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Abstract

In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling
discrete-time model of n autonomous agents {i.e., points or particles} all moving in the plane
with the same speed but with different headings. Each agent’s heading is updated using a local
rule based on the average of its own heading plus the headings of its “neighbors.” In their paper,
Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they
are studying can cause all agents to eventually move in the same direction despite the absence of
centralized coordination and despite the fact that each agent’s set of nearest neighbors change
with time as the system evolves. This paper provides a theoretical explanation for this observed
behavior. In addition, convergence results are derived for several other similarly inspired models.
The Vicsek model proves to be a graphic example of a switched linear system which is stable,
but for which there does not exist a common quadratic Lyapunov function.

1 Introduction

In a recent paper [1], Vicsek et al. propose a simple but compelling discrete-time model of n
autonomous agents {i.e., points or particles} all moving in the plane with the same speed but with
different headings. Each agent’s heading is updated using a local rule based on the average of its
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own heading plus the headings of its “neighbors.” Agent i’s neighbors at time t, are those agents
which are either in or on a circle of pre-specified radius r centered at agent i’s current position. The
Vicsek model turns out to be a special version of a model introduced previously by Reynolds [2]
for simulating visually satisfying flocking and schooling behaviors for the animation industry. In
their paper, Vicsek et al. provide a variety of interesting simulation results which demonstrate that
the nearest neighbor rule they are studying can cause all agents to eventually move in the same
direction despite the absence of centralized coordination and despite the fact that each agent’s set
of nearest neighbors change with time as the system evolves. In this paper we provide a theoretical
explanation for this observed behavior.

There is a large and growing literature concerned with the coordination of groups of mobile
autonomous agents. Included here is the work of Czirok et al. [3] who propose one-dimensional
models which exhibit the same type of behavior as Vicsek’s. In [4, 5], Toner and Tu construct a
continuous ”hydrodynamic” model of the group of agents, while other authors such as Mikhailov
and Zanette [6] consider the behavior of populations of self propelled particles with long range
interactions. Schenk et al. determined interactions between individual self-propelled spots from
underlying reaction-diffusion equation [7]. Meanwhile in modelling biological systems, Grünbaum
and Okubo use statistical methods to analyze group behavior in animal aggregations [8]. This
paper and for example, the work reported in [9, 10, 11, 12] are part of a large literature in the
biological sciences focusing on many aspects of aggregation behavior in different species.

In addition to these modelling and simulation studies, research papers focusing on the detailed
mathematical analysis of emergent behaviors are beginning to appear. For example, Lui et al. [13]
use Lyapunov methods and Leonard et al. [14] and Olfati and Murray [15] use potential function
theory to understand flocking behavior, and Ögren et al. [16] uses Control Lyapunov function-based
ideas to analyze formation stability, while Fax and Murray [17] and Desai et al. [18] employ graph
theoretic techniques for the same purpose.

The one feature which sharply distinguishes previous analyses from that undertaken here is that
this paper explicitly takes into account possible changes in nearest neighbors over time. Chang-
ing nearest neighbor sets is an inherent property of the Vicsek model and in the other models we
consider. To analyze such models, it proves useful to appeal to well-known results [19, 20] charac-
terizing the convergence of infinite products of certain types of non-negative matrices. The study
of infinite matrix products is ongoing [21, 22, 23, 24, 25, 26] and is undoubtedly producing results
which will find application in the theoretical study of emergent behaviors.

Vicsek’s model is set up in Section 2 as a system of n simultaneous, one-dimensional recursion
equations, one for each agent. A family of simple graphs on n vertices is then introduced to
characterize all possible neighbor relationships. Doing this makes it possible to represent the
Vicsek model as an n-dimensional switched linear system whose switching signal takes values in
the set of indices which parameterize the family of graphs. The matrices which are switched within
the system turn out to be non-negative with special structural properties. By exploiting these
properties and making use of a classical convergence result due to Wolfowitz [19], we prove that
all n agents’ headings converge to a common steady state heading provided the n agents are all
“linked together” via their neighbors with sufficient frequency as the system evolves. The model
under consideration turns out to provide a graphic example of a switched linear system which is
stable, but for which there does not exist a common quadratic Lyapunov function.
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In Section 2.2 we define the notion of an average heading vector in terms of graph Laplacians
[27] and we show how this idea leads naturally to the Vicsek model as well as to other decentralized
control models which might be used for the same purposes. We propose one such model which
assumes each agent knows an upper bound on the number of agents in the group, and we explain
why this model has the convergence properties similar to Vicsek’s.

In Section 3 we consider a modified version of Vicsek’s discrete-time system consisting of the
same group of n agents, plus one additional agent, labelled 0, which acts as the group’s leader.
Agent 0 moves at the same constant speed as its n followers but with a fixed heading θ0. The ith
follower updates its heading just as in the Vicsek model, using the average of its own heading plus
the headings of its neighbors. For this system, each follower’s set of neighbors can also include
the leader and does so whenever the leader is within the follower’s neighborhood defining circle of
radius r. We prove that the headings of all n agents must converge to the leader’s provided all n
agents are “ linked to their leader” together via their neighbors frequently enough as the system
evolves. Finally we develop a continuous-time analog of this system and prove under condition
milder than imposed in the discrete-time case, that the headings of all n agents again converge to
the heading of the group’s leader.

2 Leaderless Coordination

The system studied by Vicsek et. al. in [1] consists of n autonomous agents {e.g., points or
particles}, labelled 1 through n, all moving in the plane with the same speed but with different
headings1. Each agent’s heading is updated using a simple local rule based on the average of its
own heading plus the headings of its “neighbors.” Agent i’s neighbors at time t, are those agents
which are either in or on a circle of pre-specified radius r centered at agent i’s current position. In
the sequel Ni(t) denotes the set of labels of those agents which are neighbors of agent i at time t.
Agent i’s heading, written θi, evolves in discrete-time in accordance with a model of the form

θi(t + 1) =< θi(t) >r (1)

where t is a discrete-time index taking values in the non-negative integers {0, 1, 2, . . .}, and
< θi(t) >r is the average of the headings of agent i and agent i’s neighbors at time t; that is

< θi(t) >r=
1

1 + ni(t)

θi(t) +
∑

j∈Ni(t)

θj(t)

 (2)

where ni(t) is the number of neighbors of agent i at time t. Observe that the preceding heading
update rule maps headings with values [0, 2π) into a heading with a value also in [0, π). Because
of this it makes sense to represent headings at any finite time t, as real numbers in [0, 2π). Of
course it is entirely possible that in the limit as t → ∞, a heading might approach the value 2π;
any such limiting value is interpreted as a heading of 0. Analogous statement apply to all other
models considered in the sequel. Accordingly, throughout the paper headings at any finite time t,
are represented as real numbers in [0, 2π).

1The Vicsek system also includes noise input signals which we ignore in this paper.
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The explicit form of the update equations determined by (1) and (2) depends on the relationships
between neighbors which exist at time t. These relationships can be conveniently described by a
simple, undirected graph2 with vertex set {1, 2, . . . , n} which is defined so that (i, j) is one of the
graph’s edges just in case agents i and j are neighbors. Since the relationships between neighbors
can change over time, so can the graph which describes them. To account for this we will need to
consider all possible such graphs. In the sequel we use the symbol P to denote a suitably defined
set, indexing the class of all simple graphs Gp defined on n vertices.

The set of agent heading update rules defined by (1) and (2), can be written in state form.
Toward this end, for each p ∈ P, define

Fp = (I + Dp)−1(Ap + I) (3)

where Ap is the adjacency matrix of graph Gp and Dp the diagonal matrix whose ith diagonal
element is the valence of vertex i within the graph. Then

θ(t + 1) = Fσ(t)θ(t), t ∈ {0, 1, 2, . . .} (4)

where θ is the heading vector θ = [ θ1 θ2 . . . θn ]′ and σ : {0, 1, . . .} → P is a switching signal
whose value at time t, is the index of the graph representing the agents’ neighbor relationships at
time t. A complete description of this system would have to include a model which explains how σ
changes over time as a function of the positions of the n agents in the plane. While such a model is
easy to derive and is essential for simulation purposes, it would be difficult to take into account in
a convergence analysis. To avoid this difficulty, we shall adopt a more conservative approach which
ignores how σ depends on the agent positions in the plane and assumes instead that σ might be
any switching signal in some suitably defined set of interest.

