBYM = U S9OIM9A JO JSQUINY UIYM a3pq

(Spu0d9s ur) 7 ourt) Suruuna UBS

7T Y33ud] o[a4o-Tejusurepuny weay

SAQ jo souswLIOpdg TIT AIqE.L

68'L €0'¢ 08¢ (£A 620 00'8%5¢ 006523 00'8131 00'€1S 00'801 01
oTL LSv ggc [0} Lo S¥'861¢ 0¥'L00Z S1°8601 00'95% 00'¢6 60
99’9 Ty ¥ 101 ¥2'0 982862 S¥'8e81 08'1001 oL'eT 0828 80
68'S sLe 60T 60 12°0 SL'9L9T 09°6L91 08°868 99'99¢ OoT'1L Lo
02'e oe'g 81 080 610 SYvLES 0Z'8L¥1 ov'vos S6'81¢ 0L'6¢ 90
1244 €62 69T (VAU 910 06°0602 SL'9831 0€'aL9 0£'89¢C ov'v¥ g0
8¢ (444 ee'l 690 o 08'91LT $0'v901 0L'8¥g 02118 gv'ee o
90°¢ 96°T 60'T vo 110 02'80¢€1 9g'q18 or'0gy ge 081 02’91 €0
€€ 87’1 €80 9¢'0 80°0 09'S16 00'88¢ 0’192 g9'a8 0 0
€91 66°0 990 ¥eo ¥0'0 00'10¥ 09602 05°2L 0 0 T0
09 ov 0e 0g o1 09 oy 0g 0g 01 d Aysuap
= U SIWIBA JO IOQUINYU UIYM = U SPOIM9A JO JOqUINU USYM adpy

(Spuo03s Ut) 2 SWIT) SUTUUNI UBIIN

7 §13ua] 9[240-[ejuswrBpUN} UBIIA

SAHI jo ooupuLIopad A d[qElL

36 . N. Deo, M. S. Krishnamoorthy, and G. M. Prabhu

A slope =3 / slope =2 /

3.6.L
Q=0.5 MBFS : 4
- 9 =°.5 UE :e
log L
2.6.1L
1.6 et : >

log n

Fig. 2. Mean fundamental-cycle length L.

are classes of graphs for which MBFS yields a lower value for L than the others.
One such graph is shown in Figure 4.

It may also be observed from the empirical results that SDS runs faster than
BF, and MBFS runs faster than BF for graphs with edge densities less than 0.7.
This is partly due to the fact that the computation time in generating a set of
fundamental cycles is dependent on L, and algorithms that achieve a lower value
for L will also run faster than algorithms that do not. However, our empirical
results indicate that both DDS and UE achieve lower values for L than SDS and
MBFS, but they spend more time in doing this (because of the overhead involved
in more complex operations). Hence, we recommend the following:

(a) For graphs with edge densities =0.6, MBFS should be used, since it takes the
least time among all the algorithms that were tried.
(b) For the same reason, on graphs with edge densities >0.6, SDS should be used.

We have proved in Section 2 that generating T, is NP-complete. For the sake
of completeness, we now give an example to show that none of our heuristic

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982,

Algorithms for Generating Fundamental Cycles in a Graph . 37

,\ /

4.0 slope=3 - slope=2.

w
(=}
|
|

logt (tin miMliseconds)

g
o

2.0

v

Fig. 3. Mean running time ¢,

algorithms yields an optimal solution. For the graph in Figure 5, the minimum
value for L is 19, corresponding to the Ty, shown in bold lines. Using UE and
exploring from the vertices in the order qa, e, b, we find L to be 20. Using DDS,
SDS, and MBFS, and exploring from the vertices in the order @, b, d, ¢, we find
L to be 21.

Therefore, all four algorithms are only suboptimal.

All the algorithms we have discussed use some form of breadth first search in
which a new vertex to be explored from is selected by some criteria involving the
degrees of the vertices and not any other property of the graph. Our empirical
results show that for graphs with up to 50 vertices, these heuristics yield a value
for L that is O(n?). It would be interesting to explore whether this is also the case
for larger graphs. Such an analysis is carried out in the next section.

