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The Result

G = (V, E) undirected graph, s source, t sink.
= u: E — R>o, edge capacities
me>0

Can compute (1 — ¢)-approximate maximum flow in
time O(mn'/3¢-11/3),

= gpproximate minimum cut in similar time bound
previous best: O(my/ne~1) by Goldberg and Rao (98)
uses electrical flows
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Conversion to Integral Capacities

" B = maxpis st path MiNecp Ue
max bottleneck path in time O(m + nlog n)

B < max flow < mB.
® replace ue by min(ue, mB).

= removing all edges of capacity less than ¢B/(2m) changes
max-flow by at most ¢B/2.

replace ue by L%J

integral capacities in [1,2m?/¢] |
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A High-Level View of the Algorithm

F* = value of maximum flow.

Do binary search on [1,2m?/€]. Let F be the current value of the
search.
Have a subroutine Flow(F) which

= either finds a flow of value F that almost satisfies the capacity
constraints or fails.

m jf F < F*,itis guaranteed to return a flow.

Subroutine is realized via a low-level subroutine flow(F, w),
which we discuss first. Here, w is a weight function on the edges.
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Electrical Flows and Capacities

Resistances can simulate capacities

Let Q* be a maximum flow. Orient edges in the direction of the
flow, sort the graph topologically, and set

pv = number of nodes after v in ordering.

For e = (u, v), set
Re — Q;/Ae

Then @Q* is the resulting flow.
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An Observation

Set Re = 1/u2 and let F < F*. Let Q be an electrical flow of
value F. Then

Y (Qo/ue)? =) ReQi < Re(Qs)? =) (Qs/ue)? < m.

Define the congestion of e as

cong, = Qe/Ue.

Then,
’
— > congi <1 and max cong < vm.
e
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The Subroutine flow(F, w)

Set Re = (We + eW/m)/u2, where W = 3" We.
Let Q be an electrical flow of value F.

If S, ReQ2 > (1 + €)W declare failure.

return Q.

If F < F*, flow does not fail

> wnp

If flow succeeds,

1 m
> %conge <1+e and maxconge < p:= '+ em

€
e
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Set Re = (We + eW/m)/u2, where W = 3~ _ we. Let Q be an
electrical flow of value F. If F < F* then

*\ 2
> ReQE <> Re(Qz)? =D (We+ %) <i?e> <(1+ew.

e

If

S+ ) (o ) = RO < (140w

e

then

(1 —i—e)m.

Z W/CONgs < 1+e and maxcong, < -
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From average squared congestion to average congestion

> wecong,

12 172
Zwe/ - wa/2cong,
€]

1/2 1/2
(Z We> : (Z wecongg)
e e

W2((1 + e )W)'2 < (1 + e)W.

IN
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From flow to Flow

Flow(F)

set WS) =1 for all e;
fori=1— T do

{T = O(m'/2¢75/2 suffices}
Q") = flow(F, w); {if call fails, fail}
congy = Q) /ue for all e
wd = w1 + ccongl /p) for all e;
end for
return

1 i

1<i<T
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Properties of Flow

Q is a flow of value F and if F < F*, Q exists.

— Z Q) = Z Ue - congy) = ue - CONG,

1<I<T 1<I<T

Wi+t — ZWI) (1+econg!/p) < (1 + (1 +€)/p) W)

WD < exp(((1+€)e/p)T) - m
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Properties of Flow

wo ™ = wl)(1+ econgl /p) > w exp((1 — )econgl /p)
w™ > exp((1 — €)econg,/p) T)
(1 —e)econgy/p) T < Inm+(e(1+¢€)/p)T
plnm 1+e¢ € 1+e¢
< < <
conge = (1 —E)€T+ 1—¢e— (1 —e)+ 1—¢ <1 4de

for T = (pInm)/e® = O(m'/?e5/?)
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Putting it together
O(m'/2¢-%/2) iterations suffice.

In each iteration we need to solve a SSD system and do linear
extra work. Thus an iteration runs in time O(mlog1/e).

Total running time is O(m3/2¢-5/2),
But, | promised O(mn'/3¢=11/3). This is reached in two steps:

= step one reduces to O(m*/3¢~2), and

= step two reduces to O(mn'/3¢=11/3). (Karger (98) and
Bencur/Karger (02))
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The First Step

Let H be a huge number; actually H = (miInm)'/3/e.
What does cong, > H imply?
Qe/Ue > H and hence ue < Qe/H < F/H. Thus u, is tiny.

We can afford to delete ¢eH edges with huge congestion without
sacrificing the approximation guarantee.

Modification of flow: if flow succeeds, i.e., £(Q) < (1 + €)W, and
there is an edge e with huge congestion, delete the edge and
continue without the edge.

Observe, that change allows us to replace p by H in the analysis.
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Deleting Huge Edges

If flow succeeds, we have £(Q) < (1 +¢)W.
If e has huge congestion,

2 2 2
) EW Qe €H EH
> > > )
reQg > pe < ) =% +E)m(1 +e)W > g +E)m5(0)
Let 3 = eH?/((1 + €)m). If e has huge congestion, e accounts for
a [ fraction of the energy of the flow.

Deletion of a huge edge forces the energy of the flow to increase
by a factor 1/(1 — j3).

We have an upper bound on the final energy, namely

(1 + )W+ ltis not too hard, to derive a lower bound on the
energy of the first flow. Putting things together, we obtain a
bound on the number of huge edges.
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Deleting a Huge Edge Il

Deletion of a huge edge increases the energy of the flow by a
factor 1/(1 — ).

Let p be the electrical potentials for flow of value 1/Reg. Then
ps = 1 and p; = 0. Energy of this flow is equal to 1/ Re.

. (Qb“'QV)2 (Pu "pv)z
T Dl D Dl
eff qqf—OUVGE\e uv uveE\e w

- Z _A2/re_(1 o

uveE

Thus, £(Q) = F2R., > 1ﬁ F2Ry = £(Q).
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