Our goal is to show for a large class of switching signals and for any initial set of agent headings
that the headings of all n agents will converge to the same steady state value θss. Convergence
of the θi to θss is equivalent to the state vector θ converging to a vector of the form θss1 where
1 ∆= [ 1 1 . . . 1 ]′n×1. Naturally there are situations where convergence to a common heading
cannot occur. The most obvious of these is when one agent - say the ith - starts so far away from
the rest that it never acquires any neighbors. Mathematically this would mean not only that Gσ(t)

is never connected3 at any time t, but also that vertex i remains an isolated vertex of Gσ(t) for
all t. This situation is likely to be encountered if r is very small. At the other extreme, which is
likely if r is very large, all agents might remain neighbors of all others for all time. In this case,
σ would remain fixed along such a trajectory at that value in p ∈ P for which Gp is a complete
graph. Convergence of θ to θss1 can easily be established in this special case because with σ so
fixed, (4) is a linear, time-invariant, discrete-time system. The situation of perhaps the greatest

2By an undirected graph G on vertex set V = {1, 2, . . . n} is meant V together with a set of unordered pairs
E = {(i, j) : i, j ∈ V} which are called G’s edges. Such a graph is simple if it has no self-loops {i.e., (i, j) ∈ E only
if i 6= j} or repeated edges {i.e., E contains only distinct elements}. By the valence of a vertex v of G is meant the
number of edges of G which are “incident” on v where by an indicant edge on v is meant an edge (i, j) of G for
which either i = v or j = v. The adjacency matrix of G is an n × n matrix of whose ijth entry is 1 if (i, j) is one of
G’s edges and 0 if it is not.

3A simple graph G with vertex set V = {1, 2, . . . , n} and edge set E is connected if has a “path” between each
distinct pair of its vertices i and j where by a path {of length m} between vertices i and j is meant a sequence of
distinct edges of G of the form (i, k1), (k1, k2), . . . (km, j). G is complete if has a path of length one {i.e., an edge}
between each distinct pair of its vertices.
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interest is between these two extremes when Gσ(t) is not necessarily complete or even connected
for any t ≥ 0, but when no strictly proper subset of Gσ(t)’s vertices is isolated from the rest for
all time. Establishing convergence in this case is challenging because σ changes with time and (4)
is not time-invariant. It is this case which we intend to study. Towards this end, we denote by Q
the subset of P consisting of the indices of the connected graphs in {Gp : p ∈ P}. Our first result
establishes the convergence of θ for the case when σ takes values only in Q.

Theorem 1 Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P be a switching signal satisfying σ(t) ∈
Q, t ∈ {0, 1, . . .}. Then

lim
t→∞

θ(t) = θss1 (5)

where θss is a number depending only on θ(0) and σ.

It is possible to establish convergence to a common heading under conditions which are signif-
icantly less stringent that those assumed in Theorem 1. To do this we need to introduce several
concepts. By the union of a collection of simple graphs, {Gp1 , Gp2 , . . . , Gpm}, each with vertex set
V, is meant the simple graph G with vertex set V and edge set equaling the union of the edge sets
of all of the graphs in the collection. We say that such a collection is jointly connected if the union
of its members is a connected graph. Note that if such a collection contains at least one graph
which is connected, then the collection must be jointly connected. On the other hand, a collection
can be jointly connected even if none of its members are connected.

It is natural to say that the n agents under consideration are linked together across a time
interval [t, τ ] if the collection of graph {Gσ(t), Gσ(t+1), . . . , Gσ(τ)} encountered along the interval, is
jointly connected. Theorem 1 says, in essence, that convergence of all agent’s headings to a common
heading is for certain provided all n agents are linked together across each successive interval of
length one {i.e., all of the time}. Of course there is no guarantee that along a specific trajectory
the n agents will be so linked. Perhaps a more likely situation, at least when r is not too small,
is when the agents are linked together across contiguous intervals of arbitrary but finite length. If
the lengths of such intervals are uniformly bounded, then in this case too convergence to a common
heading proves to be for certain.

Theorem 2 Let θ(0) be fixed and let σ : {0, 1, 2, . . .} → P be a switching signal for which there ex-
ists an infinite sequence of contiguous, non-empty, bounded, time-intervals [ti, ti+1), i ≥ 0, starting
at t0 = 0, with the property that across each such interval, the n agents are linked together. Then

lim
t→∞

θ(t) = θss1 (6)

where θss is a number depending only on θ(0) and σ.

The hypotheses of Theorem 2 require each of the collections {Gσ(ti), Gσ(ti+1), . . . , Gσ(ti+1−1)},
i ≥ 0, to be jointly connected. Although no constraints are placed on the intervals [ti, ti+1), i ≥ 0,
other than that they be of finite length, the constraint on σ is more restrictive than one might
hope for. What one would prefer instead is to show that (6) holds for every switching signal σ for
which there is an infinite sequence of bounded, non-overlapping {but not necessarily contiguous}
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intervals across which the n agents are linked together. Whether or not this is true remains to be
seen.

A sufficient but not necessary condition for σ to satisfy the hypotheses of Theorem 2 is that on
each successive interval [ti, ti+1), σ take on at least one value in Q. Theorem 1 is thus an obviously
a consequence of Theorem 2 for the case when all intervals are of length 1. For this reason we need
only develop a proof for Theorem 2. To do this we will make use of certain structural properties
of the Fp. As defined, each Fp is square and non-negative, where by a non-negative matrix is
meant a matrix whose entries are all non-negative. Each Fp also has the property that its row
sums all equal 1 {i.e., Fp1 = 1}. Matrices with these two properties are called stochastic [28].
The Fp have the additional property that their diagonal elements are all non-zero. For the case
when p ∈ Q {i.e., when Gp is connected}, it is known that (I + Ap)m becomes a matrix with all
positive entries for m sufficiently large [28]. It is easy to see that if (I + Ap)m has all positive
entries, then so does Fm

p . Such (I + Ap) and Fp are examples of “primitive matrices” where by
a primitive matrix is meant any square, non-negative matrix M for which Mm is a matrix with
all positive entries for m sufficiently large [28]. It is known [28] that among the n eigenvalues of
a primitive matrix, there is exactly one with largest magnitude, that this eigenvalue is the only
one possessing an eigenvector with all positive entries, and that the remaining n − 1 eigenvalues
are all strictly smaller in magnitude than the largest one. This means that for p ∈ Q, 1 must
be Fp’s largest eigenvalue and all remaining eigenvalues must lie within the open unit circle. As
a consequence, each such Fp must have the property that limi→∞ F i

p = 1cp for some row vector
cp. Any stochastic matrices M for which limi→∞M i is a matrix of rank 1 is called ergodic [28].
Primitive stochastic matrices are thus ergodic matrices. To summarize, each Fp is a stochastic
matrix with positive diagonal elements and if p ∈ Q then Fp is also primitive and hence ergodic.
The crucial convergence result upon which the proof of Theorem 2 depends is classical [19] and is
as follows.

Theorem 3 (Wolfowitz) Let M1,M2, . . . ,Mm be a finite set of ergodic matrices with the property
that for each sequence Mi1 ,Mi2 , . . . ,Mij of positive length, the matrix product MijMij−1 · · · Mi1 is
ergodic. Then for each infinite sequence ,Mi1 ,Mi2 , . . . there exists a row vector c such that

lim
j→∞

MijMij−1 · · ·Mi1 = 1c

The finiteness of the set M1,M2, . . . ,Mm is crucial to Wolfowitz’s proof. This finiteness requirement
is also the reason why we’ve needed to assume contiguous, bounded intervals in the statement of
Theorem 2.

In order to make use of Theorem 3, we need a few facts concerning products of the types of
matrices we are considering. First we point out that the class of n × n stochastic matrices with
positive diagonal elements is closed under matrix multiplication. This is because the product of
two non-negative matrices with positive diagonals is a matrix with the same properties and because
the product of two stochastic matrices is stochastic. Second we will use the following key result4.

4We are indebted to Marc Artzrouni, University of Pau, France for his help with the proof of an earlier version of
this lemma.
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Lemma 1 Let {p1, p2, . . . , pm} be a set of indices in P for which {Gp1 , Gp2 , . . . , Gpm} is a jointly
connected collection of graphs. Then the matrix product Fp1Fp2 · · ·Fpm is ergodic.