6. BOUND ON THE EXPECTED VALUE OF L(Tn)

Though generating an arbitrary spanning tree of a given graph takes only linear
time in the number of vertices and edges, generating a fundamental set of cycles
requires time proportional to the total length L of the fundamental-cycle set

ACM Transactions on Mathematical Software, Vol. 8, No 1, March 1982.

38 . N. Deo, M. S. Krishnamoorthy, and G. M. Prabhu

Figure 4.

Figure 5.

[5]. Therefore, it is of considerable interest to establish some tight bound on the
length L(Tmn) of a minimal fundamental-cycle set for an arbitrary connected
graph.

In a graph of order n the length of a cycle is at most n. The total number of
fundamental cycles in a connected graph (with n vertices and e edges) is its nul-
lity p = e — n + 1. Therefore an obvious worst case bound on L is n(e — n + 1)
or O(rn®). What is interesting, however (as Section 5 indicates), is that this bound
on L(Tmn) may actually be O(n®). This is because (loosely speaking) graphs
that have fundamental cycles with length O(n) seem to have fewer of them
(sparse graphs), whereas graphs in which the number of fundamental cycles is
O(n®) seem to have the length of these cycles bounded by a constant. Although
we were unable to prove this bound of O(n?) for L(Tmn) in general, the following
probabilistic analysis shows that the expected bound on L generated by a BFS is
O(n?), at least for certain “bad” classes of graphs. Since in all our heuristic
algorithms the next vertex to explore from is selected on the basis of the degree,
regular graphs prevent us from exploiting the degree distribution. Thus regular
graphs are, in some sense, “bad” inputs to these algorithms. Therefore we are
justified in considering only the class of regular graphs for analysis in this section.

Consider a large graph G with n vertices and e edges. Let the graph be random
in the sense that the occurrence of an edge between any distinct vertex pair is
equally likely. Let p be the probability of occurrence of an edge (i, j) for all 1 <
i=nl1=j=<nandi#j Then g = (1~ p) is the probability that there is no edge

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982

Algorithms for Generating Fundamental Cycles in a Graph ’ 39

Level 8

Figure 6.

L Level 1
b4 ba bs bg

between vertex ¢ and vertex j. For more detailed properties of such graphs and
BFS on them one should refer to Tinhofer [24, chap. 1].

Since all vertices have identical degrees, any of n vertices in G can be chosen
as the starting vertex, that is, the root of the BFS tree. So there is one vertex at
level 0 of the BFS tree. After exploring from this vertex, the expected number of
vertices at level 1 is p(rn — 1). The BFS tree at this stage is as shown in Figure 6.

Since G is regular of degree d = p(n — 1), we can choose any vertex at level 1
as the next vertex to explore from. Let us arbitrarily choose b; as the next vertex
to explore from. Vertex b, has (d — 1) vertices to choose from as adjacent ones at
level 1, so the expected number of edges incident on b, and at level 1 is p(d — 1).
These edges are all chords, since they connect vertices already in the tree. The
remaining (1 — p)(d — 1) edges are tree edges and must lead to new vertices at
level 2.

We choose b; as the next vertex to be explored from. The expected number of
chords from b, at level 1 is also

pld - 1).
The expected number of chords from b, to the descendants of b, at level 2 is
p(1-p)(d-1).

Since the degree of b, is d, the expected number of tree edges from b, leading
to new vertices at level 2 is

(1-p)*d-1).

We choose b; as the next vertex to be explored from. The expected number of
chords from b; at level 1 is

pld—1).
The expected number of chords from b; to the descendants of b, and b; at level
2is
p(1=p)(d—1) + p(l — p)’(d - 1).

