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Abstract. In this paper we consider the problem of computing a mini-
mum cycle basis of an undirected graph G = (V, E) with n vertices and m
edges. We describe an efficient implementation of an O(m3 + mn2 log n)
algorithm presented in [1]. For sparse graphs this is the currently best
known algorithm. This algorithm’s running time can be partitioned into
two parts with time O(m3) and O(m2n + mn2 log n) respectively. Our
experimental findings imply that the true bottleneck of a sophisticated
implementation is the O(m2n + mn2 log n) part. A straightforward im-
plementation would require Ω(nm) shortest path computations, thus we
develop several heuristics in order to get a practical algorithm. Our exper-
iments show that in random graphs our techniques result in a significant
speedup.

Based on our experimental observations, we combine the two fundamen-
tally different approaches to compute a minimum cycle basis used in [1, 2]
and [3, 4], to obtain a new hybrid algorithm with running time O(m2n2).
The hybrid algorithm is very efficient in practice for random dense un-
weighted graphs.

Finally, we compare these two algorithms with a number of previous im-
plementations for finding a minimum cycle basis in an undirected graph.

1 Introduction

Let G = (V, E) be an undirected graph. A cycle of G is any subgraph in which
each vertex has even degree. Associated with each cycle is an incidence vector
x, indexed on E, where xe = 1 if e is an edge of C, xe = 0 otherwise. The vector
space over GF (2) generated by the incidence vectors of cycles is called the cycle
space of G. It is well-known that this vector space has dimension N = m−n+κ,
where m is the number of edges, n is the number of vertices, and κ the number
of connected components of G. A maximal set of linearly independent cycles is
called a cycle basis.

The edges of G have non-negative weights. The weight of a cycle is the sum
of the weights of its edges. The weight of a cycle basis is the sum of the weights
of its cycles. We consider the problem of computing a cycle basis of minimum
weight in a graph; we use the abbreviation MCB to refer to a minimum cycle
basis.

The problem has been extensively studied, both in its general setting and in
special classes of graphs. Its importance lies in its use as a preprocessing step



in several algorithms. Such algorithms include diverse applications like electrical
circuit theory [5], structural engineering [6] and periodic event scheduling [1].

The first polynomial time algorithm for the minimum cycle basis prob-
lem was given by Horton [3] with running time O(m3n). de Pina [1] gave an
O(m3 + mn2 log n) algorithm by using a different approach. Golynski and Hor-
ton [4] improved Horton’s algorithm to O(mωn) by using fast matrix multipli-
cation. It is presently known [7] that ω < 2.376. Recently Berger et al. [8] gave
another O(m3 +mn2 log n) algorithm by using similar ideas as de Pina. Finally,
Kavitha et al. [2] improved de Pina’s algorithm into O(m2n+mn2 log n) again by
using fast matrix multiplication. In the same paper a faster 1+ ε approximation
algorithm, for any ε > 0, is presented.

In this paper we report our experimental findings from our implementation
of the O(m3 + mn2 log n) algorithm presented in [1]. Our implementation uses
LEDA [9]. We develop a set of heuristics which improve the best-case perfor-
mance of the algorithm while maintaining its asymptotics. Finally, we consider a
hybrid algorithm obtained by combining the two different approaches used in [1,
2] and [3, 4] with running time O(m2n2), and compare the implementations. The
new algorithm is motivated by our need to reduce the cost of the shortest path
computations. The resulting algorithm seems to be very efficient in practice for
random dense unweighted graphs. Finally, we compare our implementations with
previous implementations of minimum cycle basis algorithms [3, 8].

The paper is organized as follows. In Section 2 we briefly describe the algo-
rithms.In Section 2.1 we describe our heuristics and in 2.2 we present our new
algorithm. In Section 3 we give and discuss our experimental results.

2 Algorithms

Let G(V, E) be an undirected graph with m edges and n vertices. Let l : E 7→ R≥0

be a non-negative length function on the edges. Let κ be the number of connected
components of G and let T be any spanning forest of G. Also let e1, . . . , eN be
the edges of G \ T in some arbitrary but fixed order. Note that N = m − n + κ
is exactly the dimension of the cycle space.