Proof of Theorem 25: Let T denote the least upper bound on the lengths of the intervals [ti, ti+1),
i ≥ 0. By assumption T < ∞. Let Φ(t, t) = I, t ≥ 0, and Φ(t, τ) ∆= Fσ(t−1) · · ·Fσ(τ+1)Fσ(τ),
t > τ ≥ 0. Clearly θ(t) = Φ(t, 0)θ(0). To complete the theorem’s proof, it is therefore enough to
show that

lim
t→∞

Φ(t, 0) = 1c (7)

for some row vector c since this would imply (6) with θss
∆= cθ(0). In view of Lemma 1, the

constraints on σ imply that each such matrix product Φ(tj+1, tj), j ≥ 0, is ergodic. Moreover the
set of possible Φ(tj+1, tj), j ≥ 0, must be finite because each Φ(tj+1, tj) is a product of at most T
matrices from {Fp : p ∈ P} which is a finite set. But Φ(tj , 0) = Φ(tj , tj−1)Φ(tj−1, tj−2) · · ·Φ(t1, t0).
Therefore by Theorem 3,

lim
j→∞

Φ(tj , 0) = 1c (8)

For each t ≥ 0, let jt be the largest non-negative integer such that tjt ≤ t. Then Φ(t, 0) =
Φ(t, tjt)Φ(tjt , 0) and Φ(t, tjt)1 = 1 so

Φ(t, 0)− 1c = Φ(t, tjt)(Φ(tjt , 0)− 1c) (9)

Note that t 7−→ Φ(t, tjt) is a bounded function because Φ(t, tjt) is the product of at most T − 1
matrices Fp which come from a bounded set. Moreover (Φ(tjt , 0) − 1c) → 0 as t → ∞ because of
(8). From this and (9) it follows that (Φ(t, 0)− 1c) → 0 as t →∞. Therefore (7) holds.

To prove Lemma 1 we shall make use of the standard partial ordering ≥ on n× n non-negative
matrices by writing B ≥ A whenever B − A is non-negative. Let us note that if A is a primitive
matrix and if B ≥ A, then B is primitive as well. Lemma 1 is a simple consequence of the following
result.

Lemma 2 Let m ≥ 2 be a positive integer and let A1, A2, . . . Am be non-negative n × n matrices.
Suppose that the diagonal elements of all of the Ai are positive and let µ and ρ denote the smallest
and largest of these respectively. Then

A1A2 · · ·Am ≥
(

µ2

2ρ

)(m−1)

(A1 + A2 + · · ·+ Am) (10)

Proof: Set δ = µ2

2ρ . It will be shown by induction that

A1A2 · · ·Ai ≥ δ(i−1)(A1 + A2 + · · ·+ Ai) (11)
5The authors thank Daniel Liberzon for pointing out a flaw in the original version of this proof, and Sean Meyn

for suggesting how to fix it.
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holds for i ∈ {2, 3, . . . ,m}. Towards this end note that it is possible to write each Ai as Ai = µI+Bi

where Bi is non-negative. Then for any j, k ∈ {1, 2, . . . ,m},

AjAk = (µI + Bj)(µI + Bk) = µ2I + µ(Bj + Bk) + BjBk

Hence

AjAk ≥ µ2I + µ(Bj + Bk) ≥ µ2I +
µ2

2ρ
(Bj + Bk) = δ((ρI + Bj) + (ρI + Bk))

Since (ρI + Bj) ≥ Aj and (ρI + Bk) ≥ Ak it follows that

AjAk ≥ δ(Aj + Ak), ∀j, k ∈ {1, 2, . . . ,m} (12)

Setting j = 1 and k = 2 proves that (11) holds for i = 2. If m = 2, the proof is complete.

Now suppose that m > 2 and that (11) holds for i ∈ {2, 3, . . . l} where l is some integer in
{2, 3, . . . ,m− 1}. Then A1A2 · · ·Al+1 = (A1 · · ·Al)Al+1 so by the inductive hypothesis,

A1A2 · · ·Al+1 ≥ δ(l−1)(A1 + A2 + · · ·+ Al)Al+1 (13)

But using (12) l times we can write

(A1 + A2 + · · ·+ Al)Al+1 ≥ δ{(A1 + Al+1) + (A2 + Al+1) + · · ·+ (Al + Al+1)}

Thus
(A1 + A2 + · · ·+ Al)Al+1 ≥ δ(A1 + A2 + · · ·+ Al+1)

This and (13) imply that (11) holds for i = l + 1. Therefore, by induction (11) is true for all
i ∈ {2, 3, . . . ,m}.

Proof of Lemma 1: Set F = (I + D)−1(I + A) where A and D are respectively the adjacency
matrix and diagonal valence matrix of the union of the collection of graphs {Gp1 , Gp2 , . . . , Gpm}.
Since the collection is jointly connected, its union is connected which means that F is primitive.
By Lemma 2

Fp1Fp2 · · ·Fpm ≥ γ(Fp1 + Fp2 + · · ·+ Fpm) (14)

where γ is a positive constant depending on the matrices in the product. Since for i ∈ {1, 2, . . . ,m},
Fpi = (I + Dpi)

−1(I + Api) and D ≥ Dpi , it must be true that Fpi ≥ (I + D)−1(I + Api), i ∈
{1, 2, . . . ,m}. From this and (14) it follows that

Fp1Fp2 · · ·Fpm ≥ γ(I + D)−1(mI + Ap1 + Ap2 + · · ·+ Apm) (15)

But Ap1 + Ap2 + · · ·+ Apm ≥ A and mI ≥ I so

Fp1Fp2 · · ·Fpm ≥ γF

Since the product Fp1Fp2 · · ·Fpm is bounded below by a primitive matrix, namely γF , the product
must be primitive as well. Since Fp1Fp2 · · ·Fpm is also a stochastic matrix, it must therefore be
ergodic.
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2.1 Quadratic Lyapunov Functions

As we’ve already noted, Fp1 = 1, p ∈ P. Thus span {1} is an Fp-invariant subspace. From this
and standard existence conditions for solutions to linear algebraic equations, it follows that for any
(n− 1)× n matrix P with kernel spanned by 1, the equations

PFp = F̃pP, p ∈ P (16)

have unique solutions F̃p, p ∈ P, and moreover that

spectrum Fp = {1} ∪ spectrum F̃p, p ∈ P (17)

As a consequence of (16) it can easily be seen that for any sequence of indices p0, p1, . . . pi in P,

F̃piF̃pi−1 · · · F̃p0P = PFpiFpi−1 · · ·Fp0 (18)

Since P has full row rank and P1 = 0, the convergence of a product of the form FpiFpi−1 · · ·Fp0 to
1c for some row vector c, is equivalent to convergence of the corresponding product F̃piF̃pi−1 · · · F̃p0

to the zero matrix. Thus, for example, if p0, p1, . . . is an infinite sequence of indices in Q, then, in
view of Theorem 3,

lim
i→∞

F̃piF̃pi−1 · · · F̃p0 = 0 (19)

Some readers might be tempted to think, as we first did, that the validity of (19) could be established
directly by showing that the F̃p in the product share a common quadratic Lyapunov function. More
precisely, (19) would be true if there were a single positive definite matrix M such that all of the
matrices F̃ ′pMF̃p−M, p ∈ Q were negative definite. Although each F̃p, p ∈ Q can easily be shown
to be discrete-time stable, there are classes of Fp for which that no such common Lyapunov matrix
M exists. While we’ve not been able to construct a simple analytical example which demonstrates
this, we have been able to determine, for example, that no common quadratic Lyapunov function
exists for the class of all Fp whose associated graphs have 10 vertices and are connected. One can
verify that this is so by using semidefinite programming and restricting the check to just those
connected graphs on 10 vertices with either 9 or 10 edges.

It is worth noting that existence of a common quadratic Lyapunov function for all discrete time
stable m ×m matrices M1,M2, . . . in some given finite set M, is a much stronger condition than
is typically needed to guarantee that all infinite products of the Mi converge to zero. It is known
[29] that convergence to zero of all such infinite products is in fact equivalent to the “joint spectral
radius” of M being strictly less than 1 where by joint spectral radius of M is meant

ρM := lim sup
k→∞

{
max

Mi1
∈M

max
Mi2

∈M
· · · max

Mik
∈M

||Mi1Mi2 · · ·Mik ||
} 1

k

Here || · || is any norm on the space of real m×m matrices. It turns out that ρM does not depend
on the choice of norm because all norms on a finite-dimensional space are equivalent. On the other
hand, a “tight” sufficient condition for the existence of a common quadratic Lyapunov function for
the matrices in M, is ρM ∈ [0, 1√

m
) [30]. This condition is tight in the sense that one can find a

finite set of m ×m matrices with joint spectral radius ρ = 1√
m

, whose infinite products converge
to zero despite the fact that there does not exist common quadratic Lyapunov function for the set.
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From this one can draw the conclusion that sets of matrices with “large” m are not likely to possess
a common quadratic, even though all infinite products of such matrices converge to zero. This can
in turn help explain why it has proved to be necessary to go as high as n = 10 to find a case where
a common quadratic Lyapunov function for a family of Fp does not exist.

