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The Result

G = (V ,E) undirected graph, s source, t sink.

u : E → R≥0, edge capacities

ε > 0

Can compute (1− ε)-approximate maximum flow in
time Õ(mn1/3ε−11/3).

approximate minimum cut in similar time bound

previous best: Õ(m
√

nε−1) by Goldberg and Rao (98)

uses electrical flows
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Conversion to Integral Capacities

B = maxP is s-t path mine∈P ue

max bottleneck path in time O(m + n log n)

B ≤ max flow ≤ mB.

replace ue by min(ue,mB).

removing all edges of capacity less than εB/(2m) changes
max-flow by at most εB/2.

replace ue by
⌊

ue
εB/2m

⌋
integral capacities in [1,2m2/ε]
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A High-Level View of the Algorithm

F ∗ = value of maximum flow.

Do binary search on [1,2m2/ε]. Let F be the current value of the
search.

Have a subroutine Flow(F ) which
either finds a flow of value F that almost satisfies the capacity
constraints or fails.

if F ≤ F ∗, it is guaranteed to return a flow.

Subroutine is realized via a low-level subroutine flow(F ,w),
which we discuss first. Here, w is a weight function on the edges.
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Electrical Flows and Capacities

Resistances can simulate capacities
Let Q∗ be a maximum flow. Orient edges in the direction of the
flow, sort the graph topologically, and set

pv = number of nodes after v in ordering.

For e = (u, v), set
Re = Q∗e/∆e.

Then Q∗ is the resulting flow.
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An Observation
Set Re = 1/u2

e and let F ≤ F ∗. Let Q be an electrical flow of
value F . Then∑

e

(Qe/ue)2 =
∑

e

ReQ2
e ≤

∑
e

Re(Q∗e)2 =
∑

e

(Q∗e/ue)2 ≤ m.

Define the congestion of e as

conge := Qe/ue.

Then,
1
m

∑
e

cong2
e ≤ 1 and max

e
conge ≤

√
m.
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The Subroutine flow(F , w)

1. Set Re = (we + εW/m)/u2
e , where W =

∑
e we.

2. Let Q be an electrical flow of value F .
3. If

∑
e ReQ2

e > (1 + ε)W declare failure.
4. return Q.

Properties
If F ≤ F ∗, flow does not fail

If flow succeeds,

∑
e

we

W
conge ≤ 1 + ε and max

e
conge ≤ ρ :=

√
(1 + ε)m

ε
.
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Proof
Set Re = (we + εW/m)/u2

e , where W =
∑

e we. Let Q be an
electrical flow of value F . If F ≤ F ∗ then

∑
e

ReQ2
e ≤

∑
e

Re(Q∗e)2 =
∑

e

(we +
εW
m

)

(
Q∗e
ue

)2

≤ (1 + ε)W .

If ∑
e

(we +
εW
m

)

(
Qe

ue

)2

=
∑

e

ReQ2
e ≤ (1 + ε)W

then ∑
e

we

W
cong2

e ≤ 1 + ε and max
e

conge ≤
√

(1 + ε)m
ε

.
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From average squared congestion to average congestion

∑
e

weconge =
∑

e

w1/2
e · w1/2

e conge

≤

(∑
e

we

)1/2

·

(∑
e

wecong2
e

)1/2

≤W 1/2((1 + ε)W )1/2 ≤ (1 + ε)W .
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From flow to Flow

Flow(F )

set w (1)
e = 1 for all e;

for i = 1→ T do
{T = O(m1/2ε−5/2 suffices}

Q(i) = flow(F ,w); {if call fails, fail}
cong(i)

e = Q(i)
e /ue for all e

w (i+1)
e = w (i)

e (1 + εcong(i)
e /ρ) for all e;

end for
return

Q :=
1
T

∑
1≤i≤T

Q(i)
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Properties of Flow

Q is a flow of value F and if F ≤ F ∗, Q exists.

Qe =
1
T

∑
1≤i≤T

Q(i)
e =

1
T

∑
1≤i≤T

ue · cong(i)
e = ue · conge

W (i+1) =
∑

e

w (i)
e (1 + εcong(i)

e /ρ) ≤ (1 + ε(1 + ε)/ρ)W (i)

W (T+1) ≤ exp(((1 + ε)ε/ρ)T ) ·m
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Properties of Flow

w (i+1)
e = w (i)

e (1 + εcong(i)
e /ρ) ≥ w (i) exp((1− ε)εcong(i)

e /ρ)

w (T+1)
e ≥ exp((1− ε)εconge/ρ)T )

((1− ε)εconge/ρ)T ≤ ln m + (ε(1 + ε)/ρ)T

conge ≤
ρ ln m

(1− ε)εT
+

1 + ε

1− ε
≤ ε

(1− ε)
+

1 + ε

1− ε
≤ 1 + 4ε

for T = (ρ ln m)/ε2 = Õ(m1/2ε−5/2)
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Putting it together

Õ(m1/2ε−5/2) iterations suffice.

In each iteration we need to solve a SSD system and do linear
extra work. Thus an iteration runs in time Õ(m log 1/ε).

Total running time is Õ(m3/2ε−5/2).

But, I promised Õ(mn1/3ε−11/3). This is reached in two steps:

step one reduces to Õ(m4/3ε−3), and

step two reduces to Õ(mn1/3ε−11/3). (Karger (98) and
Bencur/Karger (02))
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The First Step

Let H be a huge number; actually H = (m ln m)1/3/ε.

What does conge ≥ H imply?

Qe/ue ≥ H and hence ue ≤ Qe/H ≤ F/H. Thus ue is tiny.

We can afford to delete εH edges with huge congestion without
sacrificing the approximation guarantee.

Modification of flow: if flow succeeds, i.e., E(Q) ≤ (1 + ε)W , and
there is an edge e with huge congestion, delete the edge and
continue without the edge.

Observe, that change allows us to replace ρ by H in the analysis.
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Deleting Huge Edges
If flow succeeds, we have E(Q) ≤ (1 + ε)W .
If e has huge congestion,

reQ2
e ≥

εW
m

(
Qe

ue

)2

≥ εH2

(1 + ε)m
(1 + ε)W ≥ εH2

(1 + ε)m
E(Q).

Let β = εH2/((1 + ε)m). If e has huge congestion, e accounts for
a β fraction of the energy of the flow.
Deletion of a huge edge forces the energy of the flow to increase
by a factor 1/(1− β).
We have an upper bound on the final energy, namely
(1 + ε)W (T+1). It is not too hard, to derive a lower bound on the
energy of the first flow. Putting things together, we obtain a
bound on the number of huge edges.
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Deleting a Huge Edge II

Deletion of a huge edge increases the energy of the flow by a
factor 1/(1− β).
Let p be the electrical potentials for flow of value 1/Reff. Then
ps = 1 and pt = 0. Energy of this flow is equal to 1/Reff.

1
R′eff

= inf
q;

qs=1
qt=0

∑
uv∈E\e

(qu − qv )2

ruv
≤

∑
uv∈E\e

(pu − pv )2

ruv

=
∑

uv∈E

(pu − pv )2

ruv
−∆2

e/re ≤ (1− β)
1

Reff

Thus, E(Q′) = F 2R′eff ≥
1

1−βF 2Reff = E(Q).
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