The algorithm [1] computes the cycles of an MCB and their witnesses. A
witness S of a cycle C is a subset of {e1, . . . , eN} which will prove that C
belongs to the MCB. We view these subsets in terms of their incidence vectors
over {e1, . . . , em}. Hence, both cycles and witnesses are vectors in the space
{0, 1}m. 〈C, S〉 stands for the standard inner product of vectors C and S. Since
we are at the field GF (2) observe that 〈C, S〉 = 1 if and only if the intersection
of the two edge sets has odd cardinality. Finally, adding two vectors C and S in
GF (2) is the same as the symmetric difference of the two edge sets. Algorithm
1 gives a full description.

The algorithm in phase i has two parts, one is the computation of the cycle
Ci and the second part is the update of the sets Sj for j > i. Note that updating
the sets Sj for j > i is nothing more than maintaining a basis {Si+1, . . . , SN} of
the subspace orthogonal to {C1, . . . , Ci}.



Algorithm 1 Construct an MCB

Set Si = {ei} for all i = 1, . . . , N .
for i = 1 to N do

Find Ci as the shortest cycle in G s.t 〈Ci, Si〉 = 1.
for j = i + 1 to N do

if 〈Sj , Ci〉 = 1 then

Sj = Sj + Si

end if

end for

end for

Computing the cycles Given Si, it is easy to compute a shortest cycle Ci such that
〈Ci, Si〉 = 1 by reducing it to n shortest path computations in an appropriate
graph Gi. The following construction is well-known.

Gi has two copies v+ and v− of each vertex v ∈ V . For each edge e = (u, v) ∈
E do: if e /∈ Si, then add edges (u+, v+) and (u−, v−) to the edge set of Gi and
assign their weights to be the same as e. If e ∈ Si, then add edges (u+, v−) and
(u−, v+) to the edge set of Gi and assign their weights to be the same as e. Gi

can be visualized as 2 levels of G (the + level and the − level). Within each
level, we have edges of E \ Si. Between the levels we have the edges of Si. Call
Gi, the signed graph.

Any v+ to v− path p in Gi corresponds to a cycle in G by identifying edges
in Gi with their corresponding edges in G. If an edge e ∈ G occurs multiple
times we include it if the number of occurrences of e modulo 2 is 1. Because we
identify v+ and v− with v, the path in G resulting from p is a cycle C. Since we
start from a positive vertex and end in a negative one, the cycle has to change
sign an odd number of times and therefore uses an odd number of edges from
Si. In order to find a shortest cycle, we compute a shortest path from v+ to v−

for all v ∈ V .

Running time In each phase we have the shortest path computations which take
time O(n(m + n log n)) and the update of the sets which take O(m2) time. We
execute O(m) phases and therefore the running time is O(m3+m2n+mn2 log n).

2.1 Heuristic improvements

In this section we present several heuristics which can improve the running time
substantially. All heuristics preserve the worst-case time and space bounds.

Compressed representation (H1) All vectors (sets S and cycles C) which are
handled by the algorithm are in {0, 1}m. Moreover, any operations performed are
normal set operations. This allows us to use a compressed representation where
each entry of these vectors is represented by a bit of an integer. This allows us
to save up space and at the same time to perform 32 or 64 bitwise operations in
parallel.

Upper bounding the shortest path (H2) During phase i we might perform up
to n shortest path computations in order to compute the shortest cycle Ci with
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Fig. 1. Comparison of the time taken to update the sets S and the time taken to
calculate the cycles on random weighted graphs, by Algorithm 1.

an odd intersection with the set Si. Following similar observations of [10] we
can use the shortest path found so far as an upper bound on the shortest path.
This is implemented as follows; a node is only added in the priority queue of
Dijkstra’s implementation if its current distance is not more than our current
upper bound.