2.2 Generalization

It is possible to interpret the Vicsek model analyzed in the last section as the closed-loop system
which results when a suitably defined decentralized feedback law is applied to the n-agent heading
model

θ(t + 1) = θ(t) + u(t) (20)

with open-loop control u. To end up with the Vicsek model, u would have to be defined as

u(t) = −(I + Dσ(t))
−1e(t) (21)

where e is the average heading error vector

e(t) ∆= Lσ(t)θ(t) (22)

and, for each p ∈ P, Lp is the symmetric matrix

Lp = Dp −Ap (23)

known in graph theory as the Laplacian of Gp [27, 31]. It is easily verified that equations (20) to
(23) do indeed define the Vicsek model. We’ve elected to call e the average heading error because
if e(t) = 0 at some time t, then the heading of each agent with neighbors at that time will equal
the average of the headings of its neighbors.

In the present context, Vicsek’s control (21) can be viewed as a special case of a more general
decentralized feedback control of the form

u(t) = −G−1
σ(t)Lσ(t)θ(t) (24)

where for each p ∈ P, Gp is a suitably defined, nonsingular diagonal matrix with ith diagonal
element gi

p. This, in turn, is an abbreviated description of a system of n individual agent control
laws of the form

ui(t) = − 1
gi(t)

ni(t)θi(t) +
∑

j∈Ni(t)

θj(t)

 , i ∈ {1, 2, . . . , n} (25)

where for i ∈ {1, 2, . . . , n}, ui(t) is the ith entry of u(t) and gi(t)
∆= gi

σ(t). Application of this control
to (20) would result in the closed-loop system

θ(t + 1) = θ(t)−G−1
σ(t)Lσ(t)θ(t) (26)

Note that the form of (26) implies that if θ and σ were to converge to a constant values θ̄,
and σ̄ respectively, then θ̄ would automatically satisfy Lσ̄ θ̄ = 0. This means that control (24)
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automatically forces each agent’s heading to converge to the average of its neighbors, if agent
headings were to converge at all. In other words, the choice of the Gp does not effect the requirement
that each agent’s heading equal the average of the headings of its neighbors, if there is convergence
at all.

The preceding suggests that there might be useful choices for the Gp alternative to those con-
sidered by Vicsek, which also lead to convergence. One such choice turns out to be

Gp = gI, p ∈ P (27)

where g is any number greater than n. Our aim is to show that with the Gp so defined, Theorem
2 continues to be valid. In sharp contrast with the proof technique used in the last section,
convergence will be established here using a common quadratic Lyapunov function.

As before, we will use the model

θ(t + 1) = Fσ(t)θ(t) (28)

where, in view of the definition of the Gp in (27), the Fp are now symmetric matrices of the form

Fp = I − 1
g
Lp, p ∈ P (29)

To proceed we need to review a number of well known and easily verified properties of graph
Laplacians relevant to the problem at hand. For this, let G be any given simple graph with n
vertices. Let D be a diagonal matrix whose diagonal elements are the valences of G’s vertices and
write A for G’s adjacency matrix. Then, as noted before, the Laplacian of G is the symmetric
matrix L = D − A. The definition of L clearly implies that L1 = 0. Thus L must have an
eigenvalue at zero and 1 must be an eigenvector for this eigenvalue. Surprisingly L is always a
positive semidefinite matrix [31]. Thus L must have a real spectrum consisting of non-negative
numbers and at least one of these numbers must be 0. It turns out that the number of connected
components of G is exactly the same as the multiplicity of L’s eigenvalue at 0 [31]. Thus G is a
connected graph just in case L has exactly one eigenvalue at 0. Note that the trace of L is the sum
of the valences of all vertices of G. This number can never exceed (n−1)n and can attain this high
value only for a complete graph. In any event, this property implies that the maximum eigenvalue
of L is never larger that n(n − 1). Actually the largest eigenvalue of L can never be larger than
n [31]. This means that the eigenvalues of 1

gL must be smaller than 1 since g > n . From these
properties it clearly follows that the eigenvalues of (I − 1

gL) must all be between 0 and 1, and that
if G is connected, then all will be strictly less than 1 except for one eigenvalue at 1 with eigenvector
1. Since each Fp is of the form (I − 1

gL), each Fp possesses all of these properties.

Let σ be a fixed switching signal with value pt ∈ Q at time t ≥ 0. What we’d like to do is to
prove that as i → ∞, the matrix product FpiFpi−1 · · ·Fp0 converges to 1c for some row vector c.
As noted in the section 2.1, this matrix product will so converge just in case

lim
i→∞

F̃piF̃pi−1 · · · F̃p0 = 0 (30)

where as in section 2.1, F̃p is the unique solution to PFp = F̃pP, p ∈ P and P is any full rank
(n − 1) × n matrix satisfying P1 = 0. For simplicity and without loss of generality we shall
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henceforth assume that the rows of P form a basis for the orthogonal complement of the span of e.
This means that PP ′ equals the (n − 1) × (n − 1) identity Ĩ, that F̃p = PFpP

′, p ∈ P, and thus
that each F̃p is symmetric. Moreover, in view of (17) and the spectral properties of the Fp, p ∈ Q,
it is clear that each F̃p, p ∈ Q must have a real spectrum lying strictly inside of the unit circle.
This plus symmetry means that for each p ∈ Q, F̃p− Ĩ is negative definite, that F̃ ′pF̃p− Ĩ is negative
definite and thus that Ĩ is a common discrete-time Lyapunov matrix for all such F̃p. Using this fact
it is straight forward to prove that Theorem 1 holds for system (26) provided the Gp are defined
as in (27) with g > n.

In general, each F̃p is a discrete-time stability matrix for which F̃ ′pF̃p− Ĩ is negative definite only
if p ∈ Q. To craft a proof of Theorem 2 for the system described by (26) and (27), one needs to
show that for each interval [ti, ti+1) on which {Gσ(ti+1−1), . . . Gσ(ti+1), Gσ(ti)} is a jointly connected
collection of graphs, the product F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti) is a discrete-time stability matrix and
(F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti))

′(F̃σ(ti+1−1) · · · F̃σ(ti+1)F̃σ(ti)) − Ĩ is negative definite. This is a direct
consequence of the following proposition.

Proposition 1 If {Gp1 , Gp2 , . . . , Gpm} is a jointly connected collection of graphs, then

(F̃p1F̃p2 · · · F̃pm)′(F̃p1F̃p2 · · · F̃pm)− Ĩ

is a negative definite matrix.

In the light of Proposition 1, it is clear that the conclusion Theorem 2 is also valid for the system
described by (26) and (27). A proof of this version of Theorem 2 will not be given.

To summarize, both the Vicsek control defined by u = −(I + Dσ(t))−1e(t) and the simplified
control given by u = −1

ge(t) achieve the same emergent behavior. While latter is much easier to
analyze than the former, it has the disadvantage of not being a true decentralized control because
each agent must know an upper bound {i.e., g} on the total number of agents within the group.
Whether or not this is really a disadvantage, of course depends on what the models are to be used
for.

The proof of Proposition 1 depends on two lemmas. In the sequel, we state the lemmas, use
them to prove Proposition 1, and then conclude this section with proofs of the lemmas themselves.

Lemma 3 If {Gp1 , Gp2 , . . . , Gpm} is a jointly connected collection of graphs with Laplacians
Lp1 , Lp2 , . . . , Lpm, then

m⋂
i=1

kernel Lpi = span {1} (31)

Lemma 4 Let M1,M2, . . . ,Mm be a set of n×n real symmetric, matrices whose induced 2-norms
are all less than or equal to 1. If

m⋂
i=1

kernel (I −Mi) = 0 (32)

then the induced 2-norm of M1M2 · · ·Mm is less than 1.
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Proof of Proposition 1: The definition of the Fp in (29) implies that I − Fp = 1
gLp. Hence by

Lemma 3 and the hypothesis that {Gp1 , Gp2 , . . . , Gpm} is a jointly connected collection,

m⋂
i=1

kernel (I − Fpi) = span {1} (33)

We claim that
m⋂

i=1

kernel (Ĩ − F̃pi) = 0 (34)

To establish this fact, let x̄ be any vector such that (Ĩ − F̃pi)x̄ = 0, i ∈ {1, 2, . . . ,m}. Since P
has independent rows, there is a vector x such that x̄ = Px. But P (I − Fpi) = (Ĩ − F̃pi)P , so
P (I − Fpi)x = 0. Hence (I − Fpi)x = ai1 for some number ai. But 1′(I − Fpi) = 1

g1
′Lpi = 0, so

ai1′1 = 0. This implies that ai = 0 and thus that (I − Fpi)x = 0. But this must be true for all
i ∈ {1, 2, . . . ,m}. It follows from (33) that x ∈ span {1} and, since x̄ = Px, that x̄ = 0. Therefore
(34) is true.

