Certifying Algorithms

Kurt Mehlhorn

MPI für Informatik
Saarbrücken
Germany
The Problem Statement

- a user knows x and y.
- how can he/she be sure that, indeed, $y = f(x)$.
- he/she is at complete mercy of the program
- I do not like to depend on software in this way, not even for programs written by myself.
Warning Examples

- Rhino3d (a CAD systems) fails to compute correct intersection of two cyclinders and two spheres
Warning Examples

- Rhino3d (a CAD systems) fails to compute correct intersection of two cyclinders and two spheres
- CPLEX (a linear programming solver) fails on benchmark problem *etamacro*.
Warning Examples

- Rhino3d (a CAD systems) fails to compute correct intersection of two cylinders and two spheres.

- CPLEX (a linear programming solver) fails on benchmark problem *etamacro*.

- Mathematica 4.2 (a mathematics systems) fails to solve a small integer linear program

```math
In[1] := ConstrainedMin[ x , {x==1,x==2} , {x} ]
Out[1] = {2, {x->2}}
```

```math
In[1] := ConstrainedMax[ x , {x==1,x==2} , {x} ]
ConstrainedMax::lpsub": The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}
```
The Problem Statement

Programs should justify (prove) their answers in a way that is easily checked by their users.
a certifying program returns
- the function value \(y \) and
- a certificate (witness) \(w \).

\(w \) proves the equality \(y = f(x) \).

if \(y \neq f(x) \), there should be no \(w \) such that \((x, y, w)\) passes checking.

formalization in second half of talk

name introduced in Kratsch/McConnell/Mehlhorn/Spinrad: SODA 2003

related work: Blum et al.: Programs that check their work
Outline of Talk

- problem definition and certifying algorithms
- examples of certifying algorithms
 - linear system solving
 - testing bipartiteness
 - matchings in graphs
 - planarity testing
 - convex hulls
 - dictionaries and priority queues
 - linear programming
- advantages of certifying algorithms
- do certifying algorithms always exist?
- verification of checkers
- collaboration of checking and verification
Linear System Solving

• does the linear system \(A \cdot x = b \) have a solution?
• answer yes/no

• a solution \(x_0 \) witnesses solvability (= the answer yes)
• a vector \(c \) with \(c^T A = 0 \) and \(c^T \cdot b \neq 0 \) witnesses non-solvability (= the answer no)
 • assume \(x_0 \) is a solution, i.e., \(A x_0 = b \).
 • multiply with \(c^T \) from the left and obtain \(c^T A x_0 = c^T b \)
 • thus \(0 \neq 0 \).

• Gaussian elimination computes solution \(x_0 \) or vector \(c \)
• checking is trivial
Bipartite Graphs

- is a given graph G bipartite?
- two-coloring witnesses bipartiteness
- odd cycle witnesses non-bipartiteness

an algorithm
- construct a spanning tree of G
- use it to color the vertices with colors red and blue
- check for all non-tree edges e whether the endpoints have different colors
- if yes, the graph is bipartite and the coloring proves it
- if no, let $e = \{u, v\}$ be a non-tree edge whose endpoints have the same color;
 - e together with the tree path from u to v is an odd cycle
 - tree path from u to v has even length since u and v have the same color
Bipartite Matching

- given a bipartite graph, compute a maximum matching
- a matching M is a set of edges no two of which share an endpoint
- a node cover C is a set of nodes such that every edge of G is incident to some node in C.
- $|M| \leq |C|$ for any matching M and any node cover C.
 - map $(u, v) \in M$ to an endpoint in C, this is possible and injective

- a certifying alg returns M and C with $|M| = |C|$
- no need to understand that such a C exists (!!!)
- it suffices to understand the inequality $|M| \leq |C|
- demo for general graphs
Planarity Testing

- given a graph G, decide whether it is planar
- Tarjan (76): planarity can be tested in linear time
- a story and a demo
- combinatorial planar embedding is a witness for planarity
- Chiba et al (85): planar embedding of a planar G in linear time
- Kuratowski subgraph is a witness for non-planarity
- Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time

K_5

$K_{3,3}$
Planarity Testing: Checking the Witness I

- combinatorial embedding: graph + cyclic order on the edges incident to any vertex

- combinatorial planar embedding: combinatorial embedding such that there is a plane drawing conforming to the ordering
Planarity Testing: Checking the Witness II

- face cycles

- face cycles are defined for combinatorial embeddings.