Since the degree of b; is d, the expected number of tree edges from b; leading
to new vertices at level 2 is

1=-pd-1).
Proceeding in this fashion, the expected number of vertices at level 2,
d d-1)(1=-p)(1-(1-p?
m=(d=-1 % (1-pF=" p) { py).
k=1 p
ACM Transactions on Mathematical Software, Vol, 8, No. 1, March 1982

“@

40 . N. Deo, M. S. Krishnamoorthy, and G. M. Prabhu

The chords at level 1 form fundamental cycles of length 3, and the expected
number of such cycles is

p-d-(d—l). 5)
2

The chords from level 1 to level 2 form fundamental cycles of length 4, and the
expected number of such cycles is
d-1
Sd-k-p-Q=-p*.(d-1). (6)
k=1
Exploring from vertices at level 2, we find that the expected number of funda-
mental cycles of length 3 at level 2 is

cny-(ne—1
D 2 2(2) k p2
(the p” factor arises because a fundamental cycle is of length 3 at level 2 only if

both the end vertices of the chord at level 2 have a common parent at level 1).
Similarly, the expected number of fundamental cycles of length 5 at level 2 is

(7

p-nz-(na—1)

a2
3 - (1= p°). 8

We proceed in this fashion exploring from vertices level by level until there are
no more vertices to be explored. We wish to determine the expected value of L
generated by the heuristic algorithms described earlier.

For graphs with p = 1 the tree generated is the star tree with all fundamental
cycles of length 3; so

As the analysis of the expected length becomes complicated for an arbitrary value
of p, we compute it for two more values of p: p = 1 and p = }. These turn out to
be

Lyajo= g n + O(n) and Ly.u=< % n? + O(n).

Thus for regular random graphs of densities 1, , and 4, the expected value for
L(T), where T is an arbitrary BFS spanning tree, is kn®, where 0 < k < 3. Our
empirical observation on L (Tables I-V and Figure 2) shows that the average
value of L increases monotonically with density, for random graphs of all sizes for
each one of our algorithms. We therefore venture the conjecture that L(Tm) is
bounded by O(n®). More specifically, L(Twq) < 3 - n®. It seems that although the
nullity u of an n-vertex graph can be as high as O(n?), only a fixed number of
fundamental cycles (with respect to Tin) can have lengths that are proportional
to n, thus making the bound for L(Tmm) O(n?) and not O(n®).

7. CONCLUSIONS

The computational time complexity of the best known algorithms for generating
a set of fundamental cycles is of the order of the total length L of the set of

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982

Algorithms for Generating Fundamental Cycies in a Graph ’ 41

fundamental cycles. Hence algorithms that strive to minimize this length could
prove more efficient in generating a set of fundamental cycles, provided, of course,
that the overhead involved in doing this is not too high. We have shown here
that it is not worth the effort to obtain the absolute minimum fundamental-cycle
set, because it turns out to be an NP-complete problem.

We have, however, proposed some fast heuristic algorithms to obtain the
suboptimal solutions. Two of these, SDS and MBFS, are recommended in
particular, on the basis of our empirical studies. Both of these are faster than the
straightforward BFS generation and in general produce smaller values for L.

All our algorithms are based on breadth first search, where a new vertex to
explore from is selected on some criteria based on the degrees of the vertices. It
would be useful to consider other heuristic approaches for efficiently generating
a set of fundamental cycles based on some other property of the graph.

An analysis to establish a tight upper bound on L(7) for a worst case input
for our algorithms was attempted. Although we were unable to establish such a
bound on L(T'my), we did show the expected value of L(T) (T’ being a suboptimal
spanning tree) to be O(n®)—analytically for regular graphs and empirically for
random graphs. This suggests, but in no way proves, that O(n?) is the lower
bound for generating a set of fundamental cycles for a worst case graph. The
proof of our conjecture that L(Tmn) < § - n” is suggested for further investigation
in this area. An analytic proof of the conjecture that L(Tm) increases monoton-
ically with edge density of the graph will be an even stronger result.

ACKNOWLEDGMENTS

We wish to thank Richard Wong, Robert McNaughton, and Karl Winklmann for
going over an earlier draft of the paper and providing valuable suggestions. We
are also grateful to one of the referees for suggesting many improvements and
clarifications in the final version.