As defined, the F̃p are all symmetric, positive semi-definite matrices with induced 2 - norms
not exceeding 1. This and (34) imply that the family of matrices F̃p1 , F̃p2 , . . . , F̃pm satisfy the
hypotheses of Lemma 4. It follows that Proposition 1 is true.

Proof of Lemma 3: In the sequel we write L(G) for the Laplacian of a simple graph G. By the
intersection of a collection of simple graphs, {Gp1 , Gp2 , . . . , Gpm}, each with vertex set V, is meant
the simple graph G with vertex set V and edge set equaling the intersection of the edge sets of all
of the graphs in the collection. It follows at once from the definition of a Laplacian that

L(Gp) + L(Gq) = L(Gp ∩Gq) + L(Gp ∪Gq)

for all p, q ∈ P. Repeated application of this identity to the set {Gp1 , Gp2 , . . . , Gpm} yields the
relation

m∑
i=1

L(Gpi) = L

(
m⋃

i=1

Gpi

)
+

m−1∑
i=1

L

Gpi+1

⋂
i⋃

j=1

Gpj


 (35)

which is valid for m > 1. Since all matrices in (35) are positive semi-definite, any vector x which
makes the quadratic form x′{L(Gp1)+L(Gp2)+· · ·+L(Gpm)}x vanish, must also make the quadratic
form x′L(Gp1 ∪Gp2 ∪ · · · ∪Gpm)x vanish. Since any vector in the kernel of each matrix L(Gpi) has
this property, we can draw the following conclusion.

m⋂
i=1

kernel L(Gpi) ⊂ kernel L

(
m⋃

i=1

Gpi

)

Suppose now that {Gp1 , Gp2 , . . . , Gpm} is a jointly connected collection. Then the union Gp1 ∪
Gp2 ∪ · · · ∪Gpm is connected so its Laplacian must have exactly span {1} for its kernel. Hence the
intersection of the kernels of the L(Gpi) must be contained in span {1}. But span {1} is contained
in the kernel of each matrix L(Gpi) in the intersection and therefore in the intersection of the
kernels of these matrices as well. It follows that (31) is true.
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Proof of Lemma 4: In the sequel we write |x| for the 2-norm of a real n-vector x and |M | for the
induced 2-norm of a real n× n matrix. Let x ∈ IRn be any real, non-zero n-vector. It is enough to
show that

|M1M2 · · ·Mmx| < |x| (36)

In view of (32) and the assumption that x 6= 0, there must be a largest integer k ∈ {1, 2, . . . ,m}
such that x 6∈ kernel (Mk − I). We claim that

|Mkx| < |x| (37)

To show that this is so we exploit the symmetry of Mk to write x as x = α1y1 + α2y2 + · · ·+ αnyn

where α1, α2, . . . , αn are real numbers and {y1, y2, . . . , yn} is an orthonormal set of eigenvectors of
Mk with real eigenvalues λ1, λ2, . . . λn. Note that |λi| ≤ 1, i ∈ {1, 2, . . . , n}, because |Mk| ≤ 1.
Next observe that since Mkx = α1λ1y1 + α2λ2y2 + · · · + αnλnyn and Mkx 6= x, there must be at
least one integer j such that αjλj 6= αj . Hence |αjλjyj | < |αjyj |. But |Mkx|2 = |α1λ1y1|2 + · · ·+
|αjλjyj |2 + · · ·+ |αnλnyn|2 so

|Mkx|2 < |α1λ1y1|2 + · · ·+ |αjyj |2 + · · ·+ |αnλnyn|2

Moreover

|α1λ1y1|2 + · · ·+ |αjyj |2 + · · ·+ |αnλnyn|2 ≤ |α1y1|2 + · · ·+ |αjyj |2 + · · ·+ |αnyn|2 = |x|2

so |Mkx|2 < |x|2; therefore (37) is true.

In view of the definition of k, Mjx = x, j ∈ {k + 1, . . . ,m}. From this and (37) it follows that
|M1 · · ·Mmx| = |M1 · · ·Mkx| ≤ |M1 · · ·Mk−1||Mkx| < |M1 · · ·Mk−1||x|. But |M1 · · ·Mk−1| ≤ 1
because each Mi has an induced 2 norm not exceeding 1. Therefore (36) is true.

3 Leader Following

In this section we consider a modified version of Vicsek’s discrete-time system consisting of the
same group of n agents as before, plus one additional agent, labelled 0, which acts as the group’s
leader. Agent 0 moves at the same constant speed as its n followers but with a fixed heading θ0.
The ith follower updates its heading just as before, using the average of its own heading plus the
headings of its neighbors. The difference now is that each follower’s set of neighbors can include
the leader and does so whenever the leader is within the follower’s neighborhood defining circle of
radius r. Agent i’s update rule thus is of the form

θi(t + 1) =
1

1 + ni(t) + bi(t)

θi(t) +
∑

j∈Ni(t)

θj(t) + bi(t)θ0

 (38)

where as before, Ni(t) is the set of labels of agent i’s neighbors from the original group of n followers,
and ni(t) is the number of labels within Ni(t). Agent 0’s heading is accounted for in the ith average
by defining bi(t) to be 1 whenever agent 0 is a neighbor of agent i and 0 otherwise.

The explicit form of the n update equations exemplified by (38), depends on the relationships
between neighbors which exist at time t. Like before, each of these relationships can be conveniently
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described by a simple undirected graph. In this case, each such graph has vertex set {0, 1, 2, . . . , n}
and is defined so that (i, j) is one of the graph’s edges just in case agents i and j are neighbors.
For this purpose we consider an agent - say i - to be a neighbor of agent 0 whenever agent 0 is a
neighbor of agent i. We will need to consider all possible such graphs. In the sequel we use the
symbol P̄ to denote a set indexing the class of all simple graphs Ḡp defined on vertices 0, 1, 2, . . . , n.
We will also continue to make reference to the set of all simple graphs on vertices 1, 2, . . . , n. Such
graphs are now viewed as subgraphs of the Ḡp. Thus, for p ∈ P̄, Gp now denotes the subgraph
obtained from Ḡp by deleting vertex 0 and all edges incident on vertex 0.

The set of agent heading update rules defined by (38) can be written in state form. Toward
this end, for each p ∈ P̄, let Ap denote the n×n adjacency matrix of the n-agent graph Gp and let
Dp be the corresponding diagonal matrix of valences of Gp. Then in matrix terms, (38) becomes

θ(t + 1) = (I + Dσ(t) + Bσ(t))
−1((I + Aσ(t))θ(t) + Bσ(t)1θ0), t ∈ {0, 1, 2, . . .} (39)

where σ : {0, 1, . . .} → P̄ is now a switching signal whose value at time t, is the index of the graph
Ḡp representing the agent system’s neighbor relationships at time t and for p ∈ P̄, Bp is the n× n
diagonal matrix whose ith diagonal element is 1 if (i, 0) is one of Ḡp’s edges and 0 otherwise.

Much like before, our goal here is to show for a large class of switching signals and for any initial
set of follower agent headings, that the headings of all n followers converge to the heading of the
leader. For convergence in the leaderless case we required all n-agents to be linked together across
each interval within an infinite sequence of contiguous, bounded intervals. We will need a similar
requirement in the leader following case under consideration. Let us agree to say that the n agents
are linked to the leader across an interval [t, τ ] if the collection of graphs {Ḡσ(t), Ḡσ(t+1), . . . , Ḡσ(τ)}
encountered along the interval is jointly connected. In other words, the n agents are linked to their
leader across an interval I just when the n + 1-member group consisting of the n agents and their
leader is linked together across I. Note that for the n-agent group to be linked to its leader across
I does not mean that the n-agent group must be linked together across I. Nor is the n-agent group
necessarily linked to its leader across I when it is linked together across I. Our main result on
discrete-time leader following is next.

Theorem 4 Let θ(0) and θ0 be fixed and let σ : {0, 1, 2, . . .} → P̄ be a switching signal for which
there exists an infinite sequence of contiguous, non-empty, bounded, time-intervals [ti, ti+1), i ≥ 0,
starting at t0 = 0, with the property that across each such interval, the n-agent group of followers
is linked to its leader. Then

lim
t→∞

θ(t) = θ01 (40)

The theorem says that the members of the n-agent group all eventually follow their leader provided
there is a positive integer T which is large enough so that the n-agent group is linked to its leader
across each contiguous, non-empty time- interval of length at most T . In the sequel we outline
several preliminary ideas upon which the proof of Theorem 4 depends.