Reducing the shortest path computations (H3) We come to the most im-
portant heuristic. In each of the N phases we are performing n shortest path
computations. This results to Ω(mn) shortest path computations.

Let S = {e1, e2, . . . , ek} be a witness at some point of the execution. We need
to compute the shortest cycle C s.t 〈C, S〉 = 1. We can reduce the number of
shortest path computations based on the following observation.

Let C≥i be the shortest cycle in G s.t 〈C≥i, S〉 = 1, and C≥i∩{e1, . . . , ei−1} =
∅, and ei ∈ C≥i. Then cycle C can be expressed as C = min

i=1,...,k
C≥i. We can

compute C≥i in the following way. We delete edges {e1, . . . , ei} from the graph
G and the corresponding edges from the signed graph Gi. Let ei = (v, u) ∈ G.
Then we compute a shortest path in Gi from v+ to u+. The path computed
will have an even number of edges from the set S, and together with ei an odd
number. Since we deleted edges {e1, . . . , ei} the resulting cycle does not contain
any edges from {e1, . . . , ei−1}.

Using the above observation we can compute each cycle in O(kSP (n, m))
time when |S| = k < n and in O(nSP (n, m)) when |S| ≥ n. Thus the running



Algorithm 2 Hybrid MCB algorithm

Ensure uniqueness of shortest path distances of G ( lexicographically or by pertur-
bation).
Construct superset (Horton set) S of MCB.
Set Si = {ei} for all i = 1, . . . , N .
for i = 1 to N do

Find Ci as the shortest cycle in S s.t 〈Ci, Si〉 = 1.
for j = i + 1 to N do

if 〈Sj , Ci〉 = 1 then

Sj = Sj + Si

end if

end for

end for

time for the cycles computations is equal to SP (m, n) ·
∑

i=1,...,N min{n, |Si|}
where SP (m, n) is the time to compute a single-source shortest path on an
undirected weighted graph with m edges and n vertices.

2.2 A new hybrid algorithm

The first polynomial algorithm [3] developed, did not compute the cycles one by
one but instead computed a superset of the MCB and then greedily extracted
the MCB by Gaussian elimination. This superset contains O(mn) cycles which
are constructed in the following way.

For each vertex v and edge e = (u, w), construct the cycle C = SP (v, u) +
SP (v, w) + (u, w) where SP (a, b) is the shortest path from a to b. If these two
shortest paths do not contain a vertex other than v in common then keep the
cycle otherwise discard it. Let us call this set of cycles the Horton set. It was
shown in [3] that the Horton set always contains an MCB. However, not every
MCB is contained in the Horton set.

Based on the above and motivated by the need to reduce the cost of the
shortest path computations we developed a new algorithm, which combines the
two approaches. That is, compute the Horton set and extract the MCB not by
using Gaussian elimination which would take time O(m3n) but by using the
orthogonal space of the cycle space as we did in Section 2. The Horton set
contains an MCB but not necessarily all the cycles that belong to any MCB. We
resolve this difficulty by ensuring uniqueness of the MCB. We ensure uniqueness
by ensuring uniqueness of the shortest path distances on the graph (either by
perturbation or by lexicographic ordering). After the preprocessing step, every
cycle of the MCB will be contained in the Horton set and therefore we can query
the superset for the cycles instead of the graph G. A succinct description can be
found in Algorithm 2.

The above algorithm has worst case running time O(m2n2). This is because
the Horton set contains at most mn cycles, we need to search for at most m
cycles and each cycle contains at most n edges. The important property of this



n m N N(N − 1)/2 max(|S|) avg(|S|) # 〈S, C〉 = 1
sparse (m ≈ 2n)
10 19 10 45 4 2 8
104 208 108 5778 44 4 258
491 981 500 124750 226 7 2604
963 1925 985 484620 425 7 5469
2070 4139 2105 2214460 1051 13 20645
4441 8882 4525 10235550 2218 17 58186
p = 0.3
10 13 4 6 2 2 2
25 90 66 2145 27 3 137
75 832 758 286903 370 6 3707
150 3352 3203 5128003 1535 9 22239
200 5970 5771 16649335 2849 10 49066
300 13455 13156 86533590 6398 10 116084
500 37425 36926 681746275 18688 14 455620
p = 0.5
10 22 13 78 7 2 14
25 150 126 7875 57 4 363
75 1387 1313 861328 654 6 6282
150 5587 5438 14783203 2729 9 39292
200 9950 9751 47536125 4769 11 86386
300 22425 22126 244768875 10992 13 227548
500 62375 61876 1914288750 30983 15 837864