- **Theorem 0 (Euler, Poincaré)** A combinatorial embedding of a connected graph is a combinatorial planar embedding iff

 \[f - e + n = 2 \]

- theorem = easy check whether a combinatorial embedding is planar.
Convex Hulls

Given a simplicial, piecewise linear closed hyper-surface F in d-space decide whether F is the surface of a convex polytope.

FACT: F is convex iff it passes the following three tests

1. check local convexity at every ridge
2. $0 = \text{center of gravity of all vertices}$
 check whether 0 is on the negative side of all facets
3. $p = \text{center of gravity of vertices of some facet } f$
 check whether ray $\vec{0p}$ intersects closure of facet different from f
Sufficiency of Test is a Non-Trivial Claim

- ray for third test cannot be chosen arbitrarily, since in R^d, $d \geq 3$, ray may “escape” through lower-dimensional feature.
Monitoring Priority Queues I

A PQ maintains a set S (of real numbers) under the operations insert and delete_min

\[
\text{insert}(5), \quad \text{insert}(2), \quad \text{insert}(4), \quad \text{delete_min}, \quad \text{insert}(7), \quad \text{delete_min}
\]

must return 2

must return 4

returns 2

return 5
a PQ maintains a set \(S \) (of real numbers) under the operations insert and delete_min

\[
\text{insert}(5), \quad \text{insert}(2), \quad \text{insert}(4), \quad \text{delete_min}, \quad \text{insert}(7), \quad \text{delete_min}
\]

must return 2
returns 2
must return 4
return 5

A checker wraps around any priority queue PQ and monitors its behavior.

- It offers the functionality of a priority queue.
- It complains if PQ does not behave like a priority queue.
 - immediately
 - ultimately
Fact: Priority queue implementations with logarithmic running time per operation exist.

Fact:

- There is a checker with additional constant amortized running time per operation. It catches errors ultimately, namely with linear delay.
- Immediate error catching requires $\Omega(\log n)$ additional time per operation.

Finkler/Mehlhorn, SODA 99
Linear Programming

maximize $c^T x$ subject to $Ax \leq b \quad x \geq 0$

- linear programming is a most powerful algorithmic paradigm
- there is no linear programming solver that is guaranteed to solve large-scale linear programs to optimality. Every existing solver may return suboptimal or infeasible solutions.

<table>
<thead>
<tr>
<th>Problem</th>
<th>C</th>
<th>R</th>
<th>NZ</th>
<th>T</th>
<th>V</th>
<th>Res</th>
<th>RelObjErr</th>
<th>Exact Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>degen3</td>
<td>1504</td>
<td>1818</td>
<td>26230</td>
<td>8.08</td>
<td>0</td>
<td>opt</td>
<td>6.91e-16</td>
<td>8.79</td>
</tr>
<tr>
<td>etamacro</td>
<td>401</td>
<td>688</td>
<td>2489</td>
<td>0.13</td>
<td>10</td>
<td>dfeas</td>
<td>1.50e-16</td>
<td>1.11</td>
</tr>
<tr>
<td>fffff800</td>
<td>525</td>
<td>854</td>
<td>6235</td>
<td>0.09</td>
<td>0</td>
<td>opt</td>
<td>0.00e+00</td>
<td>4.41</td>
</tr>
<tr>
<td>pilot.we</td>
<td>737</td>
<td>2789</td>
<td>9218</td>
<td>3.8</td>
<td>0</td>
<td>opt</td>
<td>2.93e-11</td>
<td>1654.64</td>
</tr>
<tr>
<td>scsd6</td>
<td>148</td>
<td>1350</td>
<td>5666</td>
<td>0.1</td>
<td>13</td>
<td>dfeas</td>
<td>0.00e+00</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Dhifaou/Funke/Kwappik/M/Seel/Schömer/Schulte/Weber: SODA 03
The Advantages of Certifying Algorithms

- certifying algs can be tested on
 - every input
 - and not just on inputs for which the result is known.

- certifying programs are reliable
 - either give the correct answer
 - or notice that they have erred

- there is no need to understand the program, understanding the witness property and the checking program suffices.

- formal verification of checkers is feasible

- one may even keep the program secret and only publish the checker

- most programs in LEDA are certifying
Does every Function have a Certifying Alg?