To begin, let us note that to prove that (40) holds is equivalent to proving that limt→∞ ε(t) → 0
where ε is the heading error vector ε(t) ∆= θ(t)− θ01. From (39) it is easy to deduce that ε satisfies
the equation

ε(t + 1) = Fσ(t)ε(t) (41)
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where for p ∈ P̄, Fp is
Fp = (I + Dp + Bp)−1(I + Ap) (42)

Note that the partitioned matrices

F̄p
∆=
[

Fp Hp1
0 1

]
, p ∈ P̄ (43)

are stochastic where, for p ∈ P̄,
Hp

∆= (I + Dp + Bp)−1Bp (44)

To proceed, we need a few more ideas concerned with non-negative matrices. In the sequel
we write M > N whenever M − N is a positive matrix, where by a positive matrix is meant a
matrix with all positive entries. For any non-negative matrix R of any size, we write ||R|| for the
largest of the row sums of R. Note that ||R|| is the induced infinity norm of R and consequently is
sub-multiplicative. We denote by dRe, the matrix obtained by replacing all of R’s non-zero entries
with 1s. Note that R > 0 if and only if dRe > 0. It is also true for any pair of n× n non-negative
matrices A and B with positive diagonal elements, that dABe = ddAedBee. Moreover, in view of
Lemma 2, any such pair of matrices must also satisfy dABe ≥ dBe and dBAe ≥ dBe.

Let p1, p2, . . . , pm be a given set of indices in P̄. It is possible to relate the connectedness of
the collection {Ḡp1 , Ḡp2 , . . . , Ḡpm} to properties of the matrix pairs (Fpi ,Hpi1), i ∈ {1, 2, . . . ,m}.
Let us note first that for any p ∈ P̄ , the indices of the non-zero rows of Bp1 are precisely the
labels of vertices in Ḡp which are connected to vertex 0 by paths of length 1. More generally, for
any integer j > 0, the indices of the non-zero rows of (I + Ap)(j−1)Bp1 are the labels of vertices
in Ḡp connected to vertex 0 by paths of length less than or equal to j. Hence for such j, the
non-zero rows of the sum

∑m
k=1(I + Apk

)(j−1)Bpk
1 must be the labels of vertices in the union of

the collection {Ḡp1 , Ḡp2 , . . . , Ḡpm} which are connected to vertex 0 by paths of length less than
or equal to j. It follows that if {Ḡp1 , Ḡp2 , . . . , Ḡpm} is jointly connected, there must be a value of
j sufficiently large so that

∑m
k=1(I + Apk

)(j−1)Bpk
1 > 0. Since any vertex in a connected graph

with n + 1 vertices is reachable from any other vertex along a path of length of at most n + 1, it
follows that if {Ḡp1 , Ḡp2 , . . . , Ḡpm} is jointly connected, then

∑m
k=1(I +Apk

)(i−1)Bpk
1 > 0, ∀i > n.

Now it is easy to see from the definitions of the Fp and Hp in (42) and (44) respectively, that
dF j

p Hp1e = d(I + Ap)jBp1e, j ≥ 0. We have proved the following lemma.

Lemma 5 Let {p1, p2, . . . , pm} be any set of indices in P̄ for which {Ḡp1 , Ḡp2 , . . . , Ḡpm} is a jointly
connected collection of graphs. Then

m∑
k=1

F (i−1)
pk

Hpk
1 > 0, i > n (45)

Now consider the partitioned matrices F̄p defined by (43). Since each of these matrices is
stochastic and products of stochastic matrices are also stochastic, for each p ∈ P̄ and each i ≥ 1,
F̄ i

p is stochastic. But

F̄ i
p =

F i
p

∑i
j=1 F

(j−1)
p Hp1

0 1

 , p ∈ P̄
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Moreover, if Ḡp is connected, then

i∑
j=1

F (j−1)
p Hp1 > 0, i > n (46)

because of Lemma 5. It follows that if Ḡp is connected and i > n, the row sums of F i
p must all be

less that 1. In other words,
||F i

p|| < 1, i > n, p ∈ Q̄ (47)

The following proposition generalizes (47) and is central to the proof of Theorem 4.

Proposition 2 Let T be a finite positive integer. There exists a positive number λ < 1, depending
only on T , for which

||Fpt̄
Fpt̄−1

· · ·Fp1 || < λ (48)

for every sequence p1, p2, . . . pt̄ ∈ P̄ of at length at most T possessing values q1, q2, . . . , qm which each
occur in the sequence at least n + 1 times and for which {Ḡq1 , Ḡq2 , . . . , Ḡqm} is a jointly connected
collection of graphs.

The proof of this proposition depends on the following basic property of non-negative matrices.

Lemma 6 Let M1,M2, . . . ,Mk be a finite sequence of n×n non-negative matrices whose diagonal
entries are all positive. Suppose that M is a matrix which occurs in the sequence at least m > 0
times. Then

dM1M2 · · ·Mke ≥ dMme (49)

Proof: We claim that for j ≥ 1
dM1M2 · · ·Mkj

e ≥ dM je (50)

provided M1M2 · · ·Mkj
is a product within which M occurs at least j times. Suppose M1M2 · · ·Mk1

is a product within which M occurs at least once. Then M1M2 · · ·Mk1 = AMB where A and B
are non-negative matrices with positive diagonal elements. By Lemma 2, dAMBe ≥ dMBe and
dMBe ≥ dMe. Thus dAMBe ≥ dMe which proves that (50) is true for j = 1.

Now suppose that (50) holds for j ∈ {1, 2, . . . i} and let M1M2 · · ·Mki+1
be a product within

which M occurs at least i + 1 times. We can write M1M2 · · ·Mki+1
= AMB where A and B are

non-negative matrices with positive diagonal elements and A is a product within which M occurs
at least i times. By the inductive hypothesis, dAe ≥ dM ie. By Lemma 2, dAMBe ≥ dAMe. It
follows that dAMe = ddAedMee ≥ ddM iedMee = dM i+1e and thus that (50) holds for j = i + 1.
By induction, (50) therefore holds for all i ∈ {1, 2, . . . ,m}. Hence the lemma is true.

Proof of Proposition 2: It will be enough to prove that

||Fpt̄
Fpt̄−1

· · ·Fp1 || < 1 (51)
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for every sequence p1, p2, . . . pt̄ of length at most T possessing values q1, q2, . . . , qm which each
occur in the sequence at least n + 1 times and for which {Ḡq1 , Ḡq2 , . . . , Ḡqm} is a jointly connected
collection of graphs. For if this is so, then one can define the uniform bound

λ
∆= max

S
||Fpt̄

Fpt̄−1
· · ·Fp1 ||

where S is the set of all such sequences. Note that λ < 1 if (51) holds, because S is a finite set.

Let p1, p2, . . . pt̄ be a sequence of at length at most T possessing values q1, q2, . . . , qm which each
occur in the sequence at least n + 1 times and for which {Ḡq1 , Ḡq2 , . . . , Ḡqm} is a jointly connected
collection of graphs. The definition of the F̄p in (43) implies that

F̄pt̄
F̄pt̄−1

· · · F̄p1 =

Fpt̄
Fpt̄−1

· · ·Fp1

∑t̄
j=1 Φt̄jHpj1

0 1


where Φt̄t̄ = I and Φt̄j = Fpt̄

Fpt̄−1
· · ·Fpj+1 for j < t̄. Since the F̄p are all stochastic, F̄pt̄

F̄pt̄−1
· · · F̄p1

must be stochastic as well. Thus to establish (51) it is sufficient to prove that

t̄∑
j=1

Φt̄jHpj1 > 0 (52)

By assumption, each member of {q1, q2, . . . , qm} occurs in the sequence p1, p2, . . . pt̄ at least n+1
times. For k ∈ {1, 2, . . . m}, let ik be the smallest integer such that pik = qk. Since each qk occurs at
least n+1 times, each qk must occur at least n times in the subsequence pik+1, pik+2, . . . pt̄. It follows
from Lemma 6 and the definition of Φt̄j that dΦt̄ike ≥ dFn

qk
e. Thus dΦt̄ikHqk

1e ≥ dFn
qk

Hpik
1e. Since

this hold for all k ∈ {1, 2, . . . ,m},
m∑

k=1

dΦt̄ikHqk
1e ≥

m∑
k=1

dFn
qk

Hqk
1e

From this and (45) it follows that
∑m

k=0 Φt̄ikHqk
1 > 0. But

∑t̄
j=1 Φt̄jHpj1 ≥

∑m
k=1 Φt̄ikHqk

1, so
(52) is true.