Table 1. Statistics about sets S sizes on sparse random graphs with p = 4/n and dense
random graphs for p = 0.3 and 0.5. Sets are considered during the whole execution of
the algorithm. Column #〈S, C〉 = 1 denotes the number of updates performed on the
sets S. An upper bound on this is N(N − 1)/2, which we actually use when bounding
the algorithm’s running time. Note that the average cardinality of S is very small
compared to N although the maximum cardinality of some S is in O(N).

algorithm is that the time to actually compute the cycles is only O(n2m), which
is by a factor of m

n + log n better than the O(m2n + mn2 log n) time required
by Algorithm 1. Together with the experimental observation that in general
the linear independence step is not the bottleneck, we actually hope to have
developed a very efficient algorithm.

3 Experiments

We perform several experiments in order to understand the running time of
the algorithms using the previously presented heuristics. In order to understand
the speedup obtained, especially from the use of the H3 heuristic, we study in
more detail the cardinalities of the sets S during the algorithm as well as how
many operations are required in order to update these sets. We also compare
the running times of Algorithms 1 and 2, with previous implementations.

All experiments are done using random sparse and dense graphs. All graphs
were constructed using the G(n; p) model, for p = 4/n, 0.3, 0.5 and 0.9. Our
implementation uses LEDA [9]. All experiments were performed on a Pentium
1.7Ghz machine with 1 GB of memory, running GNU/Linux. We used the GNU
g++ 3.3 compiler with the -O optimization flag. All other implementations, use
the boost C++ libraries [11].



n m N max(|Si|) davg(|Si|)e |{Si : |Si| < n}|
sparse (m ≈ 2n)
10 19 10 4 2 10
104 208 108 39 5 108
491 981 498 246 13 498
963 1925 980 414 11 980
2070 4139 2108 1036 27 2108
4441 8882 4522 1781 33 4522
p = 0.3
10 13 4 2 2 4
25 90 66 20 4 66
75 832 758 357 15 721
150 3352 3203 1534 18 3133
200 5970 5771 2822 29 5635
300 13455 13156 6607 32 12968
500 37425 36926 15965 39 36580
p = 0.5
10 22 13 7 3 13
25 150 126 66 5 121
75 1387 1313 456 10 1276
150 5587 5438 2454 19 5338
200 9950 9751 4828 28 9601
300 22425 22126 10803 33 21875
500 62375 61876 30877 38 61483

Table 2. Statistics about sets Si sizes on sparse random graphs with p = 4/n and
dense random graphs for p = 0.3 and 0.5, at the moment we calculate cycle Ci.

3.1 Updating Si’s

In this section we present experimental results which suggest that the dominating
factor of the running time of Algorithm 1 (at least for random graphs) is not
the time needed to update the sets S but the time to compute the cycles.

Note that the time to update the sets is O(m3) and the time to compute the
cycles is O(m2n+mn2 log n), thus on sparse graphs this algorithm has the same
running time O(n3 log n) as the fastest known. The currently fastest algorithm [2]
for the MCB problem has running time O(m2n+mn2 log n+mω); the mω factor
is dominated by the m2n but we present it here in order to understand what
type of operations the algorithm performs. This algorithm improves upon [1]
w.r.t the time needed to update the sets S by using fast matrix multiplication
techniques.

Although fast matrix multiplication can be practical for medium and large
sized matrices, our experiments show that the time needed to update the sets S
is a small fraction of the time needed to compute the cycles. Figure 1 presents a
comparison of the required time to update the sets Si and to calculate the cycles
Ci by using the signed graph for random weighted graphs.