REFERENCES

1. Aso, A.V.,, HorcrorT, J.E.,, AND ULLMAN, J.D. The Design and Analysis of Computer Algort-
thms Addison-Wesley, Reading, Mass., 1974.
2. CornEIL, D B,, AND READ, RC. The graph isomorphism disease J Gr. Theory 1 (1977), 339~
363.
3 Deo, N. Graph Theory with Applications to Engineering and Computer Science. Prentice-
Hall, Englewood Cliffs, N J., 1974,
4. DEo, N. Breadth and depth first searches in graph theoretic algorithms J. Comput. Soc India
4 (1974), 1-8.
5. DEo, N. Minimum-length fundamental cycle set. IEEE Trans. Circuits Systems CAS-26 (Oct
1979), 894-895.
6. GareY, M.R,, aND JonunsoN, D.S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco, 1979.
7. GiBBs, N'W. Algorithm 491: Basic cycle generation Commun ACM 18, 5 (May 1975), 275-276.
8. GorLies, C.C., aND CornElL, D.G. Algonthms for finding a fundamental set of cycles for an
undirected linear graph. Commun. ACM 10, 12 (Dec. 1967), 780-783.
9. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass , 1969.
10. HuBIcKA, E., AND SysrLo, M.M. Minimal bases of cycles of a graph. In Proc 2nd Czechoslovak
Symp. Graph Theory. Academia (Prague, 1975), pp. 283-293.
11. Iro, T., AND K1zawa, M. The matrix rearrangement procedure for graph-theoretical algorithms
and its application to the generation of fundamental cycles. ACM Trans. Math. Softw. 3, 3 (Sept
1977), 227-231.

ACM Transactions on Mathematical Software, Vol. 8, No 1, March 1982,

42

12.
13.
14,

15.
16.

17.
18.
19,
20.

21.
22.

23.

24.
25.

26.

. N. Deo, M. S. Krishnamoorthy, and G. M. Prabhu

JOHNSON, D.S., LENSTRA, J.D., AND RinnooY KaN, AH.G. The complexity of the network
design problem. Networks 8 (1978).

JovanovicH, A.D. Note on a modification of the fundamental cycle finding algorithm. Inf.
Process. Lett. 3 (July 1974).

KNutH, D.E. The Art of Computer Programming, vol. 1. Addison-Wesley, Reading, Mass., 1968,
pp. 363-368.

KoLasInska, E. On a minimum cycle basis of a graph. Zastosow Matem 16 (1980), 631-639.
LEDERBERG,J. Topology of Molecules. Mathematical Sciences, M.1T. Press, Cambridge, Mass.,
1968, 37-51.

Paron, K. An algorithm for finding a fundamental set of cycles of a graph. Commun. ACM 12,
9 (Sept. 1969), 514-518.

REINGOLD, EM., NIEVERGELT, J., AND DEO, N. Combinatorial Algorithms: Theory and Prac-
tice. Prentice-Hall, Englewood Cliffs, N.J., 1977.

SteEPANEC, G.F. Basis systems of vector cycles with extremal properties in graphs (in Russian),
Usp. Mat. Nauk 19, 2 (116) (1964), 171-175.

SusseNGUTH, E., JR. A graph theoretical algorithm for matching chemcal structures. J. Chem.
Doc. 5, 1 (Feb. 1965), 36-43.

SysrLo, M.\M. Fundamental set of cycles of a graph. Zastosow Matem 13 (1973), 399-409.
SysLo, MMM. Minimum-length cycle bases of a graph (Extended Abstract). Methods Oper. Res.
37 (1980), 385-390.

TarsaN, R.E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972), 146~
160.

TiNHOFER, G. Zufallsgraphen. Hanser, Munich, 1980.

WEeLCH, J.T., JR. A mechanical analysis of the cyclic structure of undirected hinear graphs. J.
ACM 13, 2 (1966), 205-210.

ZYKov, A.A. Theory of Finite Graphs (in Russian). Nauka, Novosibirsk, 1969.

Received January 1981; revised August 1981; accepted September 1981

f

ACM Transactions on Mathematical Software, Vol 8, No 1, March 1982