Proposition 2 actually implies that any finite product Fp1Fp2 · · ·Fpj will be a discrete-time
stability matrix provided there is a set of indices {q1, q2, . . . qm} for which (i) each qk occurs in the
set {p1, p2, . . . pj} at least n + 1 times and (ii) {Ḡq1 , Ḡq2 , . . . , Ḡqm} is a jointly connected collection
of graphs. From this it is not difficult to see that any finite product F̄q1F̄q2 · · · F̄qm will be ergodic
provided {Ḡq1 , Ḡq2 , . . . , Ḡqm} is a jointly connected collection of graphs6. It is possible to use this
fact together with Wolfowitz’s theorem {Theorem 3} to devise a proof of Theorem 4, much like
the proof of Theorem 2 given earlier. On the other hand, it is also possible to give a simple direct
proof of Theorem 4, without using Theorem 3, and this is the approach we take.

Proof of Theorem 4: Let J denote the set of all subsets {p1, p2, . . . , pm} of P̄ with the property
that {Gp1 , Gp2 , . . . , Gpm} is a jointly connected collection. The constraints on σ imply that σ(t)

6Using this fact and the structure of the F̄p it is also not difficult to show that any finite product Fp1Fp2 · · ·Fpj

will be a discrete-time stability matrix provided only that {Ḡp1 , Ḡp2 , . . . , Ḡpj} is a jointly connected collection of
graphs.
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takes on every value in one such subset on every interval [ti, ti+1), i ≥ 0. Let n̄ be the number of
elements in J . Then for any integer i > 0 there must be at least one subset in J whose elements are
each values of σ at least i times on any sequence of in̄ contiguous time - intervals. Set t̄i = ti(n+1)n̄,
i ≥ 0 and let T be the least upper bound on the lengths of the intervals, [ti, ti+1), i ≥ 0. By
assumption, T < ∞. Let Φ(t, s) denote the state transition matrix defined by Φ(t, t) = I, t ≥ 0
and Φ(t, s) ∆= Fσ(t−1)Fσ(t−2) · · ·Fσ(s), t > s ≥ 0,. Then ε(t) = Φ(t, 0)ε(0). To complete the
theorem’s proof, it is therefore enough to show that

lim
j→∞

Φ(t̄j , t̄0) = 0 (53)

Clearly Φ(t̄j , 0) = Φ(t̄j , t̄j−1) · · ·Φ(t̄2, t̄1)Φ(t̄1, t̄0). Moreover, for i ≥ 0, [t̄i, t̄i+1) is an interval of
length at most (n+1)n̄T on which σ(t) takes on at least n+1 times, every value pi in some subset
{p1, p2, · · · , pm} in J . It follows from Proposition 2 and the definition of Φ that ||Φ(t̄j , t̄j−1)|| ≤
λ, j ≥ 1 where λ is a positive number depending only on (n + 1)n̄T which satisfies λ < 1. Hence
||Φ(t̄j , 0)|| ≤ λj , j ≥ 1 from which (53) follows at once.

4 Leader Following in Continuous Time

Our aim here is to study the convergence properties of the continuous-time version of the leader-
follower model discussed in the last section. We begin by noting that the update rule for agent i’s
heading, defined by (38), is what results when the local feedback law

ui(t) = − 1
1 + ni(t) + bi(t)

(ni(t) + bi(t))θi(t)−
∑

j∈Ni(t)

θj(t)− bi(t)θ0

 (54)

is applied to the open-loop discrete-time heading model

θi(t + 1) = θi(t) + ui(t) (55)

The continuous-time analog of (55) is the integrator equation

θ̇i = ui (56)

where now t takes values in the real half interval [0,∞). On the other hand, the continuous time
analog of (54) has exactly the same form as (54), except in the continuous time case, ni(t), bi(t),
and θi(t) are continuous-time variables. Unfortunately, in continuous time control laws of this
form can lead to chattering because neighbor relations can change abruptly with changes in agents’
positions. One way to avoid this problem is to introduce dwell time, much as was done in [32].
What this means in the present context is that each agent is constrained to change its control law
only at discrete times. In particular, instead of using (54), to avoid chatter agent i would use a
hybrid control law of the form

ui(t) = − 1
1 + ni(tik) + bi(tik)

(ni(tik) + bi(tik))θi(t)−
∑

j∈Ni(tik)

θj(t)− bi(tik)θ0

 , t ∈ [tik, tik +τi)

(57)
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where τi is a pre-specified positive number called a dwell time and t0, t1, . . . is an infinite time
sequence such that ti(k+1) − tik = τi, k ≥ 0. In the sequel we will analyze controls of this form
subject to two simplifying assumptions. First we will assume that all n agents use the same dwell
time which we henceforth denote by τD. Second we assume the agents are synchronized in the
sense that tik = tjk for all i, j ∈ {1, 2, . . . , n} and all k ≥ 0. These assumptions enable us to write
u as

u = −(I + Dσ + Bσ)−1((Lσ + Bσ)θ −Bσ1θ0) (58)

where P̄, Dp, Bp and Ap are as before, Lp = Dp −Ap is the Laplacian of Gp, and σ : [0,∞) → P̄ is
a piecewise constant switching signal with successive switching times separated by τD time units.
Application of this control to the vector version of (56) results in the closed-loop continuous-time
leader-follower model

θ̇ = −(I + Dσ + Bσ)−1((Lσ + Bσ)θ −Bσ1θ0) (59)

In analogy to the discrete-time case, let us agree to say that the n agents are linked to
the leader across an interval [t, τ) between switching times t and τ , if the collection of graphs
{Ḡσ(t), Ḡσ(t+1), . . . , Ḡσ(τ−1)} encountered along the interval, is jointly connected. Much like before,
our goal here is to show for a large class of switching signals and for any initial set of follower
agent headings, that the headings of all n followers converge to the heading of the leader. For con-
vergence, we shall continue to require there to exist infinite sequence of bounded, non-overlapping
time-intervals across which the n-agent group is linked to its leader. However, unlike the discrete-
time case we shall not require this sequence of intervals to be contiguous.

Theorem 5 Let τD > 0, θ(0) and θ0 be fixed and let σ : [0,∞) → P̄ be a piecewise-constant
switching signal whose switching times t1, t2, . . . satisfy ti+1 − ti ≥ τD, i ≥ 1. If there is an infinite
sequence of bounded, non-overlapping time-intervals [tij , tij+kj

), j ≥ 1, with the property that across
each such interval the n-agent group of followers is linked to its leader, then

lim
t→∞

θ(t) = θ01 (60)

Theorem 5 states that θ will converge to θ01, no matter what the value of τD, so long as τD

is greater than zero. This is in sharp contrast to other convergence results involving dwell time
switching such as those given in [33], which hold only for sufficiently large values of τD. Theorem
5 is a more or less obvious consequence of the following lemma.

Lemma 7 Let
Mp

∆= −(I + Dp + Bp)−1(Lp + Bp), p ∈ P̄ (61)

Then
||eMpt|| ≤ 1, ∀t ≥ 0, p ∈ P̄ (62)

Moreover, for each finite set of indices p1, p2, . . . , pm in P̄ for which {Ḡp1 , Ḡp2 , . . . , Ḡpm} is jointly
connected, and each set of finite, positive times t1, t2, . . . , tm,

||eMpm tm · · · eMp2 t2eMp1 t1 || < 1 (63)
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Proof of Theorem 5: Let Mp
∆= −(I + Dp + Bp)−1(Lp + Bp), p ∈ P̄ and for i ≥ 1, set

Ni = eMσ(ti)
(ti+1−ti) (64)

¿From inequality (62) in Lemma 7 it follows that

||eNi || ≤ 1, i ≥ 1 (65)

By assumption there is a finite upper bound T on the lengths of the intervals [tij , tij+kj
) across

which the n agents are linked to their leader. This and the assumption that ti+1 − ti ≥ τD, i ≥ 0,
imply that kj ≤ m, j ≥ 1, where m is the smallest positive integer such that T ≤ mτD. Let J be
the set of all sequences p1, p2, . . . pl ∈ P̄ of at length at most m for which {Ḡp1 , Ḡp2 , . . . , Ḡpl

} is
jointly connected. Define

λ = max
τ1∈[τD,T ]

max
τ2∈[τD,T ]

. . . max
τl∈[τD,T ]

max
J

||eMpl
τl · · · eMp2τ2eMp1τ1 || (66)

Note that λ < 1 because the inequality in (63) is strict, because J is a finite set, because [τD, T ]
is compact and because the matrix exponentials in (66) depend continuously on the τi. In view of
the definition of λ and the definitions of the Ni in (64),

||eNij+kj−1 · · · eNij+1eNij || ≤ λ, j ≥ 1 (67)