In order to get a better understanding of this fact, we performed several
experiments. As it turns out, in practice, the average cardinality of the sets S
is much less than N and moreover the number of times we actually perform set
updates (if 〈Ci, Sj〉 = 1) is much less than N(N − 1)/2. Moreover, heuristic H1
decreases the constant factor of the running time (for updating S’s) substantially
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Fig. 2. Running times of Algorithm 1 with and without the H3 heuristic. Without the
heuristic the algorithm is forced to perform Ω(nm) shortest path computations.

by performing 32 or 64 operations in parallel. This constant factor decrease does
not concern the shortest path computations. Table 1 summarizes our results.

3.2 Number of shortest path computations

Heuristic H3 improves the best case of the algorithm, while maintaining at the
same time the worst case. Instead of Ω(nm) shortest path computations we hope
to perform much less. In Table 2 we study the sizes of the sets Si for i = 1, . . . , N
used to calculate the cycles for sparse and dense graphs respectively.

In both sparse and dense graphs although the maximum set can have quite
large cardinality, the average set size is much less than n. Moreover, in sparse
graphs every set used has cardinality less than n. On dense graphs the sets with
cardinality less than n are more than 95% percent. This implies a significant
speedup due to the H3 heuristic.

Figure 2 compares the running times of Algorithm 1 with and without the
H3 heuristic. As can easily be seen the improvement is more than a constant
factor.

3.3 Running time

In this section we compare the various implementations for computing a mini-
mum cycle basis. Except for Algorithms 1 (DP) and 2 (HYB) we include in the
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Fig. 3. Comparison of various algorithms for random unweighted graphs. Algorithm 1 is
denoted as DP U and Algorithm 2 as HYB U. HOR U1 [12] and HOR U2 [13] are two
different implementation of Horton’s [3] algorithm. FEAS U is an implementation [12]
of an O(m3) algorithm described in [8].
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comparison two implementations [12, 13] (HOR) of Horton’s algorithm with run-
ning time O(m3n) and an implementation [12] (FEAS) of the O(m3 +mn2 log n)
algorithm presented in [8]. Algorithms 1 and 2 are implemented with compressed
integer sets. Fast matrix multiplication [2, 4] can nicely improve many parts of
these implementations with respect to the worst case complexity. We did not
experiment with these versions of the algorithms.

The comparison of the running times is performed for three different type
of undirected graphs: (a) random sparse graphs, where m ≈ 2n, (b) random
graphs from G(n; p) with different density p = 0.3, 0.5, 0.9 and (c) hypercubes.
Tests are performed for both weighted and unweighted graphs. In the case of
weighted graphs the weight of an edge is an integer chosen independently at
random from the uniform distribution in the range [0 . . . 216].

Figures 3 and 5 summarize the results of these comparisons. In the case of
weighted graphs Algorithm 1 is definitely the winner. On the other hand in the
case of dense unweighted graphs Algorithm 2 performs much better. As can
be easily observed the differences on the running time of the implementations
are rather small for sparse graphs. For dense graphs however, we observe a
substantial difference in performance.

Dense unweighted graphs In the case of dense unweighted graphs, the hybrid
algorithm performs better than the other algorithms. However, even on the exact
same graph, the addition of weights changes the performance substantially. This
change in performance is not due to the difference in size of the produced Horton
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set, between the unweighted and the weighted case, but due to the total number
of queries that have to be performed in this set.

In the hybrid algorithm before computing the MCB, we sort the cycles of
the Horton set. Then for each of the N phases, we query the Horton set from
the least costly cycle to the most, until we find a cycle with an odd intersection
with our current witness S. Figure 4 plots for dense graphs the number of cycles
in the Horton set and the number of queries required in order to extract the
MCB from this set. In the case of unweighted graphs, the number of queries is
substantially smaller than in the case of weighted graphs. This is exactly the
reason why the hybrid algorithm outperforms the others in unweighted dense
graphs.
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