\(W : X \times Y \times W \mapsto \{0, 1\} \) is a \textit{witness predicate} for \(f : X \mapsto Y \) if

1. \(W \) deserves is name:

\[\forall x, y \quad (\exists w \ W(x, y, w)) \iff (y = f(x)) . \]

2. given \(x, y, \) and \(w \), it is trivial to decide whether \(W(x, y, w) \) holds.
 - a program for \(W \) is called a \textbf{checker}
 - checker has linear running time and simple structure
 - correctness of checker is obvious or can be established by an elementary proof

3. witness property is easily verified, i.e., the implication

\[W(x, y, w) \rightarrow (y = f(x)) \]

has an elementary proofs.

no assumption about difficulty of proving \((y = f(x)) \rightarrow \exists w \ W(x, y, w) \).
Does every Function have a Certifying Alg?

- Let P be a program and let f be the function computed by P
- does there exist a program Q and a predicate W such that
 1. W is a witness predicate for f.
 2. On input x, Q computes a triple (x, y, w) with $W(x, y, w)$.
 3. the resource consumption (time, space) of Q on x is at most a constant factor larger than the resource consumption of P.

Thesis:
- Every deterministic algorithm can be made certifying
- Monte Carlo algorithms resist certification

Intuition:
- correctness proofs yield certifying algorithms
- a certifying Monte Carlo alg yields Las Vegas alg
Monte Carlo Algorithms resist Certification

- assume we have a Monte Carlo algorithm for a function f, i.e.,
 - on input x it outputs $f(x)$ with probability at least $3/4$
 - the running time is bounded by $T(|x|)$.
- assume Q is a certifying alg with the same complexity
 - on input x, Q outputs a witness triple (x, y, w) with probability at least $3/4$.
 - it has running time $O(T(|x|))$.
- this gives rise to a Las Vegas alg for f with the same complexity
 - run Q and apply W to the triple (x, y, w) returned by Q
 - if W holds, we return y. Otherwise, we rerun Q.
 - this outputs $f(x)$ in expected time $O(T(|x|))$.
Every Deterministic Algorithm has a Certifying Counterpart

- let P be a program computing f.
- certifying Q outputs $f(x)$ and a witness $w = (w_1, w_2, w_3)$
 - w_1 is the program text P, w_2 is a proof (in some formal system) that P computes f, and w_3 is the computation of P on input x
 - $W(x, y, w)$ holds if $w = (w_1, w_2, w_3)$, where w_1 is the program text of some program P, w_2 is a proof (in some formal system) that P computes f, w_3 is the computation of P on input x, and y is the output of w_3.
- we have
 1. W is clearly a witness predicate
 2. W is trivial to decide
 3. the proof of $W(x, y, w) \rightarrow (y = f(x))$ is elementary
 4. Q has same space/time complexity as P.
- construction is artificial, but assuring: certifying algs exist
- the challenge is to find natural certifying algs
Verification of Checkers

- the checker should be so simple that its correctness is “obvious”.
- we may hope to formally verify the correctness of the implementation of the checker

this is a much simpler task than verifying the solution algorithm

- the mathematics required for the checker is usually much simpler that the one underlying the algorithm for finding solutions and witnesses
- checkers are simple programs
- algorithmicists may be willing to code the checkers in languages which ease verification
- logicians may be willing to verify the checkers

Remark: for a correct program, verification of the checker is as good as verification of the program itself

- Harald Ganzinger and I are exploring the idea
Cooperation of Verification and Checking

- a sorting routine working on a set S
 (a) must not change S and
 (b) must produce a sorted output.
- I learned the example from Gerhard Goos
- the first property is hard to check (provably as hard as sorting)
- but usually trivial to prove, e.g.,
 if the sorting algorithm uses a swap-subroutine to exchange items.
- the second property is easy to check by a linear scan over the output, but hard to prove (if the sorting algorithm is complex).
- give other examples where a combination of verification and checking does the job
Summary

- certifying algs have many advantages over standard algs
 - can be tested on every input
 - can assumed to be reliable
 - can be relied on without knowing code
 - ...

- they exist: every deterministic alg has a certifying counterpart
- they are non-trivial to find
- most programs in the LEDA system are certifying
- Monte Carlo algs resist certification
Summary

- certifying algs have many advantages over standard algs
 - can be tested on every input
 - can assumed to be reliable
 - can be relied on without knowing code
 - ...

- they exist: every deterministic alg has a certifying counterpart
- they are non-trivial to find
- most programs in the LEDA system are certifying
- Monte Carlo algs resist certification

When you design your next algorithm, make it certifying