But
eNij+1−1 · · · eNij+1eNij =

(
eNij+1−1 · · · eNij+kj

)(
e
Nij+kj−1 · · · eNij+1eNij

)
, j ≥ 1

This, (65), (67) and the sub-multiplicative property of the induced infinity norm imply that

||eNij+1−1 · · · eNij+1eNij || ≤ λ, j ≥ 1 (68)

Set θ̄(t) = θ(t)− 1θ0 and note that

˙̄θ = −(I + Dσ + Bσ)−1(Lσ + Bσ)θ̄

because of (59). Let Φ(t, µ) be the state transition matrix of −(I + Dσ(t) + Bσ(t))−1(Lσ(t) + Bσ(t)).
Then θ̄(t) = Φ(t, 0)θ̄(0). To complete the proof it is therefore enough to show that

||Φ(tij , ti1)|| ≤ λj−1, j ≥ 1 (69)

In view of the definitions of the Ni,

Φ(tij+1 , tij ) = eNij+1−1 · · · eNij+1eNij , j ≥ 1

¿From this and (68) it follows that

||Φ(tij+1 , tij )|| ≤ λ, j ≥ 1 (70)

But
Φ(tij , t1) = Φ(tij , tij−1) · · ·Φ(ti2 , ti1)
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so
||Φ(tij , t1)|| ≤ ||Φ(tij , tij−1)|| · · · ||Φ(ti2 , ti1)||

From this and (70), it now follows that (69) is true.

Proof of Lemma 7: Fix t > 0 and p ∈ P̄. Observe first that

Mp = Fp − I (71)

where Fp is the matrix Fp = (I + Dp + Bp)−1(I + Ap). As noted previously, the partitioned matrix

F̄p
∆=
[

Fp Hp1
0 1

]
(72)

originally defined in (43), is stochastic with positive diagonal elements as are the matrices

F̄ i
p =

F i
p

∑i
j=1 F

(j−1)
p Hp1

0 1

 , i ≥ 1 (73)

Since

eF̄pt =
∞∑
i=0

(tF̄p)i

i!
(74)

eF̄pt must also be nonnegative with positive diagonal elements. But e(F̄p−Ī)t = e−teF̄pt, where Ī
is the (n + 1) × (n + 1) identity, so the same must be true of e(F̄p−Ĩ)t. Moreover (F̄p − Ī)1 = 0
which means that e(F̄p−Ī)t1 = e01 = 1 and thus that e(F̄p−Ī)t is stochastic. In summary, e(F̄p−Ī)t is
a stochastic matrix with positive diagonal entries.

Equations (72) - (74) imply that

eF̄pt =
[

eFpt kp

0 et

]
where

kp =
∞∑
i=0

ti

i!

i∑
j=1

F (j−1)
p Hp1 (75)

Therefore

e(F̄p−Ī)t =
[

e(Fp−I)t kp

0 1

]
(76)

But e(F̄p−Ī)t is row-stochastic, so e(Fp−I)t must have its row sums all bounded above by 1. ¿From
this and (71) it follows that (62) is true.

Now suppose that {Ḡp1 , Ḡp2 , . . . , Ḡpm} is a jointly connected collection of graphs. Then by
Lemma 5

m∑
j=1

F (i−1)
pj

Hpj1 > 0, i > n (77)

This and (75) imply that
m∑

j=1

kpj > 0 (78)
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because all of the matrices in the sums defining the kp in (75) are non-negative.

Using (76) and the definition of Mp in (71) we can write

e(F̄pm−Ī)tme(F̄pm−1−Ī)tm−1 · · · e(F̄p1−Ī)t1 =

 eMpm tmeMpm−1 tm−1 · · · eMp1 t1
∑m

j=1 Φmjkpj

0 1

 (79)

where Φmm = I and Φmj = eMpm tm · · · eMpj+1 tj+1 , j < m. Since the matrix on the right in (79) is
stochastic, its row sums all equal one. To complete the proof it is therefore enough to show that

m∑
j=1

Φmjkpj > 0 (80)

Note that for any non-negative n × n matrix N , eN ≥ I because the matrix
∑∞

i=1
1
i!N

i in the
definition eN =

∑∞
i=0

1
i!N

i is non-negative. Thus for j ∈ {1, 2, . . . ,m}, eMpj tj ≥ I and consequently
Φmj ≥ I. Therefore, Φmjkj ≥ kj , j ∈ {1, 2, . . . ,m}. From this and (78) it follows that (80) is true
and thus that the inequality in (63) is correct.

5 Concluding Remarks

As stated in the abstract, the main objective of this paper has been to provide a theoretical
explanation for behavior observed in the simulation studies reported in [1]. We refer the interested
reader to Vicsek’s paper and references cited therein, for a more thorough description of the model
considered and for data documenting the simulation studies performed.

The theorems in this paper all provide convergence results for rich classes of switching signals
and arbitrary initial heading vectors. Of course as soon as one elects to interpret these results
in the context of heading models for mobile autonomous agents, one needs to add qualifications,
because the actual switching signal σ generated along a particular model’s trajectory would have
to depend on the model’s initial heading vector. To make such a dependence explicit {and to run
meaningful simulations} more complete models would have to be defined. In carrying out this step,
one can expect to obtain a variety of results. For example, with very large agent sensing regions
{i.e., r very large} and agents initially near each other, one would expect enough connectivity
along resultant trajectories for convergence to a common heading to occur. On the other hand,
with widely distributed initial agent positions and r very small, one would expect to see a bifur-
cation of the group into distinct subgroups with different steady state headings. In other words, a
complete deterministic understanding of the flocking problems we’ve considered would require both
more complete agent motion models as well as an understanding of the nonlinear feedback process
upon which σ actually would depend. An alternative probabilistic approach might enable one to
circumvent or at least simplify the analysis of the feedback process.

Some versions of the Vicsek model and others considered in this paper may ultimately find
application in coordination of groups of mobile autonomous agents. Of course before this can
happen many compelling issues such as collision avoidance, and the effects of disturbances, noise,
sensing errors, vehicle modelling errors, etc. would have to be satisfactorily addressed. For example,
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the collision avoidance question might also be approached by replacing the point models implicitly
used in this paper, with the model of a bumper-like “virtual shell” within which each agent vehicle
is constrained to remain [34].

While the analysis in this paper is deterministic and does not address the noise issue, the
results obtained suggest that to understand the effect of additive noise, one should focus on how
noise inputs effect connectivity of the associated neighbor graphs. Simulation results presented
in [1] indicate that when noise intensity in the system is fixed, there is a phase transition as the
density of the agents is increased, i.e., there is a critical density after which all agents eventually
become aligned. It is likely that this phenomenon can be adequately explained using percolation
theory of random graphs [35].

The results of this paper have been extended to the case where there are inter-agent forces
due to attraction, repulsion and alignment [36]. The new result indicate that the convergence
arguments used in this paper also apply to the more general problem considered in [36] under similar
assumptions on the connectivity of the graph representing the nearest neighbor relationships.

The convergence proof for Vicsek’s model presented in Section 2 relies heavily on Wolfowitz’s
theorem. By generalizing some of the constructions Wolfowitz used in his proof, it is possible to
develop a convergence result for a continuous-time analog of the Vicsek model which is quite similar
to Theorem 5.

In studying continuous-time leader-following, we imposed the requirement that all followers use
the same dwell time. This is not really necessary. In particular, without much additional effort it
can be shown that Theorem 5 remains true under the relatively mild assumption that all agents
use dwell times which are rationally related. In contrast, the synchronization assumption may be
more difficult to relax. Although convergence is still likely without synchronization, the aperiodic
nature of σ’s switching times which could result, make the analysis problem more challenging.

The use of simply averaging rules such as those discussed in this paper can sometimes have
counter-intuitive consequences which may be undesirable in some applications. For example the
average of headings .01 and 2π − .01 is π so this might cause two agents with headings both close
to 0, to both approximately reverse direction on the next step to a heading of π. It would be of
interest to determine how update rules might be modified to avoid this type of behavior. Of course
issues along these lines would not arise at all if the systems we’ve considered were modelling other
physically significant variables such as agent speed or temperature where one could take all of IR
rather than [0, 2π) as the set in which the θi take values.

The models we have analyzed are of course very simple and as a consequence, they are probably
not really descriptive of actual bird-flocking, fish schooling, or even the coordinated movements of
envisioned groups of mobile robots. Nonetheless, these models do seem to exhibit some of the
rudimentary behaviors of large groups of mobile autonomous agents and for this reason they serve
as a natural starting point for the analytical study of more realistic models. It is clear from the
developments in this paper, that ideas from graph theory and dynamical system theory will play a
central role in both the analysis of such biologically inspired models and in the synthesis of provably
correct distributed control laws which produce such emergent behaviors in man-made systems.
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